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Abstract

We report a concise, enantioselective synthesis of the yohimbine alkaloids (−)-rauwolscine and 

(−)-alloyohimbane. The key transformation involves a highly enantio- and diastereoselective 

NHC-catalyzed dimerization and an amidation/N-acyliminium ion cyclization sequence to furnish 

four of the five requisite rings and three of the five stereocenters in two operations. This route also 

provides efficient access to all four diastereomeric arrangements of the core stereotriad of the 

yohimbine alkaloids from a common intermediate. This platform approach in combination with 

the ability to access both enantiomers from the carbene-catalyzed reaction is a powerful strategy 

that can produce a wide range of complex alkaloids and related structures for future biomedical 

investigations.

Graphical Abstract

Alkaloids are secondary metabolites containing a basic nitrogen atom that are ubiquitous in 

nature and medicine.1 The prevalence of these molecules in pharmaceuticals and the 

increased desire to investigate sp3-carbon-rich molecules in drug discovery campaigns 

necessitates the efficient construction of complex nitrogen-containing heterocycles with high 

levels of enantiocontrol.2–3 Moreover, the design of adaptable syntheses that enable rapid 

access to a diverse array of structurally related molecules is of comparable importance. Over 

the past fifteen years, the field of N-heterocyclic carbene (NHC) catalysis has distinctively 

enabled the construction of enantioenriched heterocycles,4–6 and the power of cascade and 

one-pot processes has led to an ever-increasing level of synthetic efficiency in the assembly 
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of complex architectures.7–9Herein we report the union of these strategies for the synthesis 

of yohimbine alkaloids.

The yohimbine natural products are a family of pentacyclic indole alkaloids derived from the 

amino acid tryptophan and the secoiridoid monoterpene secologanin (Scheme 1).10 

Following the isolation of yohimbine (1) by Spiegel in 1900 and its structural determination 

by Witkop in 1943,11 a wide variety of yohimbine stereoisomers have been identified. These 

alkaloids can be divided into four different subfamilies, normal, allo, pseudo, or epiallo, 

which differ in their stereochemical arrangement around the D-ring; yohimbine (1), 

rauwolscine (2), pseudoyohimbine (3), and reserpine (4), respectively, are representative 

members, respectively (Scheme 1). These alkaloids show a wide range of activity within the 

central nervous system (CNS), and although the structural variations between diastereomeric 

subfamilies are modest, they lead to an impressive degree of divergence in their 

pharmacology.12–15 It is therefore of great interest to be able to access these alkaloids in a 

concise, modular, and stereoselective fashion to enable thorough investigation of structural 

analogs.

The traditional approach to the yohimbines follows precedent set by Woodward and co-

workers in their landmark synthesis of 4 in 1958, which involves construction of a fully-

functionalized E-ring precursor followed by tethering of the tryptamine subunit and ring 

closure.16–17 This general strategy has been utilized in a myriad of total and formal 

syntheses, and continues to be the predominant approach to these natural products today.
18–21 While this conventional approach has been successful in accessing specific natural 

products, the key β-carboline pharmacophore is not introduced until the latter stages of the 

synthesis.22 Consequently, efficient access to related analogs with biomedical potential is 

thereby limited and would require reworking of the early stages of the synthesis in order to 

introduce structural variation in the terpene portion of the molecule. Syntheses that introduce 

the E-ring last are comparatively less explored,18, 23–25 but have increased potential for 

access to a large array of related alkaloids.26–27 In the context of this broad synthetic 

landscape, we sought to develop a general approach for the synthesis of yohimbine alkaloids 

that would a) be fewer than 10 steps for maximum efficiency to drive future biomedical 

exploration, and b) be derived from a key intermediate that could be easily converted into the 

different subtype structures (see Scheme 1).

Our retrosynthetic plan is depicted in Scheme 1. We envisioned accessing (−)-rauwolscine 

(2) from the known β-ketoester 526 via diastereoselective reduction. β-Ketoester 5 would be 

obtained by reduction and homologation of diester 6 followed by ring closure. This key 

intermediate would arise from an amidation/N-acyliminium ion cyclization sequence with 

enol lactone 7,28–31 which could be accessed via NHC-catalyzed dimerization of 

commercially-available aldehyde 8.32 Additionally, we envisioned allo-configured 

tetracycle6 as a potential precursor to access the diastereomeric normal, pseudo, and epiallo 
yohimbine cores by selective stereochemical inversions at the C/D and D/E ring junctions.

