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a b s t r a c t 

Single-molecule fluorescent in situ hybridization (smFISH) 

has emerged as a powerful technique that allows one to lo- 

calize and quantify the absolute number of mRNAs in single 

cells. In combination with immunofluorescence (IF), smFISH 

can be used to correlate the expression of an mRNA and a 

protein of interest in single cells. Here, we provide and quan- 

tify an smFISH-IF dataset in S. cerevisiae. We measured the 

expression of the cell cycle-controlled mRNA CLN2 and the 

cell cycle marker alpha-tubulin. The smFISH-IF protocol de- 

scribing the dataset generation is published in the accompa- 

nying article “Simultaneous detection of mRNA and protein 

in S. cerevisiae by single-molecule FISH and Immunofluores- 

cence” [1] . Here, we analyze the smFISH data using the freely 

available software FISH-quant [2] . The provided datasets are 

intended to assist scientists interested in setting up smFISH- 

IF protocol in their laboratory. Furthermore, scientists inter- 

ested in the generation of imaging analysis tools for single- 

cell approaches may find the provided dataset useful. To this 
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end, we provide the differential interference contrast (DIC) 

channel, as well as multicolor, raw Z-stacks for smFISH, IF 

and DAPI. 

© 2020 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 
Specifications Table 

Subject Biology, Cell Biology, Biophysics 

Specific subject area Gene expression analysis, Single molecule mRNA imaging, Fluorescence imaging 

analysis 

Type of data Table 

Image 

Graph 

Figure 

Analysis files 

How data were acquired Data were acquired using a wide-field fluorescence microscope coupled to a CCD 

camera, a motorized stage driven by ultrasonic piezo technology for precise 

Z-positioning and a 120 W mercury short arc lamp as fluorescence illumination 

system. 

Model and make of the instruments used: 

Olympus BX-63 epifluorescence microscope equipped with Ultrasonic stage and 

UPlanApo 100 ×, 1.35NA oil-immersion objective (Olympus). An X-Cite 120 PC 

Lamp (EXFO), an ORCA-R2 Digital Interline CCD Camera (C10600-10B; 

Hamamatsu; 6.45 μm-pixel size) mounted using U-CMT and 1X-TVAD Olympus 

c-Mount Adapters, and zero-pixel shift filter sets: DAPI-5060C-Zero, 

FITC-5050-0 0 0, Cy3-4040C-Zero, and Cy5-4040C-Zero from Semrock. Software 

used for instrument control and image acquisition: MetaMorph (Molecular 

Devices). 

Data format Raw: TIFF 

Analyzed: Matlab files 

Filtered: TIFF 

CellProfiler pipeline 

Parameters for data collection The data were collected in the commonly used auxotrophic S. cerevisiae strain 

BY4741. Cells were grown at 26 °C in Synthetic Complete medium (SC) with 2% 

glucose. Cells grown to exponential phase were fixed to perform smFISH-IF. 

Description of data collection smFISH-IF data were collected by using a wide-field fluorescence microscope. A 

monolayer of yeast cells attached on a glass coverslips were imaged at different 

wavelengths to detect the following fluorophores: Alexa 647 or Alexa 488 (IF); 

Quasar 570 (smFISH); DAPI (nuclear staining); DIC (cell outline). Ten to twenty 

different stage positions were acquired per experiment (to reach 10 0 0 cells for 

quantification). At each stage position, and for each fluorescent channel, we 

collected 41 Z-stacks every 200 nm. For DIC, one single Z-stack was acquired at 

the focal plane. 

