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Abstract
Anticancer drug nephrotoxicity is an important and increasing adverse drug
event that limits the efficacy of cancer treatment. The kidney is an important
elimination pathway for many antineoplastic drugs and their metabolites, which
occurs by glomerular filtration and tubular secretion. Chemotherapeutic agents,
both conventional cytotoxic agents and molecularly targeted agents, can affect
any segment of the nephron including its microvasculature, leading to many
clinical manifestations such as proteinuria, hypertension, electrolyte
disturbances, glomerulopathy, acute and chronic interstitial nephritis, acute
kidney injury and at times chronic kidney disease. The clinician should be alert to
recognize several factors that may maximize renal dysfunction and contribute to
the increased incidence of nephrotoxicity associated with these drugs, such as
intravascular volume depletion, the associated use of nonchemotherapeutic
nephrotoxic drugs (analgesics, antibiotics, proton pump inhibitors, and bone-
targeted therapies), radiographic ionic contrast media or radiation therapy,
urinary tract obstruction, and intrinsic renal disease. Identification of patients at
higher risk for nephrotoxicity may allow the prevention or at least reduction in
the development and severity of this adverse effect. Therefore, the aim of this
brief review is to provide currently available evidences on oncologic drug-related
nephrotoxicity.

Key words: Acute kidney injury; Cancer; Chemotherapy; Conventional cytotoxic agents;
Molecularly targeted agents; Nephrotoxicity
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Core tip: Nephrotoxicity is an adverse event that is well described with the use of
conventional cytotoxic agents and with the advent of new agents directed to specific
genes/proteins in recent decades. Its nephrotoxic potential has also been observed, which
limits the effectiveness of treatment and increases the morbidity and mortality of these
patients. Our objective was to recognize the main chemotherapeutic drugs with
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nephrotoxic potential and the most common types of kidney injury to prevent or at least
reduce their occurrence and severity, allowing better therapeutic indices.
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INTRODUCTION
Cancer is an important cause of death worldwide and is associated with significant
morbidity related to the underlying disease itself, as well as the adverse effects of
chemotherapy. Conventional chemotherapeutic drugs are first-line agents to treat
several malignancies but cause kidney toxicity, which occurs when kidney excretion
properly due to the action of harmful chemicals[1]. In the last several decades, novel
cancer drugs have been developed and used in clinical practice, being more specific
against cancer cells and extremely effective against several previously untreatable
malignancies,  the  so-called  molecularly  targeted  agents,  but  also  suffer  from
nephrotoxicity (Figure 1), which limits the efficacy of the treatment and impact their
quality of life and overall survival[2]. A variety of renal complications can occur among
cancer patients associated with malignancy (paraneoplastic renal manifestation, need
for nephrectomy and urinary tract obstruction) or its treatment (nephrotoxicity effects
of chemotherapy: Acute kidney disease (AKI), due to toxic acute tubular necrosis,
thrombotic microangiopathy (TMA), and crystal nephropathy; proteinuria/nephrotic
syndrome due to TMA and glomerulopathies; tubulopathies due to electrolyte and
acid-base disorders; and chronic kidney disease (CKD) due to glomerulopathies or
interstitial nephritis) or intrinsic kidney injury related to other pre-existing patient
risk factors such as female gender, reduced muscle mass and reduced body water -
mainly  related  to  higher  age,  hypertension,  diabetes,  congestive  heart  failure,
cirrhosis,  hepatic  failure,  hyperbilirubinemia  and hypoalbuminemia.  Regarding
kidney-related risk factors, are listed nephrosis, previous kidney injury, nephrotic
syndrome and hydroelectrolytic disturbance which can be consequence of vomiting,
diarrhea and use of diuretics[3]. Kidney injury in cancer patients is shown in Figure 2.

Many of the drug-related nephrotoxicities do not have a well-defined mechanism
of injury or pathophysiology, which makes it difficult to develop strategies to prevent
or minimize their occurrence. However, there are some factors that may contribute to
the higher incidence of this adverse event including intravascular volume depletion,
the associated use of non-chemotherapeutic nephrotoxic drugs (analgesics, antibiotics,
proton pump inhibitors and bone-targeted therapies), radiographic ionic contrast
media or radiation therapy, urinary tract obstruction, and intrinsic renal disease[4].
These factors should be considered by the oncologist before initiating treatment to
minimize  the  risk  of  nephrotoxicity.  Table  1  summarizes  the  main  classes  of
chemotherapy and their representatives, the renal lesions associated with its use, and
the  mechanism that  leads  to  nephrotoxicity.  This  review provides  an  update  of
anticancer drugs that are associated with kidney injury.

