Skip to main content
. 2020 Apr 15;18:967–972. doi: 10.1016/j.csbj.2020.04.005

Table 5.

Performance measures for convolutional neural networks without using any data augmentation. Shown are averages across 10-fold cross-validation and standard deviation of the mean in parentheses.

Classifier Accuracy [%] Precision Recall F1-Score AUC
VGG-16 58.7 (2.5) 0.54 (.03) 0.45 (.03) 0.45 (.04) 0.81 (.02)
VGG-19 63.6 (1.6) 0.61 (.02) 0.53 (.03) 0.54 (.03) 0.84 (.01)
ResNet-50 59.6 (2.2) 0.56 (.02) 0.49 (.02) 0.49 (.02) 0.83 (.01)
ResNet-152 59.5 (1.2) 0.54 (.03) 0.47 (.02) 0.48 (.02) 0.83 (.01)
NASNet 64.5 (3.4) 0.62 (.05) 0.52 (.04) 0.54 (.04) 0.85 (.02)
DenseNet-201 65.9 (2.4) 0.65 (.03) 0.55 (.03) 0.57 (.03) 0.86 (.02)
Custom CNN 50.8 (2.4) 0.39 (.04) 0.32 (.01) 0.30 (.02) 0.73 (.01)