Data source location Institution: Department of Anatomy and Structural Biology, Albert Einstein College 

of Medicine 

City/Town/Region: Bronx, NY 

Country: USA 

Institution: Systems Biology Lab, Vrije Universiteit Amsterdam 

City/Town/Region: Amsterdam 

Country: The Netherlands 

Data accessibility Repository name: [Mendeley] 

Data identification number: [DOI: 10.17632/bcmn9cxyzs.4] 

Direct URL to data: [ https://data.mendeley.com/datasets/bcmn9cxyzs/4 ] 

Related research article Authors Tutucci Evelina and Robert H. Singer 

Title “Simultaneous detection of mRNA and protein in S. cerevisiae by single 

molecule FISH and Immunofluorescence”

Journal Methods in molecular Biology 

DOI https://doi.org/10.1007/978- 1- 0716- 0712- 1 , ISSN: 1064–3745. 

http://creativecommons.org/licenses/by/4.0/
https://data.mendeley.com/datasets/bcmn9cxyzs/4
https://doi.org/10.1007/978-1-0716-0712-1
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Value of the data 

• smFISH-IF data are useful to correlate the expression of an mRNA of interest to the expres-

sion of a protein in single cells. This approach has the potential to reveal the subcellular lo-

calization of mRNAs, the cell-to-cell variability in gene expression, and to precisely quantify

the absolute number of mRNAs in the cytoplasm and at the transcription site. 

• Scientists interested in setting up the smFISH-IF protocol in their lab could use this dataset

as a reference to compare their dataset to an established protocol. 

• The presented data were collected using S. cerevisiae as a model system. We believe that

the approach is relevant to other organisms. Here, we provide an overview of the smFISH-

IF protocol and imaging analysis process by making available the raw data and the smFISH

quantification performed with the software FISH-quant [2] . 

• The increasing use of microscopy in life sciences is rising the need for imaging analysis tools.

Further automation of the quantification process (e.g. by using machine learning algorithms)

will expand the application of life science microscopy data. Thus, software developers in-

volved in the generation of imaging analysis tools for gene expression analysis and cell phys-

iology may find useful the provided dataset. 

1. Data 

smFISH has emerged as a powerful technique that allows one to localize and quantify the ab-

solute number of mRNAs in single cells [3] . In combination with immunofluorescence, smFISH

can now be used to correlate the expression of an mRNA of interest to that of a protein in sin-

gle cells [4–6] . Because the quantifications are strictly dependent on the quality of the primary

data, it is important to achieve high-quality smFISH datasets. Here, we provide three smFISH-IF

datasets that we deposited in the public repository http://dx.doi.org/10.17632/bcmn9cxyzs.4 [7] .

The smFISH was done to detect the cyclin 2 mRNA ( CLN2 ), which is a cell cycle-regulated mRNA

periodically expressed during the G1 phase [8] . The immunofluorescence was done to detect the

protein tubulin 1 that was used to monitor the cell cycle phase ( Fig. 1 a). 

1.1. Raw images 

Three independent biological replicates were deposited: EXP1_BY4741_smFISH-IF_Tub1_CLN2, 

EXP2_BY4741_smFISH-IF_Tub1_CLN2 and EXP3_BY4741_smFISH-IF_Tub1_CLN2. 

For each experiment, we provide multiple stage positions using the following filter sets: a)

CY5 or FITC: to detect the IF, revealed using a secondary antibody conjugated to the fluorophore

Alexa647 or Alexa488, respectively. b) CY3: to detect the smFISH, revealed using probes conju-

gated with the fluorophore Quasar 570. c) DAPI: to detect the nuclear staining performed using

DAPI. d) DIC: differential interf erence contrast image. For each stage position and wavelength,

we collected 41 z-stacks every 200 nm in the following order: CY5 or FITC, CY3 and DAPI chan-

nels. The files are saved in TIFF format. 

Representative smFISH-IF results are shown in Fig. 1 b, whereby the different fluorescent

channels are merged to the DIC channel. The different fluorescent channel images are the re-

sult of maximal projections of the Z-stacks where the cells are located (usually 20–25 Z-planes),

generated using Image J [9] . The CY3 channel has been filtered using the Gaussian filter in FISH-

quant. The DIC images have a systematic drift compared to the fluorescence images due to our

microscope characteristics. This drift is corrected using the x, y “translate” function in Fiji. 

