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Abstract

In radiation therapy, the accurate delineation of gross tumor volume (GTV) is crucial for treatment 

planning. However, it is challenging for head and neck cancer (HNC) due to the morphology 

complexity of various organs in the head, low targets to background contrast and potential artifacts 

on conventional planning CT images. Thus, manual delineation of GTV on anatomical images is 

extremely time consuming and suffers from inter-observer variability that leads to planning 

uncertainty. With the wide use of PET/CT imaging in oncology, complementary functional and 

anatomical information can be utilized for tumor contouring and bring a significant advantage for 

radiation therapy planning. In this study, by taking advantage of multi-modality PET and CT 

images, we propose an automatic GTV segmentation framework based on deep learning for HNC. 

The backbone of this segmentation framework is based on 3D convolution with dense connections 

which enables a better information propagation and taking full advantage of the features extracted 

from multi-modality input images. We evaluate our proposed framework on a dataset including 

250 HNC patients. Each patient receives both planning CT and PET/CT imaging before radiation 

therapy. Manually delineated GTV contours by radiation oncologists are used as ground truth in 

this study. To further investigate the advantage of our proposed Dense-Net framework, we also 

compared with the framework using 3D U-Net which is the state-of-the-art in segmentation tasks. 

Meanwhile, for each frame, the performance comparison between single modality input (PET or 

CT image) and multi-modality input (both PET/CT) is conducted. Dice coefficient, mean surface 

distance (MSD), 95th-percentile Hausdorff distance (HD95) and displacement of mass centroid are 

calculated for quantitative evaluation. Based on the results of five-fold cross-validation, our 

proposed multi-modality Dense-Net (Dice 0.73) shows better performance than the compared 

network (Dice 0.71). Furthermore, the proposed Dense-Net structure has less trainable parameters 

than the 3D U-Net, which reduces the prediction variability. In conclusion, our proposed multi-

modality Dense-Net can enable satisfied GTV segmentation for HNC using multi-modality images 

and yield superior performance than conventional methods. Our proposed method provides an 

automatic, fast and consistent solution for GTV segmentation and shows potentials to be generally 

applied for radiation therapy planning of a variety of cancers.
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1. Introduction

Head and neck cancer (HNC) is among the most prevalent cancer types worldwide. It causes 

about 50,000 new report cases and around 10,000 deaths in America per year (Siegel et al., 

2016). Besides surgery and chemotherapy, high precision radiation therapy (RT) is one of 

the most effective treatments and yields better functional outcomes for different sites when 

compared to other approaches (Marta et al., 2014). Accurate delineation of the gross tumor 

volume (GTV) is the key step in image-guided RT planning for HNC. Incorrect target 

definition can result in a compromised plan for dose delivery, either unnecessary damage to 

healthy tissue or undertreatment near the tumor boundary (Riegel et al., 2006). The 

circumstance is particularly severe for HNC as the target is surrounded by critical 

anatomical structures. In clinical practice, GTV delineation is often conducted manually by 

oncologists with limited automatic tools, which is prone to error and time-consuming 

especially for large and irregular GTV (Jeanneret-Sozzi et al., 2006). In addition, the manual 

delineation is subjective which suffers from low reproducibility and introduces a high inter-

observer variability. Previous studies (Riegel et al., 2006; Harari et al., 2010) show that the 

multi-observer defined target volumes vary significantly due to the operator’s experience 

and knowledge. Therefore, developing an accurate, efficient and reproducible GTV 

delineation approach is crucial for radiation therapy of HNC.

During the last decades, a variety of semi-automatic or automatic segmentation approaches 

based on hand-crafted features or machine learning approaches have been developed and 

tested on HNC GTV delineation. Graph-based segmentation including graph cut (Song et 

al., 2013; Beichel et al., 2016), Markov Random Field (MRF) (Zeng et al., 2013; Yang et al., 

2015) and random walk (Stefano et al., 2017) show promising results, especially on PET. 

However, it is hard to formulate an objective, robust and straightforward cost function for 

graph-based methods due to potentially contradicting / conflicting requirements among 

image. Recently, machine learning based segmentation approaches, such as Support Vector 

Machine (Deng et al., 2017), Decision tree (Berthon et al., 2017) and k-nearest neighbour 

(KNN) (Yu et al., 2009; Comelli et al., 2018), are adopted in many head and neck 

segmentation studies. These classifiers make decisions for each voxel by gradients or texture 

features extracted from the neighbourhood without any shape constraint. However, the 

accuracy of these methods is limited, and they cannot be efficiently translated to clinics. 

