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Summary

Current theories suggest that an error-driven learning process updates trial-by-trial to facilitate 

motor adaptation. How this process interacts with motor cortical preparatory activity—which 

current models suggest plays a critical role in movement initiation—remains unknown. Here, we 

evaluated the role of motor preparation during visuomotor adaptation. We found preparation time 

was inversely correlated to variance of errors on current trials, and mean error on subsequent trials. 

We also found causal evidence that intracortical microstimulation during motor preparation was 

sufficient to disrupt learning. Surprisingly, stimulation did not affect current trials, but instead 

disrupted the update computation of a learning process, thereby affecting subsequent trials. This is 

consistent with a Bayesian estimation framework, where the motor system reduces its learning 

rate, by virtue of lowering error sensitivity, when faced with uncertainty. This interaction between 

motor preparation and the error-driven learning system may facilitate new probes into mechanisms 

underlying trial-by-trial adaptation.
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Vyas et al. use microstimulation to establish a causal relationship between motor cortical 

preparatory activity and learning. Disrupting preparatory activity affects subsequent, but not 

stimulated trials. Preparatory activity plays a critical role in trial-by-trial update computations of a 

learning process.

Introduction

Current theories suggest that when an error is experienced during motor execution, sensory 

feedback carrying this signal is sent to a trial-by-trial learning process (Figure 1). This 

learning process is also thought to include as input an efference copy of the original 

outgoing motor command as well as sensory feedback during the movement epochs 

(Shadmehr et al., 2010; Wolpert et al., 1995). The learning process performs computations 

by comparing the efference copy with sensory feedback in order to generate an update that 

improves the behavior on the subsequent attempt (Figure 1, “update arrow”). The precise 

nature of the update computation and where in the brain such an error-driven process resides 

is still an active area of investigation (McNamee and Wolpert, 2019). The overall learning 

process comprises multiple distinct components, at least one of which is slow and error-

driven, i.e., overcoming errors happens gradually on a trial-by-trial basis using efference 

copies and sensory feedback (Golub et al., 2015; Krakauer and Shadmehr, 2006; Krakauer et 

al., 2019; Shadmehr and Mussa-Ivaldi, 1994; Tanaka et al., 2009). Other components act on 

faster timescales, with varying sensitivities to error and retention characteristics (Smith et 

al., 2006).

For reaching movements, the overall trial-by-trial learning process ultimately causes 

systematic changes to neural activity in motor cortex, driving changes in behavior that 

overcomes the errors. Current models of motor cortical function propose that movement-

period activity evolves according to the laws of a neural dynamical system, whose initial 

state is set during motor preparation (Afshar et al., 2011; Ames et al., 2014; Churchland et 

al., 2006a, 2012, 2010b; Elsayed et al., 2016; Kaufman et al., 2014; Lara et al., 2018; 

Michaels et al., 2016). While many prior studies have explored the link between preparatory 

neural activity and movement production in motor cortex (Even-Chen et al., 2019; Riehle 

and Requin, 1993; Tanji and Evarts, 1976; Wise, 1985), there is little evidence for its role, if 

any, during motor learning (Kawai et al., 2015).

Recent reports have identified that a correlate of error-driven learning can be readout on 

single trials from the motor cortical neural state during preparation (Stavisky et al., 2017; 

Vyas et al., 2018). That is, learning induces systematic changes in neural activity during 

motor preparation that correlate with improvements in behavior. While this demonstrates 

that the error-driven learning process influences neural activity during preparation, it 

remains unknown whether preparatory activity directly contributes back to the error-driven 

learning process. Recently, Sheahan and colleagues demonstrated that preparing for different 

movement sequences allows human participants to adapt successfully in contexts that would 

otherwise interfere (Sheahan et al., 2016). These findings suggest that neural activity 

specifically during motor preparation (and not execution) is sufficient to separate motor 

memories and prevent interference. While these behavioral findings do not implicate a 
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particular brain region, previous studies have shown that preparatory activity in motor cortex 

reflects precise details of the upcoming movement; these details have the potential to inform 

a learning process (Even-Chen et al., 2019; Pandarinath et al., 2018; Shenoy et al., 2013). 

This raises the tantalizing possibility that preparatory activity could directly provide trial-by-

trial information to the update computation of the learning process to facilitate motor 

adaptation (hypothesis schematized in Figure 1 via red arrow).

In this study, our experiments and analyses reveal an intriguing relationship between motor 

preparation and the update computation of a trial-by-trial learning process. Concretely, we 

show that (1) preparation time is inversely correlated with the learning, (2) intracortical 

microstimulation causes no statistically significant deficit on the current trial, but instead 

disrupts learning on the subsequent trial, and (3) deficits to learning are consistent with a 

Bayesian estimation framework, whereby the learning process reduces sensitivity to error on 

stimulated trials. To our knowledge, these results constitute the first causal evidence for the 

role of motor preparation during learning and provide a new lens through which to 

investigate the computations underlying trial-by-trial adaptation.

Results

Two Rhesus monkeys (P and V) were trained to move the handle of a passive manipulandum 

to drive a computer cursor from the center of a screen to one of seven radially arranged 

targets (Figure 2A, top). Each session was broken into three blocks: baseline, adaptation, 

and washout (Figure 2A, bottom). During the adaptation block, a visuomotor rotation 

(VMR) was applied (±45°), where animals had to move their arm in the opposite direction to 

the VMR angle (i.e., “anti-VMR” direction) in order to drive the cursor directly to the target. 

Both animals adapted to the VMR at a similar rate as previously reported and exhibited 

after-effects during post-adaptation washout (Figure 2B–C).

Longer preparation times yield greater learning

We began by replicating previous findings that more preparation time, i.e., a longer delay 

period, yields faster reaction times (Churchland et al., 2006b) (Figure 3A; Monkey P: 

Normal Z = 12.82, p < 1e-30; Monkey V: Normal Z = 12.79. p < 1e-30); previous studies 

have shown similar relationships with other movement parameters, e.g., accuracy 

(Marinovic et al., 2017). We hypothesized an analogous relationship may hold between 

preparation time and the degree of compensation. Contrary to this prediction, we found no 

statistically significant relationship between mean kinematic error and preparation time 

(Figure 3B; Monkey P: n = 52, t = −0.02, p = 0.9; Monkey V: n = 55, t = 1.61, p = 0.11). 