The three datasets are representative of typical smFISH-IF results. Datasets 1 and 2 have a

few imperfections that can be found in this type of experimental setting and are discussed in

the following paragraphs. 

In dataset 1, positions 6 and 7 show a significant drift in the Z directions (about

1 pixel per Z-plane). This problem can be detected using, for instance, the Fiji function:

http://dx.doi.org/10.17632/bcmn9cxyzs.4
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Fig. 1. smFISH-IF for the cell-cycle mRNA CLN2 and the protein tubulin 1. (a) Schematic of CLN2 mRNA expression 

during the cell cycle. Green dots represent CLN2 mRNA in the cytoplasm and transcription sites (TS) in the nucleus. TS 

are identified by the higher brightness compared to the single cytoplasmic mRNAs. Tubulin (purple) co-localizes with 

the spindle pole body which is duplicated during S phase. The bud emergence starts during S phase and ends with 

the formation of the daughter cell. During anaphase, the microtubules stretch between the mother and the daughter 

cell [11] . The CLN2 mRNA is transcribed during late G1 and is homogeneously dispersed in the cytoplasm. (b) MERGE 

Maximally projected images: CLN2 mRNA smFISH Quasar 570 (green), anti-tubulin IF Alexa 488 (magenta) and DAPI 

(blue) merged to a single plane DIC image (gray). The smFISH Quasar 570 (green) channel has been filtered using FISH 

quant. Scale bars = 2 μm. (c) Quantification of the number of mRNAs per cell in each cell cycle phase. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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mage > Stacks > Orthogonal views , and it can be caused by a small bubble in the oil or if the ob-

ective is not clean. A small bubble is likely the cause for positions 6 and 7 since the positions

f EXP1 were collected consecutively, but only at these two positions, we found the drift. These

mages can still be used to quantify the number of mRNAs per cell using FISH-quant (see output

esults). The filtered images still allow the identification of mRNA spots. However, if one requires

o localize mRNAs with high precision (e.g. for co-localization experiments), we recommend dis-

arding these types of images. 

In dataset 2, we observe some debris in the IF channel (CY5) at the bottom of the slide.

his can happen if the excess of fluorescently labeled secondary antibodies used for IF detection

s not completely removed during the washes. This problem can be solved by increasing the

umber and the stringency of washes during the IF protocol, or by increasing the concentration

f bovine serum albumin (BSA) used to block the non-specific binding of the antibodies. In the

ase of tubulin, used in this experiment as a cell cycle marker, we believe the data can still be

sed for cell cycle scoring based on the reasons described in the following paragraph. 
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Fig. 2. Workflow of the single mRNA molecule averaging using FISH-quant. (a) Microscope parameters for single mRNA 

detection. (b) FISH-quant main interface showing the parameters used for background estimation and signal to noise 

ratio (SNR) enhancement. (c) FISH-quant outline designer interface showing the cell outlines generated using Cellprofiler 

merged on the smFISH image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Cell cycle phase scoring of cells 

The cell cycle phase of each cell was determined using the morphology of the cell and the

tubulin IF signal intensity. The software Cellprofiler was used to quantify the integrated inten-

sity of the IF signal within the cell outlines and for the maximal projection of the Z-sections

containing the cells, excluding the bottom of the slide. Thus, most of the debris is not quanti-

fied. This allows one to distinguish cells in the G1 phase from cells in the following phases of

the cell cycle (S to M phase) due to an increase in the tubulin signal that is caused by a spindle

duplication during S phase [10] . The CellProfiler pipeline used in this study was deposited in the

public repository http://dx.doi.org/10.17632/bcmn9cxyzs.4 . 