Consequently, automatic GTV delineation on routine radiological images remains a very 

challenging task.

Inspired by recent accomplishments of deep learning-based segmentation in computer vision 

tasks and successes translating deep learning to medical image analysis (Havaei et al., 2017), 

growing numbers of research groups focus on GTV segmentations for radiation therapy 

planning for all kinds of cancer types. However, automatic GTV segmentation for HNC has 

some particular challenges. Firstly, the morphology of lesions is more complicated due to 

variable sizes, irregular shapes and locations concealed by critical anatomical structures in 

head and neck. To conquer the first challenge, deep learning-based segmentation algorithms, 

which can automatically extract discriminative features show intrinsic advantages for 

complicated tasks. Recent studies using 2D CNN (Huang et al., 2018) or 3D CNN (Guo et 

al., 2019a) based algorithms demonstrate the great potentials of using deep learning in HNC 
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segmentation. However, 2D CNN disregards spatial information from the volumetric data, 

while in oncology, a radiologist usually delineates GTV with reference to many adjacent 

slices along the z-axis. 3D CNN can aggregate information from all three dimensions to 

achieve a better prediction. But the heavy computation burden and memory demand limits 

its application for large-scale datasets. Considering the clinical practice, we propose a 3D-

convolution based method (Dense-Net) with dense connections to tackle these problems. 

Secondly, a considerable portion of the GTV boundaries of HNC lesions is blurry due to 

insufficient contrast of soft tissues in CT images. Fortunately, other than conventional 

planning CT, PET/CT becomes popular for cancer diagnosis and treatment planning and 

brings multimodality images to describe tumor behavior. As known, PET provides 

quantitative metabolic information with low spatial resolution while CT provides anatomic 

details with high resolution which could better characterize lesions (Bagci et al., 2013). 

Several tumor segmentation studies have demonstrated that integrated multi-modal imaging 

can result in better performance for lung cancer and soft-tissue sarcoma (Song et al., 2013; 

Guo et al., 2018, 2019b). However, the benefit of multi-modality image hasn’t been studied 

for HNC segmentation tasks. Consequently, how to exploit the potential capabilities of 

multiple modalities for HNC segmentation demands a prompt solution. The growing amount 

of available multi-modality medical image data makes it urgent to develop a deep learning-

based auto-segmentation algorithm for HNC treatment planning which can address the 

challenges summarized above.

In this work, we have proposed a 3D convolutional dense network using multi-modality 

images for HNC GTV segmentation with several innovations and advantages: 1) We 

extended the typical network architecture to include 3D convolutions which extracts more 

intra-slice features for HNC segmentation. 2) We adopted dense connections scheme to 

tackle the computation burden, gradients vanishing and overfitting problems of 3D 

convolution, which can boost the prediction performance and achieve a deeper and efficient 

network with fewer parameters. 3) The network is fed with both PET and CT images for 

GTV delineation. Since different modalities provide complementary biochemical / 

anatomical information, the accuracy of segmentation can be further improved. To our 

knowledge, this is the first study to integrate 3D convolution and dense connections to 

investigate the use of auto-segmentation on multi-modality imaging for HNC radiotherapy. 

Based on the experimental results, our proposed multi-modality Dense-Net shows better 

performance than traditional methods, which can provide an automatic, fast and consistent 

solution for radiotherapy planning.

2. Material and method

In this work, we proposed a segmentation framework using 3D convolution and dense 

connections with multi-modality PET/CT images from HNC patients. The overall flowchart 

of this work is illustrated in Figure 1. Firstly, during the pre-processing step, the planning 

CT is registered with pre-treatment PET/CT images and the manually delineated GTV 

contour on planning CT is registered for both image modalities. Normalized and cropped 

PET and CT images are later on fed into the network. Secondly, we take advantage of 3D 

convolution and implement dense connections to improve the information flow, reduce 

network parameters and better utilize extracted features. To demonstrate the effectiveness, 
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the proposed multi-modality Dense-Net is compared with single modality Dense-Net and the 

3D U-Net. Finally, the performance of different networks is evaluated by Dice coefficient, 

mean surface distance, Hausdorff distance 95% and displacement of mass centroid. The 

details of each module and step outlined in Figure 1 are illustrated in the following sub-

sections.