Previous studies have explored the role of task-related variability in learning, where 

increased variability drives early learning (Wu et al., 2014). Here, we found that the variance 

of the error distribution was inversely correlated with preparation time (Figure 3C; Monkey 

P: n = 48, t = −2.75, p < 0.01; Monkey V: n = 53, t = −2.69, p < 0.01). Previous studies have 

also suggested that the trial-by-trial learning process has access to a history of observed 

errors, i.e., the brain recognizes errors it has previously experienced (Herzfeld et al., 2014) 

and prior experience of errors (and not successful actions) is necessary and sufficient for 

learning retention or savings (Leow et al., 2016). We hypothesized that more preparation 
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time could facilitate learning, i.e., decrease in kinematic error on the subsequent trial. 

Consistent with this prediction, we found that errors were inversely correlated with 

preparation time on the previous trial (Figure 3D; Monkey P: n = 50; t = −2.79, p < 0.01; 

Monkey V: n = 55, t = −2.4, p < 0.05). This suggests that more preparation time on a given 

trial facilitates a better update to some learning process, which manifests as decreased error 

on the subsequent trial. These results dovetail with previous human behavioral findings that 

explore the role of preparation time and learning. Haith and colleagues found that savings 

was not observed if after preparing a particular reach the target was switched at the go-cue, 

thereby allowing little preparation time for the movement (Haith et al., 2015). Fernandez-

Ruiz and colleagues found that reaction times were positively correlated with error reduction 

rate, and if reaction times were constrained, subjects showed slower error reduction rates 

(Fernandez-Ruiz et al., 2011).

Previously, we showed that a readout of the error-driven learning process is reflected in 

dorsal premotor cortex (PMd) as the neural population preparatory state; this state rotates 

systematically in concert with the behavior during VMR learning, and results in an “anti-

VMR” neural pattern post-adaptation (Vyas et al., 2018). Similar systematic changes in 

preparatory activity are observed when subjects adapt to changes in visuomotor gain; here 

instead of a rotation, a constant scale factor is applied to the speed of the cursor being 

controlled (Stavisky et al., 2017). We also previously showed that generating preparatory 

states closer to the optimal state is correlated with behavioral improvements, e.g., faster 

reaction times (Afshar et al., 2011). Here, we wanted to build on these findings by 

investigating how the dynamics of the preparatory state evolve during the delay period on 

single trials. We found that the state continued to move along a direction approaching the 

optimal “anti-VMR” pattern (Figure 3E–F; Monkey P: n = 90, F-statistic vs constant model 

= 7.21, p < 0.01; Monkey J: n = 75, F-statistic vs constant model = 15.17, p < 1e-5). This 

analysis, while consistent with our previous studies, further reveals that the neural 

population dynamics of the circuit during the delay period facilitate within-trial refinement 

of the neural state towards an advantageous position in state space for performing the task.

The additional preparation time presumably does not result in further updates by the learning 

process as no error signal is present. Instead, our results suggest the motor system may 

utilize this period to yield a low noise estimate of the currently learned internal state of the 

learning process. That is, the black “update” arrow in Figure 1 is likely noisy, which can 

seemingly be overcome, at least partially, with more preparation time. This is consistent with 

previous findings that the onset of the target stabilizes the preparatory state, potentially 

towards a pattern that incorporates the currently learned internal state (Churchland et al., 

2010a). This is likely advantageous as a more stable estimate could explain reduced 

variability in errors associated with the executed movement (Figure 3C) and increased 

learning (Figure 3D). We note, however, that given the timescale of 100s of milliseconds, 

other computations may occur during this time, in addition to resolving the potentially noisy 

interaction between the learning process and motor preparation. Perhaps additional time 

allows for the explicit system to contribute to learning, which could involve more time-

consuming processes. Taken together, these results suggest that refinement of preparatory 

activity is correlated with updates of a learning process and trial-by-trial adaptation.
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ICMS during motor preparation is sufficient to disrupt learning

Next, we evaluated if a causal relationship exists between preparatory activity and 

visuomotor learning. We performed sub-threshold intracortical microstimulation (ICMS) in 

PMd (at sites demonstrating strong preparatory tuning) near the end of the delay period 

(labeled as “go cue ICMS” in Figure 4A and Figure S1) (Churchland and Shenoy, 2007; 

Mazurek and Schieber, 2017). ICMS was performed 50 times during adaptation (Figure 4B). 

For comparison, for the same number of sessions, no ICMS was performed. We found that 

learning across ICMS trials progressed more slowly than across non-ICMS trials (Figure 4C, 

left; df = 470, t = 4.09, p < 1e-5, effect size = 4.07). This relationship also held when ICMS 

was performed during the washout, instead of during adaptation (Figure 4C, right; df = 310, 

t = −2.61, p < 0.01, effect size = 3.66). These results demonstrate a causal relationship 

between motor preparation and learning.

This observed learning deficit could be caused by one of at least three different mechanisms. 

(1) Disrupting preparatory activity could only disrupt the kinematics on the current trial. The 

underlying learning process would be unaffected, thus future trials without ICMS would be 

unaffected. (2) Disrupting preparatory activity could disrupt the kinematics, and thus the 

error signal, which is an input to the learning process. The update machinery of the learning 

process would be unaffected, however, by virtue of the degraded input, the resulting update 

would be affected, and thus learning on the next trial would be disrupted. (3) Disrupting 

preparatory activity might not affect the kinematics nor the error signal on ICMS trials, but 

instead only affect the update machinery of the learning process. This would manifest as no 

disruption to the degree of error compensation on ICMS trials but would instead manifest as 

impaired learning on subsequent trials. In order to disambiguate between these hypotheses, 

we designed a new experiment where ICMS trials were interleaved with non-ICMS trials 

during learning (Figure 4D).

We first replicated the previously reported reaction time penalty for stimulated trials (Figure 

4E; Monkey P: Normal Z = 6.82, p < 1e-6; Monkey V: Normal Z = 6.59. p < 1e-6) 

(Churchland and Shenoy, 2007). We then found that ICMS during trials early in learning led 

to larger reaction time deficits than did ICMS during trials late in learning (Figure S2) (cf. 

Figure 3A, no statistically significant relationship between preparation time and reaction 

time for early vs late learning). Intriguingly, apart from these reaction time penalties, we 

found no further deficits, including no statistically significant difference in the error 

distribution (Figure 4F; Figure S1). We then examined learning from the ICMS trial to the 

following trial (which itself was a non-ICMS trial), and found significant deficits compared 

to trials following no ICMS (Figure 4G and Figure S3; Monkey P: Normal Z = −3.45, p < 

0.001, effect size = 3.95; Monkey V: df = 370, t = −3.16, p < 0.01, effect size = 3.87). 