After quantifying the tubulin signal, we combine these measurements with the morphology

of the tubulin and cell (based on DIC) to manually score the cells according to their cell cy-

cle phase. This scoring is done in Fiji, using the plugin Cell Counter [9] . G1 phase cells can be

identified by the single, nuclear localized, spindle pole body and round morphology of the cells

as well as a lower tubulin intensity. The emergence of a small bud identifies S-phase cells. G2

phase cells can be identified by their larger bud and duplicated spindle pole body with tubulin

stretching into the emerging bud. M-phase cells can be identified by the extended spindle and

dividing nucleus ( Fig. 1 a). A CSV file is created from Fiji, containing the information on the po-

sition and scoring group of each cell. This file can then be imported into the outline designer

in FISH-quant using the “Load Groups” menu option. After the FISH-quant analysis, described in

detail below, one has the possibility of sorting the mRNA expression results according to the cell

cycle group ( Fig. 1 c). 

1.3. Cell outlines 

Together with the raw images, we deposited the smFISH analysis files that were generated

using FISH-quant [2] (see Experimental Design, Materials, and Methods for more details). The

outlines for the ten stage positions were generated using Cellprofiler (the pipeline is provided

with V3 of FISH-quant) and imported using the built-in FISH-quant option. 

The text files (e.g., EXP1wtTub647CLN2Q570_01_CY3__outline) describe the coordinates of 

nuclear and cell outlines for a total of 1018 cells. The files are imported in FISH-quant main

interface ( Fig. 2 a) after loading the corresponding raw smFISH stage position (41 Z-stacks) and

loading the corresponding outline file ( Fig. 2 b). At this stage, the quality of the outlines is veri-

fied and corrected if necessary. Furthermore, at this stage, transcription sites (TS) auto-detection

settings are defined (e.g. threshold for TS brightness, and DAPI brightness). 

http://dx.doi.org/10.17632/bcmn9cxyzs.4


6 A. Maekiniemi, R.H. Singer and E. Tutucci / Data in Brief 30 (2020) 105511 

1

 

g  

e  

i  

N  

t  

(

 

m  

a  

i  

t

 

u  

s  

s  

t  

m

1

 

t  

l  

m  

T  

e  

a  

c

2

2

 

u  

Y  

a  

w

2

 

s  

b

.4. FISH-quant batch analysis files 

Once all cell outlines and transcription sites are defined, we set the parameters of sin-

le mRNA detection. Using FISH-quant main interface, the image is filtered using the param-

ters shown in Fig. 2 a. A single cell expressing the mRNA of interest, is chosen to set the

nitial parameters using the pre-detection tools. Once the parameters best identifying the mR-

As in the chosen cell are found, they are applied to the entire image and then saved as a

ext file. We deposited the file describing the mature mRNA settings used to analyze EXP1

EXP1wtTub647CLN2Q570_01_CY3__settings_MATURE). 

Next all the smFISH images can be analysed using the same setting in the Batch processing

ode that can be selected from the FISH-quant main interface. The setting and all the outlines

re loaded and processed. The analysis for EXP1 is shown in Fig. 3 a. The analysis file is saved us-

ng the Matlab format. This file was deposited (_FQ_batch_ANALYSIS_191205) and can be utilized

o verify the mRNA detection parameters. 

Following the batch processing, the intensity of single mRNAs is averaged ( Fig. 3 b–c) and it is

sed to set the parameters for measuring TS intensities ( Fig. 3 d). The file describing the averaged

ingle mRNA intensity was deposited as well (_mRNA_AVG_ns). Once the settings tested for a

ingle image are found, they are saved as a text file that can be used in the batch mode ( Fig. 3 a)

o automatically detect TS intensities for all images. We deposited the file describing the nascent

RNA settings used to analyze EXP1 (_FQ__settings_NASCENT). 