Our synthesis commenced with the construction of enantioenriched enol lactone 7 from 

aldehyde 8 (Scheme 2). After evaluating various conditions (see the Supporting Information 

for details), it was found that the use of 1 mol % of NHC pre-catalyst 9 delivered 7 in 83% 
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yield with excellent control of the enantio- and diastereselectivity; notably, this 

transformation could be conducted on 30-gram scale without loss of efficiency. With ample 

quantities of 7, we began to explore the key amidation/N-acyliminium ion cyclization 

sequence with tryptamine to access 6. Initial experiments revealed that the acylation of 

tryptamine by 7 was rapid, but intramolecular N-acyliminium ion formation was inhibited by 

intermolecular imine formation with an additional equivalent of tryptamine. This side 

reaction proved to be minimally reversible even in the presence of water, as only 55% 

conversion of 7 was seen after 3 days when using equimolar quantities of 7 and tryptamine 

(see Figure S1). However, we were pleased to find that acidification of the reaction mixture 

triggered facile imine hydrolysis, and N-acyliminium ion formation and cyclization occurred 

readily upon addition of TFA. Additional optimization revealed that treatment of 7 with two 

equivalents of 10 in a biphasic solvent system of CH2Cl2 and aqueous Na2CO3 followed by 

acidification and TFA-promoted cyclization delivered 6 as a separable 80:20 mixture of 

diastereomers in 74% yield on decagram scale.30 Selective reduction of the lactam with 

BH3·DMS then provided tertiary amine 11 in 94% yield, whose structure was confirmed by 

X-ray crystallography of its TFA salt.

With the ABCD ring system assembled, we turned our attention to construction of the E-

ring, which required the homologation of both ester sidechains by one carbon, followed then 

by ring closure. Unfortunately, attempts to directly homologate 11 using Arndt-Eistert33 or 

Kowalksi34 conditions returned starting material or decomposition products, respectively, 

and LAH reduction to the diol followed by various logical conditions for SN2 with cyanide 

anion resulted only in quaternization of the tertiary amine.35 We then turned our attention to 

Wittig-Horner-type homologation conditions. Since an ester oxidation state was desired for 

the ring closure step, known phosphonate 12 reported by Mikołajczykand co-workerswas 

selected because the resulting ketene dithioacetal can be easily converted to an ester.36 We 

also elected to employ conditions disclosed by Takacs in our experimental design, wherein 

the partial reduction is performed in the presence of the metallated phosphonate to mitigate 

overreduction and ensure high efficiency in this transformation.37 A temperature and 

reducing reagent screen revealed that using lithium diisobutyl-tert-butoxyaluminum hydride 

(LDBBA)38 at 0 °C in the presence of excess 12 afforded 13 in 70% yield on multigram 

scale. Although 13 could be converted to the bis(methyl ester) under forcing acidic 

conditions [p-TsOH (10 equiv), MeOH, 80 °C], its cyclization under the Dieckmann 

conditions reported previously led to a mixture of 14a, 14b.26 Even more confounding was 

that these compounds and their enol isomers proved inseparable under multiple conditions 

and derivatizations. These roadblocks necessitated an alternative tactic for cyclization. We 

soon discovered that using a milder set of conditions [p-TsOH (2 equiv), DCM/MeOH, 0–45 

°C] delivered an easily separable 62:38 mixture of α-oxo ketene dithioacetal 15 (major) and 

its regioisomer (not shown) in 80% combined yield. This transformation not only provided 

the ring closed product, but also showed the desired regioselectivity along with much needed 

separability. The unmasking of the resultant α-oxo-ketenedithioacetal of 15 with HgCl2 and 

BF3·OEt2 in methanol then provided the desired methyl ester 5 in 64% yield on >100 mg 

scale. Temperature proved to be critical to the success of this transformation; reactions 

conducted below 40 °C were exceedingly sluggish, while those in excess of 50 °C produced 

significant amounts the ring-opened bis(methyl ester).
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At this stage, we were poised to investigate the final disconnection from our retrosynthetic 

analysis, the diastereoselective reduction of β-ketoester 5. Using NaBH4, 17-epi-rauwolscine 

16 was furnished in good yield, with no detectable amount of 2 produced.26To circumvent 

this, we sought out reagents that would provide some semblance of the presumed 

thermodynamic control. A survey of the literature suggested that SmI2 would be well suited 

for this application.39 Initial experiments using alcoholic additives such as MeOH, iPrOH, or 
tBuOH returned the starting material unchanged. However, when H2O was used as the protic 

additive, SmI2 rapidly delivered (−)-rauwolscine 2 as a single diastereomer in 65% yield. 