Collectively, these results demonstrate that ICMS during motor preparation is sufficient to 

disrupt learning, consistent with hypothesis (3) described above. Next, we evaluated the time 

constant for which the observed learning deficit persisted by isolating non-ICMS trials that 

follow an initial ICMS trial. We considered 4-tuples of trials where a single ICMS trial was 

followed by three non-ICMS trials. We found that the effect of ICMS persisted for 

approximately three trials (Figure 4H; Monkey P: Normal Z = −2.8871, p < 0.01 between 

trials k and k+1, and Normal Z = −2.4082, p < 0.05 between trials k and k+2; Monkey V: 
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Normal Z = −2.3001, p < 0.05 between trials k and k+1, and Normal Z = −2.1974, p < 0.05 

between trials k and k+2).

Learning deficits from ICMS are dose, time-point, and brain-region dependent

The learning process is hypothesized to make updates on a trial-by-trial basis using the 

visual error signal to drive adaptation (Inoue et al., 2016). The results here suggest that when 

ICMS is performed during motor preparation, error reduction on ICMS trials relative to 

previous trials is statistically indistinguishable from pairs of trials with no ICMS. Therefore, 

ICMS-driven disruption of learning cannot result from disrupted error signals arising from 

that movement, as the present trial has indistinguishable kinematics (apart from a reaction 

time penalty; Figure 4E–F). Instead, these results imply that ICMS affects the update 

computation of the learning process, as the error reduction on post-ICMS trials relative to 

ICMS trials is significantly impaired relative to pairs of trials with no ICMS, and that this 

disruption is not mediated by altering the error signal itself.

These results, however, do not directly implicate preparatory activity. Thus, we reanalyzed 

the data from stimulating in PMd, separating trials with short delay periods (350-450ms) and 

trials with long delay periods (500-600ms). We found that stimulating trials with longer 

delay periods led to a greater deficit in learning, further supporting the interpretation that 

ICMS slows learning via disruption of preparatory activity (Figure 5A; Monkey P: df = 352, 

t = −2.3, p < 0.05, effect size = 4.01; Monkey V: df = 378, t = −2.6, p < 0.05, effect size = 

3.95).

We also performed ICMS near the go-cue in primary motor cortex (M1), where there is 

significantly less preparatory activity (Figure 5B). As in PMd, we found no statistically 

significant deficits on stimulated trials, but a disruption to learning, albeit to a smaller degree 

than ICMS in PMd (Figure 5D, rightmost bar; Monkey P: Normal Z = −2.1, p < 0.05, effect 

size = 1.6; Monkey V: df = 337, t = −2.3, p < 0.05, effect size = 1.2). This may be due to 

proportionally less preparatory activity in M1, less involvement of M1 in visuomotor 

remapping, and/or fewer anatomical connections between M1 and the brain region(s) 

implementing the learning process.

Next, we performed an additional experiment in PMd where animals were provided a 

650-900ms delay period, but we stimulated 300ms into that period (Figure 5C). This 

experiment was motivated by the hypothesis that the preparatory activity could recover 

following ICMS if sufficient additional time during the delay period was provided. In this 

condition, we found no deficits to learning (Figure 5D, middle bar; Monkey P: df = 341, t = 

−3.11, p < 0.01, effect size = 3.7; Monkey V: df = 341, t = −2.2, p < 0.05, effect size = 3.5). 

This suggests that the preparatory state may recover in time for the update computation to 

proceed without disruption. This result also argues that the act of stimulation during motor 

preparation alone does not disrupt trial-by-trial learning in a temporally non-specific manner.

Taken together, these results suggest that the observed deficit to learning from ICMS are 

dose-dependent (Figure 5A), brain-region dependent (Figure 5B; 5D, right), and temporally 

specific (Figure 5C; 5D, middle).
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Discussion

In this study we investigated the role of motor preparation during visuomotor learning. 

Previous studies have explored the role of preparatory neural activity in movement initiation, 

suppression, higher-level goal setting, and more abstract cognitive planning. Here, we 

focused our attention instead on uncovering the relationship, if any, between preparatory 

activity and the process that facilitates trial-by-trial adaptation (Paz et al., 2003; Perich et al., 

2018; Sheahan et al., 2016; Stavisky et al., 2017; Vyas et al., 2018). We started by 

correlating the amount of preparation time with learning. While our results replicated the 

finding that more preparation time yields faster reaction times (Churchland et al., 2006b), we 

did not find any statistically significant benefit to magnitude of the error on trials with more 

time to prepare. We did, however, find that allowing longer preparation times yielded 

smaller variance on the current trial, and smaller errors on the subsequent trial. How the 

learning process uses reduction in variability to perform its update, if at all, remains 

unknown. It may be tempting to link the reduction in variability to the greater learning, but 

the mechanism that would support this is unclear. Prior work inspired by reinforcement 

learning suggests that increase in task-relevant variability (or action exploration) can 

actually enhance learning (Wu et al., 2014). Collectively, these results suggest that distinct 

aspects of variability may differentially help and hinder learning; further work is needed to 

understand this multifaceted relationship.

The behavioral findings led us to formulate a hypothesis where motor preparation 

contributes to the update computation of a trial-by-trial learning process. To test this, we 

used ICMS during the delay period to disrupt preparatory activity during a subset of 

interleaved learning trials. We found that ICMS reduced learning on subsequent trials, while 

not affecting any statistically significant kinematic change on that stimulated trial (Figure 

S1). This confirms that ICMS disrupted the update computation without disrupting the 

visual error signals that guide this update. Additionally, by varying the timing of ICMS 

during motor preparation, we found that ICMS must be performed close to the go-cue in 

order to observe deficits in learning.

There are several implications of this result. First, this controls for any longer-term effects of 

stimulation manifesting as deficits on subsequent trials. Second, this suggests that the effects 

of ICMS are time-point specific, i.e., learning deficits are only present when ICMS is 

performed close to the go-cue. Updates to the learning process start to occur at movement-

onset, as soon as visual errors are computed. The results here suggest that the update is 

primarily sensitive to the preparatory state at the go-cue (Figure 1, data appear to constrain 

the timing of the red arrow). One possible mechanism is that a signal occurring near the time 

of the go-cue triggers an interaction between the preparatory state and the learning process, 

where it informs the update computation that will occur once the reach is made. A triggering 

signal that meets these criteria was recently characterized; Kaufman and colleagues 

identified that the largest response component in motor cortex is condition-invariant, i.e., it 

reflects timing and not type of movement, and it rapidly changes during the reaction time 

epoch (Kaufman et al., 2016). The onset of this condition-independent signal (CIS) may 

transition the neural state from a preparatory “attractor-like” region in state space, to another 

region where, presumably following an appropriately-timed input, strong rotational 
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dynamics are observed just before movement onset (Churchland et al., 2012; Sussillo et al., 

2015) (Vyas, Golub, Sussillo, and Shenoy, 2020). The CIS-mediated hypothesis does not 

preclude interactions between the preparatory state and the learning process later in the same 

trial. Instead, it suggests that the learning process is unable to incorporate such future 

interactions; otherwise learning would not be disrupted on the post-ICMS trial as activity in 

preparatory dimensions likely recovers well before the end of the ICMS trial. We note, 

however, that this is speculative; at minimum, the results suggest that a disrupted preparatory 

state at CIS-onset is sufficient to affect the update machinery in a fashion that cannot be 

rescued by future, potentially “corrected,” preparatory states.

