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Abstract. Information on species’ distributions, abundances, and how they change over
time is central to the study of the ecology and conservation of animal populations. This infor-
mation is challenging to obtain at landscape scales across range-wide extents for two main rea-
sons. First, landscape-scale processes that affect populations vary throughout the year and
across species’ ranges, requiring high-resolution, year-round data across broad, sometimes
hemispheric, spatial extents. Second, while citizen science projects can collect data at these res-
olutions and extents, using these data requires appropriate analysis to address known sources
of bias. Here, we present an analytical framework to address these challenges and generate
year-round, range-wide distributional information using citizen science data. To illustrate this
approach, we apply the framework to Wood Thrush (Hylocichla mustelina), a long-distance
Neotropical migrant and species of conservation concern, using data from the citizen science
project eBird. We estimate occurrence and abundance across a range of spatial scales through-
out the annual cycle. Additionally, we generate intra-annual estimates of the range, intra-
annual estimates of the associations between species and characteristics of the landscape, and
interannual trends in abundance for breeding and non-breeding seasons. The range-wide popu-
lation trajectories for Wood Thrush show a close correspondence between breeding and non-
breeding seasons with steep declines between 2010 and 2013 followed by shallower rates of
decline from 2013 to 2016. The breeding season range-wide population trajectory based on the
independently collected and analyzed North American Breeding Bird Survey data also shows
this pattern. The information provided here fills important knowledge gaps for Wood Thrush,
especially during the less studied migration and non-breeding periods. More generally,
the modeling framework presented here can be used to accurately capture landscape scale
intra- and interannual distributional dynamics for broadly distributed, highly mobile species.
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INTRODUCTION

Information on the factors that shape species’ distri-
bution and abundance constitute the foundation for
much of our ecological knowledge on animal popula-
tions. To date, the study of these factors has been largely
restricted to either (1) broad extent, coarse-resolution
spatial information collected during a single time of the
year (Marra et al. 2015; e.g., distributions during the
breeding season), or (2) small extent, fine-resolution spa-
tial information collected at a limited number of loca-
tions (e.g., local extinction and colonization dynamics).
However, organisms are influenced by processes acting
simultaneously across a range of spatial and temporal
scales throughout the year (Levin 1992, Chave 2013).

Thus, to understand the full range of processes affecting
species, we need information on distribution and abun-
dance both at fine spatial and temporal resolutions and
across the entire spatial extent experienced by species
throughout the year (Heffernan et al. 2014, Sandel
2015).
Similarly, information on interannual changes in spe-

cies’ distributions and abundance constitute the founda-
tion for conservation monitoring and management. To
date, the assessment and study of population trends has
largely been restricted to the analysis of highly struc-
tured monitoring surveys. For most taxonomic groups,
structured surveys with the spatial coverage necessary to
study trends range wide and throughout the year do not
exist (Hortal et al. 2015, Chandler et al. 2017). For
birds, one of the best-surveyed taxonomical groups,
there are a few broad extent monitoring programs that
are able to generate continental-scale trends in abun-
dance and distributions (North America, Sauer and
Link [2011]; Europe, European Bird Census Council
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[2016]). Even these surveys are restricted to only one
stage of the annual life cycle, and these do not go far
beyond existing political boundaries to cover the entire
distributional range of many species of interest. More-
over, most of these surveys lack the landscape-scale reso-
lution (~1–25 km2) necessary to understand the effects
of habitat composition and configuration useful for con-
servation planning (Tscharntke et al. 2012).
Recent efforts to estimate species’ distributions (K�ery

et al. 2010), abundance (Johnston et al. 2015), and
trends (Horns et al. 2018, Baker et al. 2019, and Mee-
han et al. 2019) across broad spatial extents have turned
to the use of less structured survey data collected by citi-
zen scientists. Citizen science projects have been very
successful at collecting species observation data with
high spatial and temporal resolution across broad
extents throughout the year (Dickinson et al. 2010).
However, the data gathered by these projects contain
several biases due to the opportunistic approach of data
collection (Hochachka et al. 2012, Bird et al. 2014, Kel-
ling et al. 2019). There has been considerable work over
the past decade developing methods to minimize the
effects of these biases, including biases due to heteroge-
neous and imperfect observation processes (K�ery and
Royle 2015, Johnston et al. 2018) and biases in the dis-
tribution of survey effort across space and time (Robin-
son et al. 2017, Johnston et al. 2019). There has also
been work developing methods to tackle the challenges
associated with estimating distributions and abundance
across very large spatial extents throughout the year,
including the variation in data density across broad spa-
tial and temporal extents (Fink et al. 2013) and the spa-
tial and temporal variation in a species’ response to
landscape conditions (Fink et al. 2010, Finley 2011).
Here we build on previous work (Fink et al. 2014,