.5. FISH-quant output results file 

After the batch identification of both mRNAs and TS, several text files can be saved reporting

he analysis output (e.g. the number of nascent and mature mRNAs per cell, the intensities and

ocalization of the mRNAs). We deposited the text file reporting the number of nascent and

ature CLN2 mRNAs for the ten stage positions of EXP1 (__FQ_batch_summary_ALL_191204).

his information can be further plotted to show, for instance, the number of mRNAs present in

xpressing cells ( Fig. 4 a), or the distribution of the mRNA in a population of cells (expressing

nd non-expressing) ( Fig. 4 b). Furthermore, the number of nascent mRNAs per transcription site

an be plotted as individual values ( Fig. 4 c) or as a frequency distribution ( Fig. 4 d). 

. Experimental design, materials, and methods 

.1. Yeast cell cultures 

The S. cerevisiae strain used in this article is BY4741 (MATa; his3 �1; leu2 �0; met15 �0;

ra3 �0). Yeast cultures were exponentially grown in synthetic complete medium (SC-complete):

east nitrogen base without amino acids and with ammonium sulfate 6.7 g/L; SC powder with

mino acids and supplements 2 g/L (Sunrise Technologies, 1300-030); Glucose 2% (w/v)). Cells

ere grown at 26 °C using constant shaking at 210 rpm. 

.2. Single molecule fish probes design 

CLN2 probes conjugated to Quasar 570 were designed using the Stellaris TM Probe De-

igner by LGC Biosearch Technologies and purchased from Biosearch Technologies ( https://www.

iosearchtech.com/support/tools/design- software/stellaris- probe- designer ). 

https://www.biosearchtech.com/support/tools/design-software/stellaris-probe-designer
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Fig. 3. Workflow of the single mRNA molecule detection using FISH-quant. (a) FISH-quant batch mode interface illus- 

trating the quantifications for EXP1. The blue histograms represent the distribution of mRNA intensities (raw pixel data) 

plotted for all the mRNA detected for the ten stage positions, before (right) or after (left) filtering. The parameters can 

be further adjusted, by using the cursor changing the minimum and maximum intensities, to refine the mRNA detection. 

The narrow distribution of mRNA intensities, indicates that the detected spots represent a homogenous population of 

single mRNAs. (b) FISH-quant parameters for single mRNA averaging. FISH-quant main interface showing the parameters 

used for background estimation and signal to noise ratio (SNR) enhancement. (c) Average intensity of all single mRNAs 

processed. The first column is the maximum intensity projections along the three axes. The second column showsthe 

results of the fit with the Gaussian. The third column shows the residuals. (d) FISH-quant outline designer interface 

showing the cell outlines generated using Cellprofiler merged on the smFISH image. 
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Fig. 4. CLN2 mature and nascent mRNA molecule quantification. (a) Quantification of CLN2 mRNAs by smFISH in wild- 

type expressing cells, non-synchronized ( n = 688). The histogram indicates the mean (mean ± 95% confidence interval for 

non-normally distributed data = 10.1 ± 0.7 mRNAs/cell). (b) Frequency distribution for CLN2 mRNAs in wild-type express- 

ing cells, non-synchronized ( n = 1018). (c) Quantification of CLN2 nascent RNAs by smFISH in wild-type expressing cells, 

non-synchronized ( n = 154). The histogram indicates the mean (mean ± standard deviation = 3.6 ± 1.3 nascent RNA/TS). 

(d) Frequency distribution for CLN2 nascent RNAs in wild-type expressing cells, non-synchronized ( n = 154). 
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Probes sequences are the following: 

ttgatgacgagtcccatacg, cggatagtagtccggtttag, attctgcattagatagctca, 

ttcttgcagcatttcgaagt, aacattggtggagatttctt, gctggtctattagttttgga, taatgttggaccttgtttcc, 

ccacagacagctcgaacaaa, ataccatttgtcactcgagt, ctcttggaacaatagcggtc, acaaccaatttggcttggtc, 

agccaaccagagacaagtag, atgatgtgattacaaccgcc, ccagtagggatgactacatt, gggttgggaccataaaatct, 