2.1 Materials and pre-processing

The dataset (Martin et al., 2017) of HNC from the Cancer Imaging Archive (TCIA) (Clark et 

al., 2013) is used in the experiment. It contains 18F-FDG-PET/CT and radiotherapy planning 

CT from four different institutions in Québec with histologically proven head and neck 

squamous cell carcinoma (HNSCC). Patient characteristics are shown in supplemental Table 

A 1. All patients received radiotherapy with curative intent after the image acquisition. Each 

patient underwent the 18F-FDG-PET/CT scan within a median of 15 days (range: 6~80) 

before the radiation therapy planning. The median total inject dose for PET is 5.0 MBq. CT 

images are acquired with X-ray tube voltage at 120 kVp. Median follow-up for clinical 

characteristics is 1309 days (range 245~3402).

To utilize both anatomic details of CT and metabolic information of PET, images are 

processed in the following steps. As shown in Figure 2, GTV contours are manually drawn 

on radiotherapy-planning CT images by radiation oncologists. Pre-treatment 18F-FDG-

PET/CT is registered with planning CT by the automatic deformable registration using the 

software MIM® (MIM software Inc., Cleveland, OH) (Piper, 2007). The contours originally 

delineated on planning CT is then propagated to the 18F-FDG-PET/CT images. The GTV 

contours, including GTV primary and GTV lymph node, are used as ground truth for the 

segmentation task. Due to the missing information of some subjects, a portion of the original 

dataset which consists of 250 patients with both pre-treatment PET/CT and radiotherapy 

planning CT is qualified in this study.

To maintain the consistency across subjects, all PET and CT images are linearly interpolated 

to the same resolution with a pixel size of 1×1× 2.5 mm3. Due to the large intensity variation 

among different modalities, the pixel intensity of CT images is normalized to 0~1 according 

to Hounsfield (HU) window [−200,200] and PET intensity is normalized to the same range 

using standardized uptake values (SUV) window [0 10]. Considering GPU memory 

limitation and remove the border black regions, the input 3D-PET/CT image is cropped to a 

128×128×48 pixels volume encompassing the GTV annotation by manually select the center 

pixels as shown in Figure 2 (c, f). All these steps are conducted in MATLAB (2013 

Mathworks, Inc).

2.2 Proposed network

CNN is an efficient tool for image analysis and has been widely used for semantic 

segmentation with remarkable success. Previous studies (Szegedy et al., 2015) have shown 

that the network depth is a key principle for deep learning architectures. However, the heavy 

computation burden and memory demand for 3D convolution networks limit the network 

depth. Residual Networks (He et al., 2016) introduce skip connections within the network, 

which enables a deeper network. In this work, we implement dense connections and propose 
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a 3D Dense-Net for semantic segmentation, inspired by the original dense network (Huang 

et al., 2017). This network is composed of dense blocks and transition up/down modules. 

The details of dense connection are illustrated as following:

Xℓ is denoted as the output of the ℓth layer. In conventional CNN architectures, this vector is 

typically obtained by applying a non-linear transformation Hℓ(X) from the output of the 

previous layer Xℓ–1,

Xℓ = Hℓ Xℓ − 1 , (1)

where Hℓ(X) is a composite of operations, including convolution, pooling, batch 

normalization (BN) and rectified linear unit (ReLU). The residual networks integrate Hℓ(X) 

with the feature map of previous layer to improve the information flow within the network 

as

Xℓ = Hℓ Xℓ − 1 + Xℓ − 1, (2)

However, Hℓ and the feature map are combined by summation, which can impede the 

information propagation. Pushing the idea of residual connection further, dense connection 

introduces a more extreme connecting pattern that links a layer to all its subsequent layers 

by skip connections. In this scheme, the Xℓ is defined as:

Xℓ = Hℓ X0, X1, …, Xℓ − 1 ,

where […] refers to the concatenation operation. This pattern makes each layer in the 

architecture receives information from other layers, which can alleviate the vanishing-

gradient problem, strengthen feature propagation, encourage feature reuse, and substantially 

reduce the number of trainable parameters. The size of output feature map on each layer is 

typically set to a small value since it is propagated through dense connections.

This feature-reusing characteristic is quite compelling for medical image analysis tasks, 

where it is difficult to train a large network with limited training data. In our proposed 

network, 3D convolution layer is employed to utilize context information from adjacent 

slices. The convolutional kernel is set to 3×3×3 for computation efficiency. Our final 

proposed network structure is based on (Jégou et al., 2017) and contains the dense blocks as 

well as transition-down and transition-up modules. Figure 3 illustrates a dense block with 4 

convolution layers. As shown in Figure 3, the left grey cube denotes the original feature map 

and the output after convolution is represented as the colored cube. The input and output 

feature maps from the first layer are integrated together and set as the input for the second 

convolution layer. This process is repeated several times to construct the whole dense block. 

