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Recently, a paper published in Science reported discovery

of sensory peripheral glial cells [1]. This paper demon-

strated a rather unexpected property of non-myelinating

Schwann cells (also known as Remak cells) dwelling in the

subepidermal border of the skin [2]. These glial cells and

their interactions with nociceptive nerve terminals were

characterized using a variety of genetic labelling tools,

transmission electron microscopy, immunocytochemistry,

and electrophysiology. The morphological and functional

data presented by Abdo and colleagues show that these

subcutaneous glial cells form a network in the subepider-

mal border; moreover, these Schwann cells are intimately

associated with nociceptive nerve endings to form the glio-

neuronal sensory organ. These glial cells contribute to pain

sensation; their optogenetic stimulation triggers electrical

activity in nociceptive nerves and pain-related behaviors.

Thus the new type of peripheral glia, the nociceptive

Schwann cells was identified.

The discovery of a peripheral sensory glio-neuronal

organ highlights an unexpected evolutionary link with

primordial glia, which are associated with peripheral

sensations in several invertebrates. The evolutionary his-

tory of neuroglia, supportive homeostatic and defensive

neural cells, began with the emergence of central (the

‘‘brain’’) and peripheral nervous systems, which accompa-

nied the transition from Ctenophora and Cnidarians (which

possess a diffuse nervous system) to more advanced life

forms [3, 4]. The primordial supportive glia found in

earthworms and flatworms are represented by several

subtypes, which are mostly associated with peripheral

nerves (neurilemmal, subneurilemmal, and periaxonal

sheath-forming glia), and cells esheathing neurons (sup-

porting-nutrifying-glia) [3, 4]. In the roundworm

Caenorhabditis elegans, the majority of glial cells are

however associated with sensory neurons. The nervous

system of C. elegans contains 50 glial cells of ectodermal

(i.e. neural) origin and 6 mesodermal supportive cells, the

latter providing a link between some neurons and muscle

cells [5–7]. Most of the glial cells (46 out of 50) in C.

elegans act as an integral part of the sensory system. These

46 glial cells comprise 26 socket cells and 20 sheath cells

that are associated with neuronal terminals and form

specific sensory organs known as sensilla [7]. The remain-

ing four glial cells, defined as cephalic sheath cells, serve a

dual function: their anterior processes form sensilla local-

ized in the lips of the worm, whereas their posterior

processes ensheath the nerve ring (the C. elegans ‘‘brain’’)

where they contribute to the formation of the neuropil [8].

These cephalic sheath cells can be considered as the

primeval ancestors of astrocytes [9].

The peripheral glia of C. elegans have numerous

functions; they establish the location of sensilla, regulate

the size and morphological appearance of sensory neuronal
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terminals, provide for homeostatic control of the sensory

organs, and (arguably) may even regulate neuronal activity.

The developmental program of sensilla formation is

impaired in the absence of glia (which can be selectively

ablated in C. elegans); glia-secreted factors control sensory

dendrite attachment during the migration of neurons in

development, while the proper development of sensory

structures requires the expression of gene sets both in

neurons and in glia [8, 10]. Most unusual though was the

finding that the C. elegans sheath and socket glia express

several types of mechanosensitive degenerin/epithelial Na?

channel (in particular, acid-sensitive degenerin (ACD)-1

and degenerin linked to mechanosensation (DELM)–1,2

channels) [11, 12]. These channels are required for sensory

function (in particular, they mediate touch sensitivity) and

for several types of foraging behavior in worms [12]. Thus,

from very early evolutionary stages the ancestral neuroglia

were associated with the function of the sensory nervous

system, and formed peripheral sensory organs.

Fig. 1 Glial-neuronal sensory organs. A Sensilla in C. elegans. B Glial-neuronal sensory organ in the skin of mouse. C Glial-neuronal

organisation of the taste bud in humans (redrawn from [20]).
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The sensilla operate as sensory organs throughout

invertebrates. In Drosophila melanogaster for example,

taste and olfactory sensilla combine neuronal elements (2

neurons per olfactory sensillum and 2–4 per taste sensil-

lum), and several supportive (presumably peripheral glial)

cells [13, 14]. At the same time, mechanosensitive

peripheral structures in Drosophila (trichoid sensilla, also

known as bristles and cuticular campaniform sensilla) seem

to be devoid of glia [15].

In mammals, peripheral glia are generally considered to

be responsible for the insulation and myelination of axons

(myelinating and non-myelinating Schwann cells), for

covering neuro-muscular junctions (perisynaptic Schwann

cells), and for maintaining homoeostasis in peripheral

ganglia (satellite glia). The discovery of nociceptive

Schwann cells [1] prompts a fundamental extension of

the repertoire of peripheral glial functions. The subcuta-

neous glial cells are mechanoreceptors which, upon

activation, cause membrane depolarization; this depolar-

ization is apparently conducted to nerve endings (by an as-

yet unknown transduction cascade) and instigate pain-

associated behaviors. Thus, nociceptive Schwann cells

together with nerve endings form a peripheral sensory

organ, which bears a surprising semblance to sensilla in C.

elegans (Fig. 1A, B). This evolutionary conservation of the

fundamental principle behind the architecture of peripheral

sensory machinery—that is, the formation of a glial-

neuronal complex—is most exciting indeed.

Hitherto, the glial contribution to sensory organs in

mammals has been documented only for special senses. In

the retina, Muller glial cells not only provide for mechan-

ical integrity and local homeostatic support, but also act as

light-guides [16]. In the olfactory epithelium, glia-like

sustentacular supporting cells insulate and support neurons,

regulate ionic homeostasis, phagocytose dead cells, and

secrete numerous trophic and signaling molecules [17].

The glial cells are an important part of taste-bud structure

and function [18]; they are thought to sense the salty taste

(Fig. 1C). From now on we shall consider the glial cell as a

key element of skin sensory organs involved in

nociception.

Many questions and future research directions arise from

the discovery of nociceptive glia. It is of course of immense

interest to reveal the mechanism through which the depo-

larization of nociceptive Schwann cells excites neuronal

endings. It is also of importance to discern the sensory

modalities (apart from mechanosensitivity) which are medi-

ated through the glia. Another obvious fundamental question

is whether the glial-neural sensory organs are operational in

higher primates and humans, and the contributions of these

organs to pain and other sensory perceptions. Could noci-

ceptive glial cells connect not only to non-myelinated fibers

but also to fast A-fibers mediating ultra-fast pain in humans?

[19]. Ultimately, we need to determine whether nociceptive

peripheral glia can be a substrate for pain-related pathologies

and a target for therapeutic interventions. Be all this as it

may, the surprising evolutionary connection between the

roundworm and mammals opens new avenues for under-

standing the basic principles of neuronal-glial interactions

and further extends the roles played by glia in the function of

the nervous system.
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