CONVENTIONAL CYTOTOXIC AGENTS

Alkylating agents
Bendamustine is a potent cytotoxic agent that is approved for use in the treatment of
chronic lymphocytic leukemia and indolent non-Hodgkin’s lymphoma[5]. In only one
study,  the  relationship  of  this  drug  to  induction  of  AKI  was  observed [6 ].
Cyclophosphamide has toxicity caused by some of its metabolites, mainly in bone
marrow and gonads, and its use has been related to the development of bladder
cancer. Hemorrhagic cystitis is the major adverse urological effect, and its severity is
related to dose dependence and treatment duration[7]. Cyclophosphamide-induced
nephrotoxicity is often not considered in clinical practice, as the change in creatinine
levels is of little significance[8]. However, a histological study of cyclophosphamide-
treated mice found a significant inflammatory lesion in the animals' renal tissue. This
injury has been attributed to increased oxidative stress on renal cells and decreased
antioxidant  agents[9].  This  agent  has  been  associated  with  the  development  of
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Figure 1

Figure 1  Renal effects of anticancer drugs. AKI: Acute kidney injury; CKD: Chronic kidney disease; SIADH:
Syndrome of inappropriate antidiuretic hormone secretion; TMA: Thrombotic microangiopathy.

syndrome of inappropriate antidiuretic hormone secretion (SIADH), leading to severe
hyponatremia  in  patients  receiving  high  or  moderate  intravenous  doses  of  this
drug[10]. Nephrotoxic effects of ifosfamide are most commonly reported in childhood.
In one study,  insufficiency renal  was observed in more than 80% of  patients.  In
addition,  a  higher  prevalence  of  Fanconi’s  syndrome  with  hypophosphatemia,
hypokalemia,  glycosuria,  and proteinuria  is  well  documented[11,12].  Melphalan is
generally used to treat multiple myeloma and ovarian cancer[13]. The association of
high-dose melphalan use with SIADH has been reported[14].  In prolonged therapy
with nitrosoureas,  a slow, progressive,  chronic,  and often irreversible interstitial
nephritis can be observed. However, the nephrotoxic mechanism of this class is not
well understood in the literature[15]. Streptozotocin, which is used in several studies to
induce diabetes in animal study models, causes mild proteinuria and elevated serum
creatinine levels, followed by significant tubular damage that results in phosphaturia,
glycosuria and uricosuria[16,17]. Trabectedin is a marine-derived alkylating agent that is
used to treat advanced soft tissue sarcoma and has reports of renal failure, some of
which have been attributed to rhabdomyolysis[18,19].

Antimetabolites
Clofarabine  is  approved  for  the  treatment  of  acute  lymphoblastic  leukemia  in
children, as well as acute myeloid leukemia and acute lymphoblastic leukemia in
adults.  Two  reports  of  severe  kidney  injury  have  been  documented  following
administration of this drug as proteinuria and anuria requiring dialysis[20,21]. Renal
insufficiency  has  been  reported  in  some  patients  that  undergone  allogeneic
hematopoietic cell transplantation[22,23]. Methotrexate is one of the most widely used
antineoplastic drugs. Treatment with high doses may lead to acute kidney injury due
to crystal precipitation in the tubules and induction of tubular injury[24]. This drug
may transiently  decrease  the  glomerular  filtration rate  (GFR) due to  an afferent
arteriolar  constriction[25].  Pemetrexed  is  a  methotrexate  derivative  used  to  treat
advanced non-small cell lung cancer, and its nephrotoxic effects include acute tubular
necrosis, interstitial edema, tubular acidosis, and diabetes insipidus[26-28]. Gemcitabine
is used in many advanced neoplasms, being associated with a kidney injury such as
hypertension and TMA in a case series. Moreover, hemolytic uremic syndrome may
be a potential adverse effect[29]. Pentostatin is effective in treating hairy cell leukemia,
and its use has been associated with mild renal dysfunction in some patients[30].

Antimicrotubule agents
Paclitaxel is a microtubule inhibitor that is used in various antineoplastic treatments.
Its nephrotoxicity was observed in a histological study with mice, in which dose-
dependent  cellular  apoptosis  and parenchymal  necrosis  were  reported[31].  Other
antimicrotubule agents, vincristine, vinblastine, and vinorelbine are related to a small
number of SIADH cases[32,33].