cagagagtcgaggtatacgt, gaccatcaccacagtaatga, gtctagtatatgtctttcca, gactgacgtttttcagagca, 

tctacagtggcatcactatc, tttaagtcttcttcttcttc, ctaagtaagtcgtactgcca, gagaatatgccgtgcgatac, 

aaaggaccgtggtcttgatt, gctttctgatgtcattggag, atgccgttcattaaggtact, cttccatcaaggagttagga, 

agaacaccattgaccgtttt, caagtgatattctttcact, gttggatgcaatttgcagtt, gatatggtaagctttctcga, 

ttcgaaagagcatgatgggg, gcgaaggaatggatgtgcta, gagtgtggctttgagatgag, atcagagagtgagctcatgt, 

catattccggctgaaaacgc, cttggagtgattggtgatga, ctgctgaccaaattggtaca, gtgctaccacatatactgtt, 

ttcaccagactattcacact, tttgttcgtagatcctttgt, atcattggttgcgttattgc, ttggttttccttgttagact, 

attgaggtaatgcgccgttg, ggggaacattccatggttaa, ctatttatggtcccagttgg, gatgaggcactgctagattt, 

ggtattgcccataccaaaag 

.3. Single molecule FISH combined with immunofluorescence 

The detailed protocol to perform single molecule FISH combined with Immunofluorescence

smFISH-IF) is described in the accompanying article [1] . In brief, it was performed as fol-

ows. Yeast strains were grown overnight at 26 °C in SC-complete medium with 2% glucose. In

he morning cells were diluted to OD 600 0.1 and allowed to grow until OD 600 0.3–0.4. Cells

ere fixed by adding paraformaldehyde (32% solution, EM grade; Electron Microscopy Science

15714) to a final concentration of 4% and gently shacked at room temperature for 45 min.
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Cells were then washed 3 times with buffer B (1.2 M sorbitol and 100 mM potassium phosphate

buffer pH = 7.5) and resuspended in 500 μL of spheroplast buffer (buffer B containing 20 mM VRC

(Ribonucleoside–vanadyl complex NEB #S1402S), and 25 U of Lyticase enzyme (Sigma #L2524)

per OD of cells for about 8 min at 30 °C. Digested cells were washed once with buffer B and re-

suspended in 1 mL of buffer B. 150 μL of cells were seeded on 18 mm (#1.5) poly-lysine treated

coverslips and incubated at 4 °C for 30 min. Coverslips were washed once with buffer B, gently

covered with ice-cold 70% ethanol and stored at −20 °C. For hybridization, coverslips were re-

hydrated by adding 2xSSC at room temperature twice for 5 min. Coverslips were pre-hybridized

with a mix containing 10% formamide (ACROS organics #2058210 0 0)/2xSSC, at room tempera-

ture for 30 min. For each coverslip the probe mix (to obtain a final concentration in the hy-

bridization mix of 125 nM) was added to 5 μL of 10 mg/μL E. coli tRNA/ ssDNA (1:1) mix and

dried with a speed-vac. The dried mix was resuspended in 25 μL of hybridization mix (10%

formamide, 2 × SSC, 1 mg/ml BSA, 10 mM VRC, 5 mM NaHPO4 pH 7.5) and heated at 95 °C for

3 min. Cells were then hybridized at 37 °C for 3 h in the dark. Upon hybridization coverslips

were washed twice with the pre-hybridization mix for 30 min at 37 °C, once with 0.1% Triton

X-100 in 2xSSC for 10 min at room temperature, once with 1 ×SSC for 10 min at room tempera-

ture. 

Before the IF, the smFISH was fixed with 4% PFA- in PBS for 10 min at room temperature (RT).