At last, feature maps from all 4 layers are concatenated together and set as the dense block 

output.

To fully utilize the spatial information of the feature maps, we also introduce transition-

down and transition-up modules which are enabled by convolution or deconvolution with 

stride 2. Figure 4 illustrates the structure of the final constructed network. It is composed of 
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an encoder path to extract contextual features and a decoder path to recover the image 

details. In the encoder path, we stack four transition-down modules to reduce the spatial 

resolution and enlarge the receptive fields. While in the decoder path, the image resolution is 

recovered by transition-up modules to achieve a refined semantic segmentation map. Our 

network architecture contains 9 dense blocks, 4 transition-down and 4 transition-up 

modules. For each dense block, it is composed of ℓ convolution layers with feature growth 

parameter k = 16. The last layer is a 1×1×1 convolution followed by the sigmoid activation 

function and binarizing threshold value is fixed at 0.5 to generate the pixel-wise possibility 

map. The details of network parameters employed in each module are summarized in 

supplemental Table B 1.

2.3 Comparison methods

To investigate the effectiveness of the proposed integrated multi-modality segmentation 

network, we first compared it with single modality Dense-Net using a single modality image 

as input (PET or CT image alone). Furthermore, the proposed network was also compared 

with 3D U-Net which is the state-of-the-art for segmentation tasks(Çiçek et al., 2016). 3D 

U-Net is a classical and widely used architecture for semantic segmentation. It is composed 

of an encoder path to extract the features and a decoder path to recover the image details. 

The details of the 3D U-Net employed in our comparison study is illustrated in Appendix C. 

For each module in the encoder path of 3D U-Net, there are two 3×3×3 3D convolution 

layers. The feature size is doubled after each module. The exponential growth of feature size 

in U-Net impeded its extension for deeper networks, as the number trainable parameters 

become too large when U-Net becomes deeper.

2.4 Evaluation metrics

Multiple metrics are used to quantitatively evaluate the performance of the proposed 

method. The Sørensen–Dice coefficient (Dice, 1945) is the gold standard for semantic 

segmentation, which describes the spatial overlap between the ground truth and the network 

prediction, defined as

Dice = 2 P ∩ G
P + G , (4)

where P is the set of segmentation results and G denotes the set of ground-truth delineation. |

P| or |G| is the number of positive voxels in the binary set and |P ∩ G| is the number of true 

positive voxels. Although, a higher value of Dice usually denotes a better segmentation 

result, it depends on the target volume size and the distance between two contours is not 

considered. Another complementary measurement is the 95th-percentile Hausdorff distance 

(HD95) (Dubuisson and Jain, 1994), which is employed to measure the distance of the 

segmentation result.

Hausdorff distance = max max
g∈G

min
p∈P

d g,p , max
p∈P

min
g∈G

d p,g , (5)

where P and G denotes the boundary-surface set of the network prediction and the ground 

truth, |P| and |G| are the number of voxels in P and G, and d(p, g) indicates the Euclidean 
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distance between voxels p and g. Hausdorff distance refers to the maximum distance of all 

surface voxels. However, it is sensitive to small outlying object and the 95th-percentile of 

HD is employed to skip the outliers. A smaller value of HD95 usually denotes a better result. 

Similarly, mean surface distance (MSD) is defined as follows:

MSD = 1
2 dGP + dPG = 1

2
1
G ∑g∈Gmin

p∈P
d g,p + 1

P ∑p∈Pmin
g∈G

d p,g , (6)

which describes the mean surface distance between the ground truth and the network 

prediction.

Due to the complex micro-structure around head and neck, we also adopt the displacement 

of mass centroid (DMC) between ground truth and segmentation result for evaluation. 

Centroid is the arithmetic mean position of all the points in all of the coordinate directions. 

A straight-forward estimate of centroid is

xc = ∑i
N xigi

∑i
N gi

, yc = ∑i
N yigi

∑i
N gi

, (7)

Where (xi, yi) are the coordinates of the pixel and gi ∈ G is the binary ground truth. The 

summation is over all the pixels relevant to the centroid estimation. Similarly, centroid 

coordinates of network prediction can be got with same setting. The displacement of two 

centroids is analyzed by the Euclidean distance with respect to the pixel space on each 

dimension.