Antitumor antibiotics
Anthracyclines such as daunorubicin and doxorubicin cause nephrotic syndrome with
significant renal lesions and focal segmental glomerular sclerosis. Pegylated liposomal
doxorubicin has been linked to renal TMA and AKI[34,35]. Mitomycin nephrotoxicity is
well  documented  due  to  direct  damage  to  the  renal  parenchyma[36].  There  are
numerous cases reported in the literature of hemolytic uremic syndrome related to the
cumulative  dose  of  this  drug.  This  syndrome  leads,  in  most  cases,  to  a  slowly
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Figure 2

Figure 2  Kidney injury in cancer patient. AKI: Acute kidney disease.

progressive renal failure and hypertension[37,38].

Platinum agents
Cisplatin is one of the most widely used agents in cancer treatment and is known as
one of the most nephrotoxic drugs. This nephrotoxic effect is dose-dependent and can
be reversed with discontinuation of the drug[39]. The most common findings of renal
damage in individuals using cisplatin are AKI, hypomagnesemia, proximal tubular
dysfunction, and TMA[40]. Hydration and dose adjustment in patients with preexisting
renal  impairment  is  important  to  prevent  cisplatin-induced  nephrotoxicity[40,41].
Standardization of what is recommended is still necessary, mainly because current
guidelines follow empirical treatments rather than clinical trials results[42]. However,
this reasoning still depends much more on clinical manifestations and professional
practice than isolated laboratory findings[41].

Another important platinum agent is carboplatin, which has a similar effect to
cisplatin but with a significant reduction in expected adverse effects. The main one is
hypomagnesemia, which is still less important than expected with cisplatin[42,43]. One
caution that should be exercised is for patients who have already taken cisplatin and
switched to carboplatin, because although it is not related to AKI, the patient is still at
risk for this complication due to contact with cisplatin[44].

Among the new platinum agents, the third generation is mainly represented by
oxaliplatin, a recent agent that has few adverse effects over previous ones and has
relevant safety in patients with preexisting renal impairment, and does not require
dose adjustment for these patients[45,46].

Other cytotoxic agents
Arsenic trioxide is one of the main cytotoxic agents used in cancer treatments. At low
doses  commonly  used,  nephrotoxic  effects  are  not  common,  which  are  usually
represented  by  tubulointerstitial  disease  of  the  kidney  and  rhabdomyolysis[47].
However, because its metabolism is mainly renal, it is important to be careful and
closely monitor its use in patients with preexisting renal impairment[48].

Etoposide is another cytotoxic agent and its use is related to renal insufficiency[49].
Some guidelines attempt to standardize etoposide’s dose adjustment in patients with
renal  dysfunction,  and  although  data  are  different  between  societies,  there  is
consensus on dose reduction in these patients, as well as discontinuation of their use
for lower creatinine clearance[42,50].

Finally,  there are  also in this  group irinotecan and topotecan.  The former has
hepatic metabolism and poor renal excretion[51]. Although lower renal complications
are therefore expected, there are reports of toxicity in patients with preexisting renal
impairment even at low doses[52]. There is also no standardization regarding its use in
these patients. Topotecan is predominantly cleared by the kidneys, and increased
toxicity may be seen in patients with moderate renal insufficiency[50,53]. There is still no
worldwide consensus on dose adjustment for  its  use,  although some studies are
already moving towards standardization of drug dose reduction in patients with
renal dysfunction.

Immunomodulatory drugs
This  group  of  antineoplastic  drugs  is  especially  important  for  the  treatment  of
multiple myeloma. Among them, thalidomide stands out first. Studies have shown
that  there  is  no  relationship  between  AKI  and  the  use  of  thalidomide,  but  the
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Table 1  Relationship between anticancer drug class, its nephrotoxic effects and mechanism of action of its lesion

Class Drugs Nephrotoxicity Mechanism of action

Alkylating agents Bendamustine; Cyclophosphamide;
Ifosfamide; Melfalano; Nitrosureasnts

AKI; Hemorrhagic cystitis;
Inflammatory lesion; SIADH;
Hyponatremia; Fanconi's syndrome;
Interstitial nephritis; Diabetes

Damage to proximal and distal
tubular structures by action of
metabolites and increased cellular
oxidative stress

Antimetabolites Chlopharabine; Methotrexate;
Pemetrexed; Gemcitabine;
Pentostatin