Alternatively, perhaps the learning process provides the comparison between efference copy 

and sensory feedback, but some other brain region that relies on motor cortical preparatory 

activity (which could include premotor cortex), generates the update. This would not require 

the exact interaction that is being proposed here (Figure 1). More progress towards this 

possibility, however, requires further research on determining all the brain regions 

comprising the learning process, and the exact nature of the update computation itself. The 

key takeaway is that our data constrain the time-window in which ICMS is effective at 

disrupting the update computation, where the CIS is one candidate signal that arises within 

that window that could enable an interaction between the learning process and the 

preparatory neural dimensions.

We evaluated the quantitative effects of ICMS on learning as probed through non-ICMS 

trials that follow an ICMS trial (Figure 4H), and through a long string of ICMS trials (Figure 

4B–C). These empirical findings suggest a learning rate modulation mechanism that may be 

helpful under normal circumstances. That is, the learning process may actively monitor the 

reliability of its inputs and adjust its learning rate accordingly to achieve robustness to 

perturbations. This is analogous to a mechanism proposed by a recent human behavioral 

study, which suggests that the motor system controls its learning rate through an error 

sensitivity parameter that is a function of the history of previously experienced errors; 

sensitivity is lowered when the environment is made more unpredictable (Herzfeld et al., 

2014). This is also consistent with ideas from Bayesian estimation; in particular, work by 

Wei and Kording suggests that the system reduces its learning rate if there is less confidence 

on a particular trial (Wei and Körding, 2009).

We speculate that perhaps our neural perturbation introduced uncertainty in downstream 

brain regions that leads to a qualitatively similar result as these previous studies. The 

learning process likely reduces error sensitivity to combat the uncertainty introduced by the 

initial ICMS perturbation; if no further stimulation occurs, the learning rate gradually returns 

to baseline (consistent with Figure 4G). On the other hand, repeated ICMS does not lead to 

further reductions in error sensitivity, as the errors are not influenced directly by ICMS and 

presumably no further uncertainty is introduced with additional stimulation (consistent with 

Figure 4B–C; ICMS disrupts the learning rate initially, but does not continue to further slow 

learning with repeated stimulation).

Furthermore, motor adaptation is a slow process overall, which suggests the system is 

designed to make gradual adjustments to control parameters to avoid unstable 
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overcorrections, and consequently may not have evolved to counter large, unexpected 

perturbations. This interpretation, however, might be specific to visuomotor adaptation, as 

one rarely encounters large visual distortions in the natural world. On the other hand, fast 

and slow adaptation processes are general phenomena, and it is possible that some neural 

machinery is shared between them. One interesting avenue for future work could explore the 

role of preparatory activity within more complex tasks (e.g., skilled movements) where 

timescales of learning can be directly manipulated (Krakauer et al., 2017, 2019). Future 

studies would perhaps also benefit from an improved task design in which the VMR 

perturbation angle changed randomly from trial-to-trial to prevent adaptation from 

saturating, thus the result would not ride on top of an asymptotic learning function.

All of our results regarding preparatory activity and its engagement with the learning process 

do not rest upon any assumptions about the nature of the update or even the brain region 

where the computation might take place. Our results argue that the update computation 

engages with neural activity in motor cortex during motor preparation. Prior work suggests 

that the most promising brain region to look for such error-driven updates is the cerebellum 

(Donchin et al., 2012); our proposal regarding a desired interaction between preparatory 

activity and trial-by-trial learning is further supported by recent evidence demonstrating the 

engagement of the cortico-cerebellar loop during motor preparation (Chabrol et al., 2019; 

Gao et al., 2018; Wagner et al., 2019). Additionally, other work has demonstrated that when 

explicit processes are suppressed, increase in cerebellar excitability via non-invasive brain 

stimulation increases implicit adaptation (Leow et al., 2017a).

It is important to consider alternative explanations for the results here, in which VMR 

learning still engages the CIS and gain mechanisms, but where disruption to preparatory 

activity specifically does not produce the deficit to learning. Our results demonstrate that 

near the time of the go-cue there exists some path by which ICMS disrupts the update of the 

learning process. However, it is conceivable that this disruption could be unrelated to 

disrupting preparatory activity and the subsequent interaction between the learning process 

and the preparatory state. ICMS could be disrupting the update computation via an 

alternative pathway, rather than through the normal pathway for driving adaptation. 

Additionally, ICMS could potentially disrupt more than just the preparatory neural 

dimensions. For example, error signals and the corresponding error-updating neural 

dimensions play a key role in adaptation, e.g., (Inoue et al., 2016; Williams et al., 2018). 

Future work in the form of studying error-updating dimensions in motor cortex, e.g., (Even-

Chen et al., 2017), and/or recording and modeling activity from other nodes in the motor 

system, including parietal cortex, basal ganglia, and the cerebellum, could resolve the 

remaining ambiguities regarding the precise impact of ICMS. Nevertheless, at minimum, our 

study reveals both a region-specific and a time-specific path from motor cortex to the 

learning process, which when disrupted causes deficits to learning (Figure 5). This coincides 

with correlative evidence for increased learning with additional preparation time (Figure 

3D).

While VMR adaptation is no doubt partly driven by the trial-by-trial error signal, there are 

multiple components that underlie the learning process. We have largely focused on the 

implicit, error-driven component, but there is also an explicit, cognitive component. In 
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studies with human participants, it is possible to at least partly dissociate between these 

processes (though there still seems to be no consensus regarding the best methods to do so or 

their relative effectiveness, e.g., (Leow et al., 2017b). In non-human primate animal models, 

it has yet to be established what the balance of implicit and explicit processes might be. To 

that end, in this study we cannot attribute which processes the animals engage (though they 

are at least engaging the implicit process) and which of these processes are disrupted by 

ICMS. Prior work by Mazzoni and Krakauer suggests that the explicit component is 

overridden by the motor planning system when there is conflict between the processes 

(Mazzoni and Krakauer, 2006). Here, we did not see the expected behavioral consequences 

of such conflict. To that end, it is unlikely that we are preferentially disrupting the explicit 

process, as that would likely not lead to post-ICMS errors as reported here. It is also unlikely 

that we specifically disrupted only the implicit process, as ICMS is not a specific enough 

perturbation, though we have no way to probe this. Further, we cannot distinguish whether 

ICMS disrupted either the fast or the slow adaptive process as previously described by Smith 

and colleagues (Smith et al., 2006). Nonetheless, having established a causal relationship 

between neural activity during motor preparation and the trial-by-trial learning process, 

future work can begin to overcome the limitations described here by designing experiments 

that disentangle the contribution of preparation on the various components of learning.