2.5 Experiment setup

This dataset is composed with 250 available patients four different institutions. 75 patients 

from Centre hospitalier universitaire de Sherbooke (Sherbrooke, QC) is held out for test. The 

remaining 175 patients is randomly split into training group (140 patients) to train the 

network and validation group (35 patients) to select the best performance model. Once the 

model is completely trained, optimised network is then test on independent test dataset with 

network unseen distribution on 75 patients. Reference methods, including the single 

modality Dense-Net and the 3D U-Net, are conducted with the same setting. PET and CT 

images are fed into the proposed network as two input channels and the annotated GTV 

contours are adopted as the training labels. Each training batch contains one patient’s 

PET/CT or single modality image. The training data are shuffled at each epoch to increase 

the robustness. To enlarge the training sample and alleviate the overfitting problem, training 

images are augmented by applying random translation, rotation (90°, 180° and 270° around 

y-axis) and mirroring. All the networks are trained from scratch with random weight 

initialization. The soft Dice (Milletari et al., 2016) which utilize the probability map is 

defined as follows:

Dice = 2∑i
N pigi

∑i
N pi2 + ∑i

N gi2
, (8)
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where pi ∈ P is the prediction probability for each voxel and gi ∈ G is the binary ground 

truth. Soft dice is employed as the training objective function and the Adam algorithm 

(Kingma and Ba, 2014) with default settings is used as the optimizer. All networks are 

implemented using TensorFlow 1.4 on a NVIDIA GTX 1080 Ti graphic card.

3. Results

The network is optimized for 100 epochs. It takes around 360 minutes for Multi-modality 

Dense-Net training. While 3D U-Net with multi-modality image, dense-net with PET and 

dense-net with CT takes 232, 355 and 355 minutes, respectively. Testing time (i.e. 

segmentation on new images) of any single or multi-modal network is negligible (<1 

minutes).

3.1 Feature map analysis

To validate the effectiveness of extracted features, we first visualize the feature map from the 

output of each dense bock. For each feature map, we use the absolute mean value across 

different feature channels to illustrate the output. Figure 5 shows an example of the input 

images and outputs from the dense blocks and explains a clear path of feature propagation 

and information flow of our multi-modality Dense-Net. As shown, the output at the early 

block presents high intensity in jaw regions since the voxel intensity of bone is high on CT 

images. After processed by several dense blocks, the voxel intensity of bone region drops 

while the tumor intensity is enhanced, which indicates network has learned to automatically 

select discriminant features from the integrated PET and CT voxels. Meanwhile, the spatial 

resolution keeps decreasing through the transition-down modules until the bottleneck (dense 

block 5). Thus, the feature maps extracted from dense block 5 is difficult to interpret. Since 

high-level features depend on less pixel level information of original image, the features 

become more abstract as the network goes deeper(Johnson et al., 2016). For the decoder 

path, the spatial resolution gets recovered by transition-up modules, and the final GTV 

contour shows up gradually through the following convolution layers. Thus, the final 

generated segmentation contour (green) recovers the manually delineated GTV contour 

(blue).

3.2 Qualitative results

Representative comparison results of Dense Net between single and multi-modality inputs 

are shown in figure 6. As shown, multi-modality Dense-Net achieves good performance with 

Dice 0.82 while that of PET single modality input is only 0.60. Tumor voxel intensity is 

quite high on PET images which can help localize the tumor position, however, the tumor 

metabolism is heterogeneous and results in the dark region within the GTV.

Fortunately, with the benefit of multi-modality input, our proposed network can delineate 

this false negative region with the texture information provided by CT images. In 

comparison, using single modality as input, the network output contour can only follow the 

PET uptake contour which results in false negative results. This comparison example 

demonstrates that the output contour from the multi-modality Dense-Net can consider both 
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anatomical and functional information from CT and PET, respectively, leading to superior 

performance than single modality network.

Figure 7 shows another comparison between the proposed Dense-Net and 3D U-Net and 

mutli-modality PET/CT images are fed into both networks. It is obvious that PET images 

dominate the segmentation network since PET provide more specific information of tumor 

region. The result from the 3D U-Net follow this observation and the output contour relies 

more on PET highlighted regions. Similarly, the anatomical information from CT image can 

compensate the heterogeneous uptake on PET images. But suitable network is required to 

extract and take advantage the anatomical information from one channel of input images. 