AKI; Decreased GFR; Interstitial
edema; Tubular acidosis; Diabetes
insipidus; Microangiopathic
hemolytic anemia; SIADH;
Hyponatremia

Decreased GFR due to
vasoconstrictor action on afferent
renal arteries; Crystal precipitation in
tubules and induction of tubular
injury

Anti-microtubular agents Paclitaxis; Vincristine; Vinblastine;
Vinorelbine

SIADH Inhibits synthesis of genetic material
or causes irreparable DNA damage

Antitumor antibiotics Daunorubicin; Doxorubicin;
Mitomycin

Nephrotic syndrome; Focal
segmental glomerular sclerosis;
TMA; AKI; Hemolytic uremic
syndrome

Epithelial lesions (podocytes)

Platinum agents Cisplatin; Carboplatin; Ocaliplatin AKI; Anemia; Hypomagnesemia;
Proximal tubular dysfunction; TMA

Drug accumulation in the proximal
renal tubules

Cytotoxic agents Arsenic trioxide; Etoposide;
Irinotecan; Topotecan

Tubulointerstitial disease;
Rhabdomyolysis; AKI

Increased exposure can be toxic;
Higher levels of hematologic toxicity

Immunomodulatory drugs Thalidomide; Lenalidomide;
Pomalidomide

Hypercalcemia; Decreased GFR;
Nephrolithiasis

Unclear, depending on the drug, may
be related to its type of metabolism

Proteasome inhibitors Bortezomib; Carfilzomib; Ixazomib TMA; Acute interstitial nephritis;
AKI

Prerenal causes (e.g., hypovolemia);
Tumor lysis-like syndrome

EGFR pathway inhibitors Cetuximab; Panitumumab; Afatinib;
Erlotinib; Gefitinib

Electrolyte disturbance; AKI; Diffuse
proliferative glomerulonephritis;
Nephrotic syndrome

Inhibition of EGFR signaling at the
distal convoluted tubule, which
regulates transepithelial magnesium
transport; AKI mechanism is unclear,
however, EGFR plays a role in the
maintenance of tubular integrity

HER-2 inhibitors Trastuzumab; Ado-trastuzumab
emtansine; Pertuzumab

Proteinuria; AKI; Decreased GFR;
Electrolyte disturbance;
Hypertension

Unclear

BCL-2 inhibitors Venetoclax; Obituzumab;
Ofatumumab

AKI Tumor lysis syndrome

ALK inhibitors Crizotinib; Alectinib; Brigatinib Decreased GFR; Development of
complex renal cysts; Electrolyte
disturbance

Unclear

BRAF inhibitors Vemurafenib; Dabrafenib;
Trametinib; Cobimetinib

Decrease GFR; AKI;
Glomerulonephritis; Hyponatremia;
Hypertension

Unclear

MTOR inhibitors Temsirolimus Glomerulopathy; AKI; Proteinuria Unclear

BCR-ABL1 and KIT inhibitors Bosutinib; Dasatinib; Imatinib Hypophosphatemia; Decreased GFR;
AKI; Proteinuria; Nephrotic
syndrome; CKD

Rhabdomyolysis; Thrombotic
thrombocytopenic purpura;
Alterations in glomerular podocytes;
Tumor lysis syndrome; Acute tubular
injury

Anti-angiogenesis drugs (VEGF
pathway inhibitors and TKI)

Bevacizumab; Ramucirumab;
Aflibercept; Sunitinib; Sorafenib;
Pazopanib; Ponatinib; Others

Hypertension; Proteinuria; Nephrotic
syndrome; Decreased GFR; TMA;
Glomerulopathy; Electrolyte
disturbance

Endothelial cell dysfunction and
dysregulation of podocyte

Inhibitor of Bruton’s tyrosine kinase Ibrutinib AKI Unclear, but tumor lysis syndrome
might be contributory

Immune checkpoint inhibitors (PD-
1, PD-L1, CTLA-4)

Ipilimumab; Pembrolizumab;
Nivolumab

Acute tubulointerstitial nephritis;
Immune complex
glomerulonephritis; TMA; Electrolyte
disturbance; AKI (rare)

Unclear, but development of
autoantibodies that are pathogenic to
the kidney might be contributory

Cytokine INF-a Proteinuria; Glomerulopathy; TMA;
AKI

Minimal change disease or focal
segmental glomerulosclerosis

Cytokine IL-2 AKI Capillary leak syndrome leading to
AKI

Peptide receptor radioligand Lutetium Lu-177 dotatate Decreased GFR Kidney irradiation