One final lens through which to view our results comes as a direct prediction of the initial 

condition hypothesis, which proposes that the role of preparatory activity is to initialize peri-

movement neural population dynamics (Afshar et al., 2011; Churchland et al., 2010b). If a 

learning process wants to improve behavior on a trial-by-trial basis, then under the initial 

condition hypothesis it could shape the movement period dynamics by influencing the initial 

condition directly. Subsequently, the update computation could be guided by the preparatory 

state which initialized the reach just made. Thus, one would expect an interaction between 

preparatory activity and the update computation as a means for the learning process to 

perform an update that best sets the initial condition for the next trial. This proposal is 

consistent with that of Sheahan and colleagues for separating interfering motor memories 

(Sheahan et al., 2016). This may also relate to observational learning, where neural activity 

during preparation informs a learning process without motor commands or efference copy, 

e.g., (Vyas et al., 2018). Having found evidence for the link between motor preparation and 

the trial-by-trial learning process, future studies can perhaps further bridge together the 

dynamical systems perspective of motor control with the current framework for investigating 

error-driven learning.

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Saurabh Vyas (smvyas@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal protocols were approved by the Stanford University Institutional Animal Care 

and Use Committee. Recordings were made from motor cortical areas of three male adult 
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monkeys (Macaca mulatta), P (16 kg, 13 years old), V (9 kg, 10 years old) and J (16 kg, 15 

years old), while they performed an instructed delay reaching task (Figure 2A). Use of two 

animals is standard practice in the field. Data from Monkey J was introduced only for the 

analyses presented in Figure 3F once it was no longer possible to perform further neural 

recordings from Monkey V.

Monkeys P and V were implanted with a head restraint and a recording chamber (NAN 

Instruments for Monkey P and Crist Instrument Company for Monkey V) during a sterile 

surgery. The chambers were located over the left, caudal, dorsal premotor cortex (based on 

coordinates derived from a Rhesus monkey atlas). Monkey P’s chamber had a 30mm inner 

diameter, whereas Monkey V’s chamber had a 19mm inner diameter. The chambers were 

placed flush with the skull, adhered using methyl methacrylate. Within each chamber, a thin 

layer of methyl methacrylate was deposited above the exposed skull. During the same 

surgery, a “ground screw” was placed on the posterior part of the implant; the tip of the 

screw was in contact with the surface of the dura underneath the skull. Prior to recordings 

and stimulation, small craniotomies (3mm each in diameter; two in PMd and one in M1) 

were made under anesthesia (ketamine).

Monkey J had two chronic 96-electrode arrays (1mm electrodes, spaced 400μm apart; 

Blackrock Microsystems), one implanted in the dorsal aspect of the premotor cortex (PMd) 

and one implanted in the primary motor cortex (M1). The arrays were implanted 7 years 

prior to these experiments. The location of the arrays was comparable to the PMd and M1 

sites from Monkeys P and V.

METHOD DETAILS

Task design.—Monkeys performed a previously reported (Vyas et al., 2018) instructed-

delay reaching task by grasping a custom designed handle (Shapeways, Inc.), which 

included a force/torque sensor (ATI Industrial Automation). The handle and force sensors 

were attached to a passive manipulandum (Force Dimension Inc.). This device was 

controlled by custom software (https://github.com/djoshea/haptic-control) and allowed to 

move freely in the frontoparallel plane. The handle of the device was not visible to the 

monkeys; instead monkeys were shown a visual cursor on a screen located at eye level 

coupled to the device’s position with 13-20ms latency. Method details for Monkey J have 

been previously described (Vyas et al., 2018). All monkeys made reaches to one of seven 

randomly cued targets arranged 8cm from the center of the screen, equally spaced along a 

ring; the target in the 270° position was omitted. There was an additional target at the center 

of the screen. Each trial started with the monkey holding the cursor on the central target for 

200ms. Then, during a variable delay period (uniformly sampled; these delays vary from 

0ms-900ms if pooled across all experiments but see captions of each Figure for precise delay 

period distributions), the monkey was informed of the cued target, but had to continue to 

hold the central target. At the go-cue, the monkey had 2s to acquire the target, which 

included getting the cursor within a 2x2cm window of the center of the target. The target 

needed to be held for 200ms, at which point a success tone played, and the monkey received 

a juice reward. Re-acquisition of the target was allowed as long as the 2s had not elapsed. 

The monkey failed the trial if he moved the cursor during the delay period (movement 
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greater than 1mm/s) or did not acquire the target within 2s. Failure resulted in no reward, 

and a failure tone. In addition to the baseline task, monkeys also performed blocks with an 

active visuomotor rotation (VMR), parametrized by angle θ. Here, the cursor trajectory was 

rotated by angle θ, and thus in order to move the target in a straight line, monkeys needed to 

move their arm in the -θ direction. Each session was broken into three blocks: a baseline 

block (typically 300 trials), a VMR block (typically 300 trials, except for the experiments in 

Figure 4), and a washout block (typically 300 trials). VMR angles of ±45° (Monkeys P and 

V), and −60° (Monkey J) are reported in this study.

Electrophysiology.—At the start of each session, a linear electrode array (24 channel V-

probe; Plexon, Inc.) was affixed to a micromanipulator (NAN Instruments) and lowered at 

5μm/s through a non-penetrating blunt guide tube into motor cortex to a depth of 

approximately 2mm. Depth was assessed separately on each session; typically the probe was 

advanced until neural activity was observed on the bottom channel on the probe, then the 

probe was lowered an additional 1.5-2mm, or until neural activity spanned all 24 channels. 

The probe was allowed to settle for 60min before any recordings were made. The probe was 

connected to a head stage, which relayed the signal to a front-end amplifier (Blackrock 

Microsystems). Broadband signals were recorded on each channel and filtered at the 

amplifier (0.3Hz one pole high-pass filter, 7.5kHz three pole low-pass filter). The signals 

were also digitized to 16-bit resolution over ±8.196mV (resolution = 0.25μV) and sampled 

at 30kHz. Each channel was differentially amplified relative to a common reference within 

the V-probe. To aid with noise rejection, the probe was shorted to the guide tube, as well as 

covered from all sides with an electromagnetic shielding mesh fabric, which was also 

shorted to the guide tube. Offline, units that had a signal-to-noise ratio of at least 1.5 were 

kept. In PMd, approximately 10-20 units were measured at each session. This procedure was 

followed for all measurements made in Monkeys P and V. On microstimulation sessions (see 

the ‘Electrical stimulation’ section below) the same procedure was followed, except single 

channel tungsten microelectrodes (Frederick Haer Company, Inc.) were used in lieu of V-

probes.