Johnston et al. 2015) to develop an analytical frame-
work designed to estimate species’ distributions, abun-
dance, and trends at landscape-scale spatial resolutions
across continental extents and weekly temporal resolu-
tion across the full annual cycle while accounting for
many of the biases inherent in citizen science data. This
task required the consideration of three analytical chal-
lenges in addition to the ones outlined above. First, to
capture species’ complete distributions the framework
needs to be able to accurately estimate whether locations
are occupied or unoccupied with high spatial resolution
(2.8 and 25.2 km2) along range boundaries. This is chal-
lenging because occurrence rates are, by definition, very
low in these areas. To meet this challenge, we began by
extending the work of Robinson et al. (2017) to develop
a novel spatiotemporal case-control sampling procedure
to increase the amount of occurrence information in
these data poor areas. Then we utilized the ensemble
model structure of Fink et al. 2014 to test whether indi-
vidual locations were occupied or unoccupied by the
species. The second challenge is to account for the strong
interannual increases in eBird data volume, 20–30% per
yr since 2005, when estimating trends in abundance. To

do this, we balanced the per year sample size, after spa-
tiotemporal case-control sampling, for the training data
used to estimate trends. The third challenge centers on
using spatial covariates to estimate interannual trends in
abundance with landscape-scale (25.2 km2) spatial reso-
lution from irregularly and sparsely distributed citizen
science data. To address this challenge, we implemented
a two-step approach based on the ensemble model of
Fink et al. (2014). The first step used a hypothesis test to
exploit variability across the ensemble and identify loca-
tions where the direction of the trend was consistently
estimated. Then we averaged across the ensemble to
remove the intra-ensemble variation while estimating the
magnitude of the trends. To assess the performance of
the trend estimation procedure, we also performed a
simulation study across a wide range of spatially explicit
trend scenarios coupled with a realistic data observation
process and quantified false detection (type I error) and
power (type II error) rates.
As a case study, we analyzed data from the global citi-

zen science project eBird (Sullivan et al. 2014) for the
long-distance migratory songbird, Wood Thrush
(Hylocichla mustelina) that breeds in eastern North
America and winters largely in Mesoamerica. The Wood
Thrush is a species of conservation concern, having suf-
fered population-wide declines over the past several dec-
ades (Sauer et al. 2017). Although recent studies
(Rushing et al. 2017) have begun to address potential
drivers of these declines, definitive answers are limited
by the lack of comprehensive information on patterns of
distribution, abundance, and trends. Due to the migra-
tory nature of this species, full annual cycle information
on distribution and abundance is critical for providing a
unifying framework to integrate data on population
movement and connectivity. Although we present a case
study focused on a bird species, the growing need and
support for citizen science programs on other taxonomi-
cal groups, e.g., sharks (Vianna et al. 2014), lichen
(Casanovas et al. 2014), bats (Newson et al. 2015), and
butterflies (Dennis et al. 2017), will make various
aspects of this framework useful in future efforts to map
and monitor species populations.

MATERIALS

Observational data

We obtained bird observation data from the global
bird monitoring project, eBird (Sullivan et al. 2014),
specifically the 2016 eBird Reference Dataset
(ERD2016; Fink et al. 2017). We used a subset of data
in which the time, date, and location of each survey were
reported and observers recorded the number of individu-
als of all bird species detected and identified during the
survey period, resulting in a “complete checklist” of spe-
cies on the survey (Sullivan et al. 2009). The checklists
were restricted to those collected with the “stationary,”
“traveling,” or “area search” protocols from 1 January
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2004 to 31 December 2016 within the spatial extent
between 180° to 30° W longitude and north of 0° lati-
tude. Area surveys were restricted to those covering
<56 km2 and traveling surveys were restricted to those of
≤15 km. The resultant data set consisted of 11.7 million
checklists, of which a random 10% were withheld for
model validation (Appendix S1: Fig S1).