AKI: Acute kidney injury; CKD: Chronic kidney disease; GFR: Glomerular filtration rate; SIADH: Syndrome of inappropriate antidiuretic hormone
secretion; TKI: Tyrosine kinase inhibitor; TMA: Thrombotic microangiopathy.
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progression of the underlying disease itself. However, some case reports have shown
hyperkalemia,  requiring no dose adjustment,  but close observation of potassium
levels[54,55]. Lenalidomide, a thalidomide analog, mainly undergoes renal metabolism,
which puts  patients  with prior  renal  injury at  risk when exposed to this  type of
treatment and therefore requires dose adjustment[56,57]. Among the findings, AKI was
reported including severe renal dysfunction and dialysis necessity[58-60].

Pomalidomide, although its metabolism is mainly hepatic, was related to AKI and
nephrolithiasis. However, there are no standardizations for dose adjustment, except
for patients on hemodialysis[61,62].

Proteasome inhibitors
Proteasome inhibitors are primarily used for the treatment of multiple myeloma, and
the  drug  Bortezomib  has  reports  of  TMA  and  acute  interstitial  nephritis  with
granuloma formation[63]. However, there are no standardizations regarding drug dose
adjustment for patients with renal dysfunction. Carfilzomib, another drug of this
class, has reports of TMA and AKI in several studies, such as Siegel et al[64] and Hájek
et al[65]. The main mechanisms of action are described in Table 1[66,67]. Despite these
data, there is still no standardization for dose adjustments for patients with renal
injury. Another representative is ixazomib, which has reports of TMA development,
since  its  excretion  is  primarily  renal[68].  Thus,  guidelines  already  indicate  dose
adjustment for patients with renal dysfunction.

MOLECULARLY TARGETED AGENTS

Epidermal growth factor receptor pathway inhibitors
Activation of epidermal growth factor receptor (EGFR) results in phosphorylation of
the  receptor  tyrosine  kinase,  triggering  signaling  pathways  that  modulate  cell
differentiation, proliferation, and survival[69]. Such a receptor is a crucial target for the
treatment of some cancers such as non-small cell lung cancer, which can be performed
by  administrating  EGFR-tyrosine  kinase  inhibitors  (EGFR-TKIs)  or  anti-EGFR
monoclonal antibodies[70,71].

Rare cases of nephrotic syndrome accompanied by minimal-change disease and
membranous nephropathy have been related to the use of gefitinib, an EGFR-TKI[72-74].
Moreover, this drug family might also cause hypomagnesemia, hypophosphatemia,
and hypokalemia[75]. On the other hand, increased renal magnesium loss is associated
with  the  administration  of  anti-EGFR  monoclonal  antibodies  (cetuximab  and
panitumumab). That electrolyte wasting leads to hypomagnesemia in up to 37% of
patients, which resolves with therapy discontinuation[76,77].  In addition, cetuximab
causes hypokalemia in about 8% of treated individuals[78]. Furthermore, this drug is
linked  to  other  very  rare  complications  such  as  acute  kidney  injury,  nephrotic
syndrome, and proliferative glomerulonephritis[75,79].

Human epidermal growth factor receptor 2 inhibitors
Some molecularly targeted therapies aim to inhibit human epidermal growth factor
receptor  2  (HER-2),  an  overexpressed  receptor  in  some  breast  and  gastric
/gastroesophageal junction cancers[80-82]. Trastuzumab is the precursor and the most
successful example among antibodies aiming HER-2 antagonism[83]. However, this
drug,  as  well  as  pertuzumab  (a  humanized  monoclonal  antibody),  have  been
implicated in the occurrence of renal impairment, exemplified by acute kidney injury,
proteinuria,  elevated serum creatinine,  and nephritis.  In addition,  hypertension,
hypokalemia, hyponatremia, and hypomagnesemia have also been reported[75]. The
administration of lapatinib, a TKI, has been associated with the development of acute
kidney injury and hypokalemia. In a few patients, hyponatremia, hypomagnesemia,
and hypertension have also been observed[75,84].

B-cell lymphoma-2 inhibitors
The  cell  intrinsic  apoptotic  pathway  has  B-cell  leukemia/lymphoma-2  (BCL-2)
proteins  as  crucial  regulators.  When such a  pathway is  disturbed,  the improper
perpetuation of malignant cells can occur[85].  Given the context, the emergence of
venetoclax, a BCL-2 inhibitor, represents a promising solution for the treatment of
refractory chronic lymphocytic leukemia. Despite the benefits, such a drug has been
associated  with  significant  incidence  of  tumor  lysis  syndrome,  leading  to  huge
electrolyte disturbances and AKI. To prevent these effects, the gradual escalation of
drug dose administration to the patient is recommended[86,87].