The proposed multi-modality Dense-Net (Dice = 0.80) can better delineate the GTV contour 

compared with the 3D U-Net (Dice = 0.72). The 3D visualization also confirmed that our 

proposed method can better recover the original GTV, especially in the region pointed out by 

the white arrow. This might because the convolution layers in Dense-Net can always obtain 

more information indirectly from the input images by dense connections, due to better 

information flow.

The network performance on both validation dataset and test dataset measured by Dice, 

MSD, HD95 and DMC are summarized in Figure 8 and Table 1. Based on result on test 

dataset, the proposed multi-modality Dense-Net can achieve the Dice median 0.73 with 

mean and stand deviation (STD) 0.71±0.10, MSD 3.10±1.14 mm, HD95 8.98±6.34 mm and 

displacement of centroid 4.82±3.30mm using both PET and CT input images. In the 

meantime, 3D U-Net yields 0.69±0.11 Dice, 3.57±2.08 mm MSD, 11.16±9.69 mm HD95 

and 5.16±3.77 mm displacement of centroid which is relatively lower than Dense Net. When 

using single modality input, Dense-Net with PET shows dice median 0.64±0.16 (MSD 

4.53±3.31 mm, HD95 14.75±12.17 mm and displacement of centroid 7.82±6.56) which is 

the lowest among compared methods. Dense-Net using CT as single modality input is also 

studied, however, the results is extremely low as Dice median 0.32. And the MSD is not 

applicable to measure the network output using CT single input. Due to the low contrast of 

soft tissues in CT image, it is almost impossible to apply GTV delineation without 

complimentary information. Thus, we ignore Dense-Net results using CT single modality in 

this study. We used right tail paired student’s t-test to assess the significance of difference in 

the metrics, which means the alternative hypothesis is set as: Dice multi-modality Dense Net > 

Dice comparison method. It is found that our proposed multi-modality Dense-Net yields 

statistically better segmentation accuracy over 3D U-Net (p-value = 0.015) and Dense-Net 

with PET (p-value < 0.001). Besides, the trainable parameters is significantly reduced to 

5.58M comparing with 35.3M parameters of 3D U-Net.

The relationship between GTV volume size and the segmentation performance is also 

investigated. As shown in figure 9 (a), the larger tumors tend to achieve a better 

segmentation result with small variance while the segmentation performance is not stable for 

small lesions. Figure 9 (b) summarized the mean Dice of each size bin (5cm3). For 

quantitative analysis, we divide patients into two groups accord to its volume size. The Dice 

result shows significant difference (p-value < 0.001) between large group (volume size > 30 

cm3, Dice mean ± STD: 0.75 ± 0.07) and small group (volume size < 30 cm3, Dice: 0.65 ± 
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0.10). It is obvious that the Dice is affected by GTV volume and small volume results in 

large variance of Dice value and drives down the overall performance.

4. Discussion

In this work, we have proposed a multi-modality segmentation architecture for HNC GTV 

segmentation. Our results show that the proposed network can learn anatomical and 

metabolic information from both CT and PET images efficiently and produce better 

segmentation results compared to state-of-the-art reference methods. Besides, the GTV 

results based on our proposed network has less variability compared to reference methods, 

which is crucial for RT applications, where collecting a large number of manually labeled 

images takes a lot of efforts.

Our proposed architecture employs the 3D convolution and dense connections, which brings 

several benefits for HNC segmentation task. Firstly, 3D convolution can extract more 

information across all three dimensions from the volumetric data, which is consistent with 

the clinical practice where radiologists usually delineate GTV with reference to adjacent 

slices along the Z-axis. However, the memory consumption and heavy computation burden 

of 3D convolution limit its application. Then, our proposed network introduces dense 

connections within the network to conquer this issue and enables each convolution layer 

access feature maps from all its previous layers. This connection pattern can encourage 

information and gradient propagation, alleviate the vanishing-gradient problem and reduce 

the risk of over-fitting. Besides, feature reuse can also reduce the trainable parameters when 

the network goes deeper, which reduces the risk of over-fitting and is crucial for clinical 

applications.