In Monkey J voltage signals were band-pass filtered from each channel on the two arrays 

(range: 250Hz – 7.5KHz). The signals were then processed to detect multi-unit “threshold 

crossing” spikes. Spikes were detected at each point where the voltage crossed below a 

threshold of −4.5 times the root-mean-square (RMS) voltage. For the population analysis in 

Figure 3, no spike sorting or assignment of spikes to individual neurons was performed 

(Trautmann et al., 2019).

Intracortical microstimulation (ICMS).—For microstimulation, single channel tungsten 

microelectrodes (250μm shank diameter, less than 1μm tip diameter, 110mm length, 5-7MΩ 
impedance measured at 1KHz; Frederick Haer Company, Inc.) were used. Prior to 

performing ICMS, the electrodes were inserted into PMd and M1 (as described in the 

‘Electrophysiology’ section) to measure and characterize neural activity; coarse attempts, 

i.e., playing the neural data through a speaker and listening for changes in spike rate as the 

monkey performed baseline reaches, were made to verify that the location contained neural 

activity modulated to arm movements. After finding the first depth that contained neural 
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activity, the probe was lowered an additional 1mm. The stimulation was performed using a 

S88X Grass electrical stimulator (Astro-Med, Inc.). The task, implemented in Simulink 

Real-Time Target (The MathWorks, Inc.), sent a TTL pulse to trigger the stimulation. The 

current flowed through the brain from the electrode to the ground screw. All experiments 

used biphasic pulses delivered at 333Hz for 60ms (balanced 150μs cathodal then anodal 

pulses separated by 200μs). The stimulation amplitude varied between 15-120μA, depending 

on brain region, and was chosen and then set for that particular session. In order to select 

this amplitude, a “threshold” was found on each session as follows. At the start of the 

experiment, the monkey sat in a comfortable resting position, with his contralateral (right) 

arm laying in a visible position. The experimenter attempted to visually confirm a twitch in 

the wrist and/or forearm as he manually delivered a single 60ms train of ICMS. The 

“threshold” was defined as the minimum current needed to evoke a brief movement or 

twitch of the wrist or forearm. The experimenter started at 30μA, incrementing by 30μA if 

no such movement was observed; if 150μA was reached and no movement was observed, the 

stimulation electrode was driven an additional 100μm into cortex. Once a threshold was 

found, the stimulation amplitude was set to be 5-20% below this level, where the precise 

choice was based on a value that no longer elicited any movements. Across both Monkey P 

and V, we found higher thresholds on average in PMd than in Ml by a factor of about 2-3X, 

though thresholds as low as 40μA were observed in PMd.

Preparatory neural state analysis.—In Figure 2E the preparatory neural state is 

analyzed using a standard application of Principal Components Analysis (PCA). First, all 

data is arranged into a tensor with dimensions corresponding to neurons, time, and trials. 

This tensor is then reshaped into a matrix with dimensions corresponding to trial-averaged 

conditions, seven reach directions in this case, and firing rates of every neuron over time, 

where time here is selected to be 200ms just preceding the go-cue. PCA is applied to this 

data matrix, and the top two dimensions (i.e., PCs) are visualized (Figure 3E). Second, on a 

condition-by-condition basis, 2-trial-averaged neural data is projected into the two PCs 

(small dots in Figure 3E).

In Figure 3F, the dynamics of the preparatory state during the delay period are considered. A 

cartoon of the analysis is shown in Figure 3E (gray arrows, solid and dotted). In brief, for 

each reach condition, 5-trial-averaged neural trajectories are considered; one 5-trial-averaged 

trajectory from a baseline block (with no VMR), and one 5-trial-averaged trajectory from the 

VMR block (−45° for Monkey P or −60° for Monkey J). Trials from the VMR block are 

only considered for “early learning,” i.e., the first 150 trials of learning, and are 

appropriately matched with the baseline block. These trajectories correspond to trials with a 

delay period of length at least 650ms (750ms for Monkey J). For each time point (in 50ms 

bins), the angle between these trajectories is found; the angle is found in the full-

dimensional space, i.e., not just in the 2D PC space. Figure 3F plots these angles as a 

function of time during the delay period. For every 50ms time bin, each point corresponds to 

the angle between one pair of 5-trial-averaged trajectories; in Figure 3F the points are further 

averaged across sessions, though this is only for ease of visualization as all the data is used 

for the regression. The “optimal angle” corresponds to the “anti-VMR” angle, i.e., 45° and 
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60° for Monkeys P and J respectively. This angle corresponds to the angle at which a reach 

would produce no error.

Computing error and learning metrics.—In Figure 3 error is computed as an angle 

between the vector that points in a straight line from the center of the workspace to the cued 

target and the point on the cursor trajectory as it crosses the halfway point between the 

center of the workspace and the target. In Figure 4F this error metric is computed between a 

pair of trials, i.e., the error is computed for the current trial k and the previous trial k−1. 

Previous work has demonstrated that error during motor adaptation exhibits spatial 

generalization (Thoroughman and Shadmehr, 2000). Thus, we computed the error in one of 

two ways: first, we only considered pairs of trials where the target directions were within a 

45° spatial window; second, we empirically estimated the magnitude of spatial 

generalization (from a separate block of VMR trials) and then scaled the error difference by 

that magnitude, denoted by κ. This is meant to capture the intuition that if a reach is made to 

a 0° target on trial k, and then a reach is made to a 135° target on trial k+1, one does not 

expect any learning that happened on trial k to affect learning on trial k+1. As both 

approaches yielded similar results, the factor κ was used for all analyses as it allowed for all 

the data to be considered.

In order to estimate κ, we use three sessions where the animals perform the same number of 

trials as for the primary data, and measure how much learning transfers to the other targets 

when only adapting to a single (top, 0 degree) target. The other six targets (with no VMR 

present) are presented randomly during adaptation (which themselves have no VMR active). 