Additionally, β-ketoester 5 could be decarboxylated to ketone 16 using LiOH followed by a 

modified Wolff-Kishner deoxygenation to provide the unsubstituted E-ring product (−)-

alloyohimbane 17 in 45% yield over 2 steps. Notably, the step economy of our syntheses of 

2, 16,and 17 compare favorably to previously reported asymmetric syntheses.40–43

With an efficient and general route to allo configured yohimbines secured, we began 

investigating methods to access other diastereomericyohimbine frameworks. We began by 

exploring conditions to control the diastereoselectivity of the key N-acyliminium ion 

cyclization step. To fully examine activating agents for this transformation, we elected to 

conduct the N-acyliminium ion cyclization under anhydrous conditions. Hence, the 

intermediate hydroxylactam 18 (~85:15 d.r.) was isolated by extraction following the imine 

hydrolysis step in the initially optimized conditions (Table 1). In this new two-step process, 

employing acetyl chloride at cryogenic temperatures further improved selectivity for 6 over 

the previous one-pot conditions (entry 1). At higher temperatures (entry 2) or with the use of 

alternative acetate activating agents (entry 3), the reaction efficiency and selectivity 

decreased markedly. Lewis and Brønsted acids could also be employed successfully (entries 

4–6), with high levels of selectivity and efficiency for 6 being observed with TMSCl at 

cryogenic temperatures (95:5 d.r. and 78% yield). However, performing the reaction at 40 °C 

rather than −78 °C, lead to reversal of diastereoselectivity, providing 19, a potential 

precursor for epiallo yohimbines, in 69% yield and 73:27 d.r. (entry 7).

To gain further understanding of the diastereoselectivity, pure 6 was subjected to the reaction 

conditions employed in entry 7, and the same diastereomeric ratio (6:19 = 27:73) was 

obtained after 4 days at 40 °C (entry 8); extended reaction times or the use of chiral 

additivies (thioureas or phosphric acids)31, 44 did not alter this ratio. Additionally, treatment 

of 18 with anhydrous HCl instead of TMSCl at 40 °C did not provide the same product 

distribution (entry 9), indicating that acid catalysis is not responsible for equilibration. Our 

current working model based on this data is that the high diastereoselectivity observed at 

cryogenic temperatures is the result of a kinetically-controlled ring closure,27 whereas at 

elevated temperatures, an equilibrating mechanism is operative,45 delivering the more 

thermodynamically stable tetracycle 19 as the major diastereomer.

Using the new conditions outlined above (Table 1), the allo configured product 6 could be 

readily secured with high levels of diastereoselectivity (Scheme 3). The subjection of 6 to 

NaOEt in THF-EtOH (1:1) at −20 °C led to selective epimerization of the C-15 (yohimbine 

numbering) stereocenter, producing the pseudo configured product 20 in 52% yield. 

Alternatively, the oxidation of 20 to the enamide using copper(II) acetate in an atmosphere 

of molecular oxygen followed by reduction with NaBH4 in AcOH provided the normal 
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configured tetracycle 21 in 72% yield (2 steps) as a single diastereomer.46 Finally, as shown 

in Table 1 above, simple modulation of the conditions for cyclization delivered the epiallo 
configured product 19 in 69% yield with modest control of the diastereoselectivity (73:27 

d.r.). Combined, these connected approaches provide concise entry into multiple yohimbine 

stereoisomer subfamilies.

In conclusion, we have developed a concise synthesis of (−)-rauwolscine2 and (−)-

alloyohimbane 17 from commercially available ethyl 4-oxobutenoate 8. The key NHC 

catalyzed annulation product 7 is readily accessible in enantiopure form and can be 

converted to the complex tetracyclic lactam 6 in a single operation on multi-gram scale, 

which allows facile access to allo-configured yohimbines. Selective manipulation of this 

intermediate also facilitates entry into the normal, pseudo, and epiallo classes of this 

important natural product family. Additionally, by employing either enantiomeric NHC 

catalyst (+ or −), it is feasible that all eight possible stereoisomeric cores of these alkaloids 

are accessible, enabling production of a wide range of molecules to drive the discovery of 

new biologically active molecules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Representative yohimbine alkaloids and retrosynthetic approach.
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Scheme 2. 
Synthesis of (−)-rauwolscine 2 and (−)-alloyohimbane 17.
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Scheme 3. 
Access to All Yohimbine Stereoisomeric Cores
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Table 1.

Effect of Additives and Temperature on Cyclization Diastereoselectivity

entry additive temp (°C) d.r. (6:19) yield (%)
a

1 AcCl −78 87:13 68%

2 AcCl 20 60:40 n.d.

3 Ac2O −78
–
b

–
b

4 BF3·Et2O −78 84:16 72

5 TMSCl −78 95:5 78

6 HCl −78 95:5 70

7
c TMSCl 40 27:73 69

8
d,e TMSCl 40 27:73 n.d.

9 HCl 40 66:34 n.d.

a
Isolated yield over 2 steps starting from 7

b
no reaction

c
reaction time of 2 days

d
starting material was pure 6

e
reaction time 4 days.

n.d. = not determined.
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