Though the performance of our proposed network is better than reference methods, we still 

observe failure cases during the testing phase which makes the median Dice 0.73, not 

outstanding other segmentation tasks. One reason is the complexity of HNC GTV 

segmentation task due to the morphology complexity, and another reason is the still-to-be-

improved network structure. Figure 10 shows a set of failure cases with bad segmentation 

performance. Figure 10 (a) (b) show examples where our proposed network can delineate 

GTV with highlighted region in larynx following the uptake on PET images. However, since 

the CT contrast of tumor is not sufficient, the false positive around boundaries increases the 

denominator and thus achieve a relatively low Dice coefficient (Figure 10 (a): 0.55, (b): 

0.62). There are several patients among these cases which can significantly decrease the 

overall statistics. Besides, we observe that small tumors tend to make low Dice with the 

small true positive region, and also the Dice coefficient neglects the anatomical significance 

or relevance of different regions. For instance, a larger tumor has a larger true positive region 

and a better Dice, without taken the small object into consideration. The Dice of Figure 10 

(c)(d) is 0.74 and it suggests a very good delineation result although the lymph node is not 

recognized.

Due to the limitation of data preparation and implementation, there are still some attempts 

we can try to achieve better segmentation performance. Firstly, we can further improve the 

image quality during the pre-processing by refining GTV contours, correcting image 
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artifacts and perfecting the image registration. Secondly, the original image is cropped to 

128×128×48 cube due to memory limit. A larger input volume, such as the whole PET/CT 

image without cropping, might generate better segmentation performance and can be more 

easily translated to clinics. Besides, additional image modalities can be included in the 

proposed multi-modality Dense-Net to further improve the segmentation accuracy. For 

example, magnetic resonance imaging (MRI) are becoming standard practice for HNC with 

excellent soft tissue contrast, multiplanar imaging capabilities and benefit for dose control. 

Dual energy computed tomography (DECT) refers to the new simultaneous acquisition of 

CT performed at two different peak energy levels. Particularly, iodine could be subtracted 

from contrast enhanced images to improve head and neck cancer image quality, tumor-soft-

tissue boundary determination and invasion of critical structures. Pseudo-monochromatic 

images by linearly combining dual CT can be used to reduce metal artifacts which is 

especially benefit for head neck cancer. Theoretically, combining these image modalities in 

our network could better characterize tumor boundaries and provide a robust estimation of 

target volume estimation.

5. Conclusion

In this study, we have proposed a GTV segmentation framework for HNC radiotherapy. This 

method employs 3D convolutions to take full advantage of 3D spatial information of images 

as well as dense connections to improve information propagation from multi-modality 

images. The proposed multi-modality Dense-Net is successfully applied to HNC patients 

and achieve satisfying GTV segmentations. The comparison studies demonstrate that our 

proposed network can achieve better segmentation accuracy than other state of the art 

methods with less trainable parameters, which show great potentials to assist physicians in 

radiotherapy planning for a variety of cancer patients not limited to HNC.
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Appendix A.: Patients characteristics

Table A 1.

Patients characteristics

Characteristics Total (%)

All patient 250

age (year)

Median (Range) 63 (18~90)

Diagnosis to last follow-up (days)

Median (Range) 1309 (245~3402)

Gender

Male/female 192 (76.8%) /58 (23.2%)

Guo et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2020 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Characteristics Total (%)

Primary Site

Oropharynx 179 (71.6%)

Larynx 36 (14.4%)

Nasopharynx 18 (7.2%)

Hypopharynx 11 (4.4%)

Unknown 6 (2.4%)

Clinical Stage

I 5 (2.0%)

II 42 (16.8%)

III 62 (24.8%)

IV 140 (56.0%)

Unknown 1 (0.4%)

T stage

T1 31 (12.4%)

T2 93 (37.2%)

T3 83 (33.2%)

T4 37 (14.8%)

Txa 6 (2.4%)

N stage

N0 41 (16.4%)

N1 33 (13.2%)

N2 162 (64.8%)

N3 14 (5.6%)

a
TX: Primary tumor cannot be assessed

Appendix B.: Network architecture

Table B 1.

Network parameter

Layer Output volume Output feature size Kernel Size Stride

First convolution 128×128×48 48 3×3×3 (1,1,1)

Dense block (3 layers) 128×128×48 48+48
a

3×3×3 (1,1,1)

Transition down 64×64×48 96 1×1×1 (2,2,1)

Dense block (4 layers) 64×64×48 64+96 3×3×3 (1,1,1)

Transition down 32×32×48 160 1×1×1 (2,2,1)

Dense block (5 layers) 32×32×48 80+160 3×3×3 (1,1,1)

Transition down 16×16×48 240 1×1×1 (2,2,1)
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Layer Output volume Output feature size Kernel Size Stride

Dense block (6 layers) 16×16×48 96+240 3×3×3 (1,1,1)

Transition down 8×8×48 336 1×1×1 (2,2,1)

bottle neck (7 layers) 8×8×48 112 3×3×3 (1,1,1)