Anaplastic lymphoma kinase inhibitors
Anaplastic lymphoma kinase 1 (ALK-1) belongs to the insulin receptor tyrosine kinase
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family,  which  plays  an  important  role  in  cell  growth  regulation[88].  Mutations
involving the  gene  that  encodes  this  kinase  are  related to  malignancies  such as
anaplastic large cell  lymphoma, Hodgkin lymphoma, non-small  cell  lung cancer,
neuroblastoma, and rhabdomyosarcoma[89-92]. Crizotinib is the first-developed ALK
inhibitor and has been widely used for the treatment of advanced non-small cell lung
cancer  with  positivity  for  the  ALK  fusion  gene.  Reductions  in  GFR  have  been
observed  in  patients  who  underwent  this  therapy.  However,  the  premature
emergence  of  this  involvement,  its  negligible  cumulative  effect,  and  the  quick
reversibility  after  drug  discontinuation  indicate  that  the  occurrence  of  this
phenomenon is not due to direct nephrotoxicity from crizotinib[93].  Moreover, this
drug is  also related to the emergence of complex renal cysts,  hyponatremia,  and
hypokalemia in a limited number of patients; however, all of these are reversible with
therapy interruption[94,95].

BRAF inhibitors
BRAF is  the  encoding  gene  of  a  human protein  called  B-Raf,  and if  muted,  can
promote cell proliferation and carcinogenesis[96]. Molecularly targeted therapies aimed
toward  its  inhibition  have  been  used  in  individuals  with  malignant  melanoma
containing the BRAF V600E mutation[97]. Vemurafenib is one of the approved drugs
for such patients, being related to a reduction in creatinine clearance (reversible with
treatment discontinuation) as well as rare cases of AKI, which are more commonly
observed in men[98,99]. At a lower frequency, the use of another BRAF inhibitor named
dabrafenib can also lead to AKI[99].

Mammalian target of rapamycin inhibitors
A  serine/threonine  kinase  called  mammalian  target  of  rapamycin  (mTOR)
participates in the signaling pathways of growth factors and cytokines related to
oncogenic activity, and its inhibition leads to cell cycle arrest[100]. The administration of
mTOR  inhibitors,  such  as  temsirolimus,  is  associated  with  the  development  of
proteinuria, and in some cases, has kidney dysfunction as a consequence[101].

BCR-ABL1 and KIT inhibitors
The t(9;22)(q34;q11) chromosomal translocation that originates from the Philadelphia
chromosome results in a BCR-ABL1 gene rearrangement observed in patients with
chronic myeloid leukemia (CML)[102,103]. ABL can be targeted by bosutinib, which is
used in the treatment of refractory CML and can lead to hypophosphatemia, as well
as to a reversible decrease in GFR. With the goal of preventing advanced kidney
disturbances due to adverse events from bosutinib, monitoring of renal function is
recommended at  baseline as  well  as  while  the patient  undergoes this  treatment.
Moreover, dose reduction should be conducted when renal impairment due to the
therapy occurs[104]. Besides BCR-ABL1 inhibition, a TKI named desatinib also acts to
restrain the platelet-derived growth factor receptor and tyrosine kinase receptor KIT
(CD117). This drug is rarely associated with AKI and proteinuria[105,106]. Another BCR-
ABL1 and KIT inhibitor, imatinib, can be applied for the treatment of gastrointestinal
stromal tumors beyond CML. If used for a long period, such an agent can lead to AKI
and  CKD,  and  kidney  injury  seems  to  be  dose-dependent,  with  higher  doses
associated  with  a  higher  risk  of  renal  impairment[107,108].  Moreover,  imatinib
administration is related to the occurrence of hypophosphatemia[109].

Vascular endothelial growth factor pathway inhibitors
Vascular endothelial growth factor (VEGF) is an essential growth factor that plays a
key role in angiogenesis during embryogenesis, wound healing, and tumor growth. It
was first investigated as a potential anticancer agent over the past few decades[110].