The resulting error in the opposite direction is a measure of the transfer of learning. We can 

then define κ as a fraction capturing the amount of adaptation transferred. The exact values 

of κ that are used in this study (averaged across the three monkeys, though the differences 

across animals were less than 5%) are: Targets = [−135°, −90°, −45°, 0° (active VMR), 45°, 

90°, 135°] Kappa = [0.00±0.00, 0.08±0.00, 0.37±0.13, 1.00, 0.32±0.17, 0.10±0.01, 

0.00±0.00]

In Figure 4G the same procedure is followed, except the current trial k and the next trial k+1 
are considered. In Figure 5, the learning deficit is defined as the effect size of Figure 4G; 

concretely, the learning deficit is defined as:

error k + 1 − error k non−ICMS − error k + 1 − error k ICMS

QUANTIFICATION AND STATISTICAL ANALYSIS

MATLAB (Mathworks, Inc.) was used for all statistical analyses. For all histograms, first a 

Kolmogorov-Smirnov (KS) test is used to confirm normality, then the significance of the 

difference in the distributions is determined using a two-tailed Student’s t-test, assuming 

nonequal variances. If the KS test does not confirm that the data is normally distributed, then 

a Wilcoxon rank-sum test (or the paired, i.e., signed test) is used as appropriate. For all 

linear regressions a F-test is used to determine if the fit is significantly better than a model 

with only a constant term, i.e., the slope of the fitted line is significantly different from zero. 

Partial correlations are used to rule out influence from other experimental parameters, as 
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appropriate. For all bar plots, a Wilcoxon rank-sum test (or the paired, i.e., signed test) is 

used. For the reaction time distributions, a KS test followed by a two-tailed Student’s t-test 

is used. For all tests, p = 0.05 is set as the significance threshold.

DATA AND CODE AVAILABILITY

The data, materials, animal protocols, and analysis details necessary to reproduce the results 

in this study will be made available by the Lead Contact (Saurabh Vyas, 

smvyas@stanford.edu) upon reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Longer motor preparation times yield greater learning

• Motor preparation plays a causal role in visuomotor adaptation

• Motor cortical preparatory state engages with a learning process

• Disrupting preparatory states likely reduces learning by lowering error 

sensitivity
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Figure 1: Framework for trial-by-trial motor learning
Conceptual block diagram for error-driven motor learning. Beginning with motor 

preparation at the top left, the loop represents the progression of one trial during motor 

adaptation into an update that will affect subsequent trials. Motor efference signals and 

sensory feedback contribute to error-driven learning. The red arrow represents the key 

hypothesis being tested in this study: does there exist an interaction between neural activity 

during motor preparation and a trial-by-trial learning process, and if so, what is the nature of 

this interaction? This is consistent with standard formulations of control theory; the brain 

(here, motor preparation and motor generation) is viewed as a “controller,” whose function 

is to generate commands that drive a “plant” (here, the arm). During learning, sensory 

feedback and efference copies are analyzed by a “state estimator” (here, the learning 

process), which performs internal state updates to facilitate feedback control (McNamee and 

Wolpert, 2019).

Vyas et al. Page 19

Neuron. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Task design and behavior
A. Monkeys performed 2D cursor movements using a passive manipulandum. Reaches were 

made to one of seven targets arranged radially 8cm from the center of the screen. When a 

VMR was applied, the cursor’s movements were offset by the corresponding angle. (Top) 

Each trial had an instructed delay period uniformly sampled from 350-600ms (for the data 

presented in (B) and (C)) that preceded the go-cue. (Bottom) Each session had baseline, 

adaptation, and washout blocks consisting of 300 trials each.

B. Representative arm movement trajectories from Monkey V for the baseline, adaptation, 

and washout blocks from one session. Gray and black correspond to the first 90% and the 

last 10% of the trials in each block respectively.

C. Plotted is the error angle during baseline, adaptation, and washout as a function of trial 

number for five sessions from Monkey V. Gray dots correspond to individual trials, and the 

black line corresponds to the median. The error was computed as the angle between the 

cursor’s position (measured at the halfway point to the target) and the vector pointing from 

the workspace center to the target.
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Figure 3: Longer preparation times yield greater learning
A. Cumulative reaction time distributions (pooled across all sessions). Green denotes short 

delay periods (0-300ms), and orange denotes long delay periods (300-600ms). Dotted lines 

denote the first 150 trials during adaptation, and solid lines denote the last 150 trials during 

adaptation. The p-values were obtained from the Wilcoxon rank-sum test and compare trials 

with short delay periods and trials with long delay periods.

B. Correlation between the length of the delay period on trial k and the mean error on that 

same trial k. Data were binned in 50ms bins. The p-values are for the F-test on the model, 

which tests whether the fit is significantly better than a model with only a constant term. The 

plotted data (same for (C) and (D)) is pooled across five sessions; the first 25 trials (i.e., 

‘early learning’) are considered from each session. The delay length for Monkey P was 

drawn randomly on every trial from a uniform distribution from 0ms-500ms; for Monkey V 

this was between 250ms-600ms.
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C. Correlation between the length of the delay period on trial k and the variance in the 

distribution of errors (in 50ms bins) on that same trial k. The p-values are for the F-test on 

the model, which tests whether the fit is significantly better than a model with only a 

constant term. Delay period distribution was the same as in (B).
D. Correlation between the length of the delay period on trial k and the mean error (in 50ms 

bins) on the next trial k+1. The p-values are for the F-test on the model, which tests whether 

the fit is significantly better than a model with only a constant term. Delay period 

distribution was the same as in (B).
E. Delay period neural activity from a representative session projected into a 2D subspace 

found using Principal Components Analysis on 200ms of trial-averaged neural activity from 

a baseline block. Small dots are two-trial-averages projected into the subspace; large circles 

are cluster centroids. Colors correspond to the seven reach directions shown in the inset (top 

left). Gray lines correspond to hypothetical baseline and −45° VMR trial neural trajectories 

during the delay period; angle (θt) is computed between the trajectories for each time point t 
at a 10ms resolution.

F. The angle between neural trajectories during the delay period (θt) is computed at a 50ms 

resolution between baseline and −45° (−60° for Monkey J) VMR trajectories; each trajectory 

is a 5-trial average. The gray ‘optimal angle’ line corresponds to the ‘anti-VMR’ angle, i.e., 

45° and 60° for Monkeys P and J respectively. Plotted is the correlation between the time 

during the delay period and the angle (θt) between trajectories. The p-values are for the F-

test on the model, which tests whether the fit is significantly better than a model with only a 

constant term. The delay length for Monkey P was drawn randomly on every trial from a 

uniform distribution from 0ms-650ms; for Monkey J this was between 0ms-750ms. Data is 

pooled across sessions such that a population of at least 50 tuned neural units (channels on 

the Utah electrode arrays for Monkey J; channels on the V-probe for Monkey P) during early 

learning (first 25 trials) are analyzed. Note that data is shown for Monkey J, and not Monkey 

V, in this panel (see methods for details).
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Figure 4: ICMS during motor preparation is sufficient to disrupt learning
A. Timing diagram. Intracortical microstimulation (ICMS) was delivered near the end of the 

delay period (i.e., ‘go-cue’) for 60ms (333Hz; 150μs cathodal and anodal pulses, separated 

by 200μs) in PMd and M1. See Figure S1 for relevant ICMS controls.