Transition up 16×16×48 112+336 1×1×1 (2,2,1)

Dense block (6 layers) 16×16×48 96 3×3×3 (1,1,1)

Transition up 32×32×48 96+240 1×1×1 (2,2,1)

Dense block (5 layers) 32×32×48 80 3×3×3 (1,1,1)

Transition up 64×64×48 80+160 1×1×1 (2,2,1)

Dense block (4 layers) 64×64×48 64 3×3×3 (1,1,1)

Transition up 128×128×48 64+96 1×1×1 (2,2,1)

Dense block (3 layers) 128×128×48 48 3×3×3 (1,1,1)

Last convolution 128×128×48 2 3×3×3 (1,1,1)

a
+ devotes for skip connection from previous layer output or corresponding dense block

Appendix C.: Method for comparison
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3D U-Net architecture

BN is abbreviation for batch normalization and ReLU for rectified linear unit.
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Figure 1. 
Flowchart of this study: (a) Material pre-processing; (b) Proposed network with Dense 

Connections and comparison studies with single modality input and 3D U-Net (c) 

performance evaluation.
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Figure 2. 
Illusive examples of input PET and CT images (blue contour: manually delineated GTV; 

green box: cropped volume for segmentation). (a) registered original PET image (b) 

resampled PET image (c) 3D visualization of cropped PET image (d) planning CT image (e) 

resampled CT image (f) 3D visualization of cropped CT image.
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Figure 3. 
Dense block architecture with 4 convolution layers. Blue arrows denote convolutions and 

black arrows indicate dense connections between feature maps.
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Figure 4. 
The structure of proposed network including 9 dense blocks, 4 transition-down and 4 

transition-up modules.
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Figure 5. 
Representative feature maps from Dense Net (Left: axial plane; right: sagittal plane). 

Outputs from dense blocks 1,3,5,7,9 are shown for illustration. Blue contours shown on 

input images refers to the manually drawn GTV (training label) and the green contours 

shown at the end refers to the network predicted GTV contours (results).
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Figure 6. 
Representative results of Dense Net with different input modalities. (a, e) zoomed-in CT and 

PET images with GTV contours of primary tumor and lymph node. (b, c, d) Dense-Net 

segmentation results with PET/CT multi-modality input. (f, g, h) Dense-Net segmentation 

results with PET single modality input. Blue contour represents GTV ground truth and green 

contour refers to network output.
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Figure 7. 
Comparison of the segmentation results from the multi-modality Dense-Net and 3D U-Net. 

(a) Input image; (b) Multi-modality Dense-Net results; (c) the 3D U-Net result; (d, e, f) 

corresponding 3D visualizations of (a, b, c), respectively.
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Figure 8. 
Statistic results of network performance (a) Dice box plot (Box for median and 25~75 

percentiles and whisker for 2.5~97.5 percentile), (b) Mean surface distance (MSD), and (c) 

Hausdorff distance (95%) (HD95), (d) Displacement of center of mass. (b), (c) and (d) shares 

the same box plot strategy. * stands for p-value < 0.05 and *** for p-value < 0.001.
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Figure 9. 
Relationship between Dice and GTV volume size. (a) Scatter plots illustrating Dice and 

GTV volume size; (b) Histogram and average curve of Dice on GTV volume size.
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Figure 10. 
Representative cases with false positive and false negative regions. (a) PET/CT image of a 

patient with tumor in larynx, (b) PET/CT image of a patient with tumor around esophagus, 

(c) PET/CT image of a patient with large tumor and a lymph node metastasis, and (d) 3D 

visualization of GTVs in (c).
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Table 1.

Segmentation performance metrics comparison for validation and test dataset

Metrics Method Dense Net with PET/CT 3D U-Net with PET/CT Dense Net with PET Dense Net with CT

Dice
Median 0.73 0.71 0.67 0.32

Mean ± STD 0.71 ± 0.10 0.69 ± 0.11 0.64 ± 0.16 0.31 ± 0.26

MSD (mm)
Median 2.88 2.98 3.38

-
Mean ± STD 3.10 ± 1.14 3.57 ± 2.08 4.53 ± 3.31

HD95 (mm)
Median 6.48 7.57 8.29

-
Mean ± STD 8.98 ± 6.34 11.16 ± 9.69 14.75 ± 12.17

DC (mm)
Median 3.96 4.40 5.56

-
Mean ± STD 4.82 ± 3.30 5.16 ± 3.77 7.82 ± 6.56
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