Coverslips were washed once with PBS 1 × for 5 min at RT. The coverslips were pre-incubated

with the IF solution (1 ×PBS, 0.1% RNAse-free Bovine Serum Albumin) for 30 min at RT. Next, the

coverslips were incubated with the primary antibody (mouse anti-tubulin, 1:10 0 0) in IF solution

for 45 min at RT. The coverslips were washed with 1 ×PBS for 5 min at RT before incubation

with the secondary antibody (goat anti-mouse Alexa 647, 1:1500, or goat anti-mouse Alexa 488,

1:1500) in PBS 1 ×, BSA 0.1%, for 45 min at RT. Excess antibody was removed by washing the

coverslips three times with PBS1x for 5 min at RT. Before mounting, we dipped the coverslip

in 100% ethanol and let them dry completely at RT, protected from the light. We mounted the

coverslips face down onto a drop of ProLong Gold anti-fade mounting solution with DAPI placed

on a glass slide. We allowed the mounting solution to polymerize at RT, overnight and in the

dark. 

To note, both secondary antibodies, conjugated with Alexa 647 or Alexa 488, can be used

in combination with smFISH probes labelled with Quasar 570. Probes labelled with Quasar 670

can be combined with IF detected with secondary antibodies labelled with Alexa 555 or Alexa

488. Immunofluorescence can be also combined with two-color smFISH (protocols are provided

in [ 4 , 11 , 12 ]). 

2.4. Image acquisition 

smFISH-IF data were collected by using a wide-field fluorescence microscope, combined with

a CCD camera and a high numerical aperture objective corrected for chromatic aberration. Yeast

cells attached on a glass coverslips were imaged at different wavelengths using the following

conditions and order: Alexa 647 or Alexa 488 (IF): exposure 750 ms (100% lamp power); Quasar

570 (smFISH): 750 ms (100% lamp power); DAPI (nuclear staining): 50 ms (25% lamp power); DIC

(cell outline): 150 ms. Ten to twenty different stage positions were acquired per experiment (to

reach ~10 0 0 cells for quantification). At each stage position, and for each fluorescent channel, we

collected 41 Z-stacks every 200 nm. For DIC, one single Z-stack was acquired at the focal plane. 

2.5. smFISH image analysis 

smFISH images were analyzed using the Matlab written software FISH-quant [2] . The soft-

ware is freely available, provided by Florian Mueller ( https://research.pasteur.fr/en/member/

florian-muller/ ) on the Bitbucket repository ( https://bitbucket.org/muellerflorian/fish _ quant/src/ 

master/ ). The scripts are accompanied by an in depth-manual that explains the theory and how

to perform single mRNA detection. The current version (V3) provides the scripts to perform

https://research.pasteur.fr/en/member/florian-muller/
https://bitbucket.org/muellerflorian/fish_quant/src/master/
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utomatic cell outline recognition using the freely available software Cellprofiler [13] as well

s scripts to perform co-localization of spots in two-colors [14] . After background subtraction,

he integrated fluorescence intensities of all detected cytoplasmic smFISH spots were fitted to a

hree-dimensional (3D) Gaussian to determine the average intensity and the coordinates of the

RNAs ( Fig. 2 ). The peak intensity of the 3D Gaussian represents the intensity of a single CLN2

RNA hybridized with 48 single-labelled Quasar 570 probes. The average intensity of all the

RNAs was used to determine the number of transcripts at each transcription site ( Fig. 3 ). sm-

ISH performed with 48 20-nucleotide singly-labelled probes is likely to permit the detection of

he majority of cellular mRNAs. This assumption is based on previous reports showing that two

robe sets targeting different regions of the same mRNA and labelled with spectrally distinct

uorophores (e.g. Quasar 670 and Quasar 570) co-localize more than 80% of the time [ 4 , 12 , 15 ].

urthermore, in an experiment performed in the model organism Drosophila melanogaster , it was

hown that increasing the number of probes (e.g. from 48 to 63 or 91) did not significantly in-

rease the number of mRNAs detected per cell by smFISH [16] . 
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