B. ICMS (red) and non-ICMS (black) are performed on separate sessions. For ICMS 

sessions, electrical stimulation is performed on trials 8-57 (for a total of 50 trials), denoted 

by the red box on the horizontal axis. The first block (7 trials; one for each reach condition) 

is used to assess effects of savings; the session is excluded if savings is present. The solid 
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lines denote exponential decay fits to data across all sessions. Data is shown for four ICMS 

and four non-ICMS sessions from Monkey P.

C. (Left) Same data as (B) presented in histogram form. Vertical dashed lines show means of 

distributions, and horizontal solid lines mean ± s.e.m. (Right) Similar to (B) except ICMS is 

performed during the washout, instead of during adaptation. The p-values were obtained 

from two-tailed Student’s t-tests.

D. Task design. ICMS was interleaved with non-ICMS trials during 45° VMR adaptation for 

exactly 50% of the trials. Reach conditions (inset, top left) were balanced such that each 

condition received ICMS and non-ICMS within each block. A total of 10 blocks were 

collected during adaptation. The first block was 7 trials (one for each reach condition, and 

no ICMS), blocks 2-10 were 14 trials each (two for each reach condition; one ICMS and one 

non-ICMS). The ordering of ICMS and non-ICMS trials was randomized within each block.

E. Cumulative reaction time distributions (pooled across all sessions in PMd) for the ICMS 

(red) and non-ICMS (black) trials during adaptation. See Figure S2 for ICMS early vs late 

during learning.

F. Histograms of learning on ICMS and non-ICMS trials. The horizontal axis corresponds to 

learning, i.e., the error on the current trial k less the error on the previous trial k−1. Trial k−1 

is non-ICMS; trial k is ICMS (red histogram) or non-ICMS (black histogram). The p-values 

were obtained from two-tailed Student’s t-tests.

G. Histograms of learning on trials immediately following ICMS and non-ICMS trials. The 

horizontal axis corresponds to learning, i.e., the error on the next trial k+1 less the error on 

the current trial k. Trial k is ICMS (red histogram) or non-ICMS (black histogram); trial k+1 

is non-ICMS. Vertical dashed lines show means of distributions, and horizontal solid lines 

mean ± s.e.m. The p-values were obtained from two-tailed Student’s t-tests. See Figure 

S3B–D for a more detailed breakdown for this analysis.

H. Time course of normalized learning deficit due to ICMS across four trials; trial k is ICMS 

(shown as red), trials k+1, k+2, and k+3 are non-ICMS (shown as black). Learning deficit is 

defined as the difference between the mean learning for ICMS and non-ICMS trials, i.e., it is 

the same measure as the difference in means in (F) and (G). The distributions are created by 

performing the same analysis as (F) - (G) on a session-by-session basis, where each session 

contributes one data point; dots denote the median, and the bars denote the full extent of the 

data. Trial k is the same data as (F), trial k+1 is the same data as (G), trials k+1 and k+2 

repeat the analysis in (G), except isolating pairs of non-ICMS trials that follow ICMS (on 

trial number k). Data are normalized such that the minimum (across sessions) of trial k is 

zero, and the maximum (across sessions) of trial k+1 is one. This is done to more easily 

demonstrate the fraction of the learning deficit (relative to trial k+1) that persists across trials 

k+2 and k+3. The p-values were obtained from the Wilcoxon rank-sum test using 

unnormalized data.
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Figure 5: Learning deficits from ICMS are dose, time-point, and brain-region dependent
A. Same data as (Figure 4G), except trials with short (350-400ms) and long (500ms-600ms) 

delay periods are separately analyzed. Horizontal bars denote the median; vertical bars 

denote the full extent of the data; boxes denote the 25th and 75th percentile of the data. 

Learning deficit is defined in the same way as reported in Figure 4H. The p-values were 

obtained from the Wilcoxon rank-sum test.

B. Cumulative reaction time distributions (pooled across all sessions in M1) for the ICMS 

(red) and non-ICMS (black) trials during adaptation. Same ICMS protocol as Figure 4A. 

The p-values were obtained from the Wilcoxon rank-sum test.

C. Timing diagram for ‘early’ ICMS. Same ICMS parameters as Figure 4A, except ICMS is 

delivered 300ms into the delay period, followed by a second variable length delay period of 

350-600ms. Thus, animals experience a total delay period of 650-900ms, where ICMS 

arrives at 300ms.

D. Box plots of learning deficit for the three ICMS conditions, i.e., ICMS in PMd at the go-

cue, ICMS in Ml at the go-cue, and ICMS in PMd 300ms into the delay period. Bar plots are 

computed in the same manner as (A), without separating by preparation time. The data in the 

box plots are across sessions; each session contributes one data point, i.e., the difference in 

means as reported in (Figure 4G).

Vyas et al. Page 25

Neuron. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vyas et al. Page 26

Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus macaques (Mucacca mulatta) Wisconsin and Yerkes Primate 
Centers

N/A

Software and Algorithms

MATLAB The MathWorks, Inc. https://www.mathworks.com/products/matlab.html

Simulink RealTime The MathWorks, Inc. https://www.mathworks.com/products/simulink-real-
time.html

Haptic Control Custom; Chai 3D https://github.com/djoshea/haptic-control
https://www.chai3d.org/

Other

Cerebus system Blackrock Microsystems http://blackrockmicro.com/neuroscience-research-products/
neural-data-acquisition-systems/cerebus-daq-system/

Utah microelectrode array (96 channel) Blackrock Microsystems http://blackrockmicro.com/neuroscience-research-products/
low-noise-ephys-electrodes/blackrock-utah-array/

Digital-to-analog card National Instruments NI DAQ

Haptic feedback device Force Dimension Inc. Model: Delta.3

3D printed handle for haptic device Shapeways Inc. N/A

Force/Torque sensor ATI Industrial Automation Model: Mini40

Polaris optical tracking system Northern Digital https://www.ndigital.com/medical/products/polaris-family/

Recording chamber (Monkey P), 
microdrive, and associated electronics

NAN Instruments http://naninstruments.com

Recording chamber (Monkey V) Crist Instrument Company, Inc. 6-ICO-J0 O degree Screw Style CILUX Chamber

Linear multielectrode array (24 channel) Plexon, Inc. PLX-VP-24-15ED-100-SE-100-25(640)-CT-500

Grass S88X electrical stimulator Astro-Med, Inc. http://www.neurolabparts.com/stimulators/99-grass-astro-
med-stimulators-model-s88x.html

Tungsten single channel microelectrode Frederick Haer Company, Inc. Part #: UEWLGCSEEN1E
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