There are two types of VEGF pathway inhibitors: VEGF ligand inhibitors, which
are  antagonists  of  the  VEGF  receptor  and  are  represented  by  ramucirumab,
bevacizumab,  and  aflibercept;  and  small  molecule  TKIs  (ponatinib,  sunitinib,
regorafenib, sorafenib, cabozantinib, pazopanib, axitinib, vandetanib, cabozantinib,
lenvatinib),  which  prevent  the  activation  of  the  VEGF  receptor  intracellular
domain[111].

In  normal  conditions,  VEGF  is  produced  by  the  podocytes  and  binds  to  its
receptors found in glomerular and peritubular endothelium, as well as in mesangial
cells. This process maintains the structure of the glomerular basement membrane and
the  proper  glomerular  functioning[112].  Therefore,  all  drugs  that  block  the  VEGF
pathway may induce renal abnormalities. Their renal toxicity is mainly renovascular
in nature including hypertension and proteinuria, occasionally causing nephrotic
syndrome, decreased GFR, and TMA which remains rare[113].  However,  the exact
mechanism underlying proteinuria and the factors associated with the occurrence and
severity of proteinuria are unknown. It is suggested that preexisting renal disease
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(including higher  baseline urine protein levels  and hypertension)  and renal  cell
carcinoma, may be predisposing factors to proteinuria[114,115].

Interruption of anti-VEGF drugs use improves kidney dysfunction, but persistent
proteinuria is not unusual. Although angiotensin-converting enzyme inhibitors and
angiotensin receptor blockers may lower intraglomerular pressure and diminish
protein excretion, no recommendation for use of these agents can be made as there are
no controlled studies on the subject[116].

Although there is a lack of information regarding kidney biopsies in patients that
undergo VEGF-targeted agents treatment, studies have demonstrated the presence of
collapsing  glomerulopathy,  TMA,  and  isolated  reports  of  immune  complex
glomerulonephritis and cryoglobulinemic[117]. The most common causative agent is
bevacizumab. Less common histologic findings have been reported with bevacizumab
such as nephritic syndrome and AKI[118].

Regarding  TKIs,  proteinuria  and hypertension  can  be  seen  with  their  use.  In
addition,  AKI  and  diabetes  insipidus  have  been  reported  in  clinical  trials  of
vandetanib, although causality has not been proven. Decreased GFR during therapy
has been reported with axitinib, sunitinib, and sorafenib, although renal failure is rare.
Patients treated with lenvatinib may progress to renal failure or impairment, while
regorafenib has been associated with several electrolyte abnormalities,  including
hypophosphatemia, hypocalcemia, hyponatremia, and hypokalemia[119,120]. Sorafenib
and sunitinib have been associated with acute and chronic interstitial nephritis in case
reports [ 1 2 1 , 1 2 2 ] .  Sorafenib  is  also  known  to  cause  hypophosphatemia  and
hypocalcemia[123].

Inhibitor of Burton’s tyrosine kinase
Ibrutinib is an irreversible inhibitor of Burton's tyrosine kinase. This drug has activity
in B cell malignancies and is approved for the patients with mantle cell lymphoma or
chronic lymphocytic leukemia. It may be related to AKI and the mechanism of this
injury is unclear, but tumor lysis syndrome might be contributory[124].

Anti-CD22 immunotoxin
Moxetumomab  pasudotox  is  used  to  ameliorate  the  prognosis  of  patients  with
relapsing or refractory hairy cell leukemia. Such a drug can be associated with AKI
and proteinuria[125].

Poly-adenosine diphosphate ribose polymerase inhibitors
Inhibitors  of  poly-adenosine  diphosphate  ribose  polymerase  are  approved  for
treatment  of  BRCA-mutated  breast  cancer  and  for  platinum-sensitive  relapsed
epithelial ovarian cancer. Increased creatinine have been reported in some patients
treated with olaparib, but, in most cases, it is mild[126].

Immune checkpoint inhibitors
The monoclonal antibodies known as checkpoint inhibitors (CPIs) target specific
inhibitory receptors present in T cells, as well as in tumor cells and in other immune
cells. The primary targets for checkpoint inhibition include programmed cell death 1
receptor  (PD-1)  and  programmed  cell  death  1  ligand  (PD-L1)  and  cytotoxic  T-
lymphocyte-associated antigen 4 (CTLA-4), that play an important role in negatively
regulating T cell activation/function, thus tumor cells carrying PDL-1 or CTLA-4 are
protected from immune reactions. The objective of checkpoint inhibitors is to restore
or generate the activation of the immune system, directed to tumor cells[127].

Drugs targeting PD-1 (nivolumab and pembrolizumab) and PD-L1 (atezolizumab,
avelumab, and durvalumab) have recently demonstrated their potential efficacy in
different  tumor  types  (e.g.,  urothelial  carcinoma,  non-small  cell  lung  cancer,
melanoma,  head  and  neck  cancer,  Merkel  cell  carcinoma,  renal  cell  carcinoma,
Hodgkin lymphoma, and microsatellite instability-high or mismatch repair deficient
[dMMR] solid tumors) and drugs targeting CTLA-4 (ipilimumab) is approved for use
in patients with advanced melanoma[128].

The immune response generated by CPIs is complicated by a number of immune-
related adverse events related to many different organs, including the kidneys[129]. AKI
is  a  rare  complication  of  checkpoint  inhibitor  immunotherapy,  being  mainly
associated with ipilimumab/nivolumab combination therapy (4.9%)[130].  The most
commonly reported underlying pathology is acute tubulointerstitial nephritis, but
immune complex glomerulonephritis and TMA have also been observed[131]. There is
also  an  association  between  CPIs  treatment  and  electrolyte  abnormalities,  with
hypocalcemia being the most significant. Discontinuation of checkpoint inhibitor
immunotherapy and treatment with corticosteroids are indicated for patients with
severe renal injury[132].
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Other biologic agents
Interferon-alpha activates  interleukin-2 (IL-2)  release,  which leads to cancer  cell
death[133]. Recombinant interferon-alpha can cause proteinuria, which can be in the
nephrotic range and AKI, the histology is consistent with minimal change disease or
focal segmental glomerulosclerosis[134,135]. Rarely, TMA is seen and in this situation
prompt drug discontinuation is critical[136].

IL-2 is used for the management of metastatic renal cell carcinoma and metastatic
melanoma. IL-2 therapy causes cytokine-driven capillary leak syndrome, leading to
intravascular volume depletion, edema, and a reversible fall in GFR. In this context,
AKI is a consequence of prerenal azotemia from capillary leak. It  is important to
highlight  that  ischemic  acute  tubular  injury  may  also  occur  due  to  severe
hypotension[137]. Cytokine-mediated inflammatory kidney injury may also occur[138].

Chemotherapy-induced nephron specific segment injury is shown in Figure 3. The
peptide receptor radioligand Lutetium Lu 177-dotatate is a radiolabeled somatostatin
analog with potential antineoplastic activities. Lutetium Lu 177-dotatate binds to
somatostatin receptors expressed by various neuroendocrine tumor cells. Once the
radioligand binds to that receptor, this complex in internalized, resulting in beta
radiation delivery to cells that express somatostatin receptors. Kidney irradiation may
result in glomerular damage with renal impairment. An amino acid solution infusion
is  needed  to  protect  the  kidneys  from  the  radiation  effects  of  the  therapeutic
radionuclide. This protocol results in low rates of nephrotoxicity during therapy. No
risk factors for renal toxicity have been identified[139].

CONCLUSION
Onco-nephrology has emerged as a new specialized therapeutic perspective for cancer
patients.  Despite the improvement of  patients survival  resulting from the use of
conventional and molecularly targeted agents, several therapeutic complications due
to nephrotoxic effects of these drugs have been reported. Given the background, it is
important to know the possible adverse events related to these therapies, allowing
early diagnosis of these effects, avoiding further issues due to this treatment. It is
important to highlight that the approach in patients affected by nephrotoxicity due to
anti-cancer drugs include, in addition to the forms previously mentioned specifically
for  each  drug,  close  monitoring,  proper  hydration  and  dose  reduction,  with
suspension  of  the  agent  use  if  necessary.  It  is  also  important  to  conduct  more
controlled studies in the sense of creating guidelines for dose adjustment in patients
with renal impairment, since most of the dose adjustment standards for these drugs
are being created recently through studies with small numbers of subjects and in
initial stages of clinical trials. The development of these studies is also important to
look at other treatment-associated nephrotoxic effects, as well as to reduce short and
long-term complications related to such therapies.

WJCO https://www.wjgnet.com April 24, 2020 Volume 11 Issue 4

Santos MLC et al. Nephrotoxicity in cancer treatment

198



Figure 3

Figure 3  Chemotherapy-induced nephron specific segment injury. TKI: Tyrosine kinase inhibitors; VEGF: Vascular endothelial growth factor; IL-2: Interleukin-2;
INF-a: Interferon-alpha.
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