Predictor data

We incorporated three classes of predictors in the
models: (1) five observation-effort predictors to account
for variation in detection rates, (2) three predictors to
account for variation at different temporal scales, and
(3) 79 environmental descriptors from remote-sensing
data to capture associations of birds with a variety of
landscapes, elevation, and topography across the conti-
nent (Box 1). The effort predictors were (1) the duration
spent searching for birds, (2) whether the observer was
stationary or traveling, (3) the distance traveled during
the search, (4) the number of people in the search party,
and (5) the checklist calibration index, a standardized
measure indexing differences in behavior among obser-
vers (Kelling et al. 2015, Johnston et al. 2018). To model
variation in availability for detection, e.g., variation in
behavior such as participation in the dawn chorus
(Diefenbach et al. 2007), we used the observation time
of the day. To capture intra- and interannual variation,

we included the day of the year (1–366) and the year on
which the search was conducted.
The environmental descriptors included variables

describing elevation, topography, and land cover. To
account for the effects of elevation and topography, each
checklist location was associated with elevation, east-
ness, and northness. These latter two topographic vari-
ables combine slope and aspect to provide a continuous
measure describing geographic orientation in combina-
tion with slope at 1-km2 resolution (Amatulli et al.
2018). Each checklist was also linked to a series of
covariates derived from the NASA MODIS land cover
data (Friedl et al. 2010). We selected this data product
for its moderately high spatial resolution, annual tempo-
ral resolution, and global coverage. We used the Univer-
sity of Maryland (UMD) land cover classifications
(Hansen et al. 2000) and derived water cover classes
from the MODIS Land Cover Type QA Science Dataset
resulting in a class label for each 500-m pixel into one of
19 classes (Box 1). To capture interannual changes in
land cover, we linked checklists to the MODIS data by
year from 2004 to 2013. The checklist data after 2013
were matched to the 2013 data, as MODIS data from
after 2013 were unavailable at the time of analysis.
To describe the composition and configuration of the

local landscapes searched by participants, we summa-
rized all cover classes within a 2.8 9 2.8 km (784 ha)
neighborhood centered on the checklist location. In each
neighborhood, we computed the composition as the pro-
portion of each class in the neighborhood (PLAND). To
describe the spatial configuration of each class, we com-
puted three further statistics using FRAGSTATS
(McGarigal et al. 2012, VanDerWal et al. 2014): LPI,
an index of the largest contiguous patch; PD, an index
of the patch density; and ED, an index of the edge den-
sity. Together these four metrics for each of 19 land
cover categories produced 76 predictors.

Analysis overview

To meet the analytical challenges of modeling eBird
data, we adopted an ensemble modeling strategy based
on the Adaptive Spatio-Temporal Exploratory Model
(AdaSTEM; Fink et al. 2013). AdaSTEM is a frame-
work for analyzing large-scale patterns with an ensemble
of local regression models. For each of 100 ensemble
runs, the data are independently subsampled and the
study extent is partitioned using a randomly located and
oriented grid. Each grid cell is a spatiotemporal block
(or stixel) and an independent regression model, called a
base model, is fit within each stixel.
Ensemble estimates are made by averaging across the

corresponding base model estimates. Combining esti-
mates across the ensemble controls for variability
between models (Efron 2014), providing a simple way to
control for overfitting while naturally adapting to
non-stationary relationships between species and their
environments (Fink et al. 2010). To make ensemble

Box 1. Land and water cover class predictors.

Land cover Water cover

Evergreen needleleaf forest
Evergreen broadleaf forest
Deciduous needleleaf forest
Deciduous broadleaf forest
Mixed forest
Closed shrublands
Open shrublands
Woody savannas
Savannas
Grasslands
Croplands
Urban and built-up
Barren

Shallow ocean
Ocean coastlines and
lake shores
Shallow inland water
Deep inland water
Moderate or continental
ocean
Deep ocean

Notes: All 19 cover classes were summarized within a
2.8 9 2.8 km (784 ha) landscape centered on each
checklist location. We computed four statistics to
describe the composition and configuration of each class
across the landscape. Landscape composition was
described as the proportion of each class in the neighbor-
hood (PLAND). To describe the spatial configuration of
each class, we computed three further statistics: LPI, an
index of the largest contiguous patch; PD, an index of
the patch density; and ED, an index of the edge density.
Together these four metrics for each of 19 land cover cat-
egories produced 76 predictors.
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predictions at a particular location and time, predictions
are made from the 100 base models, each from a single
ensemble partition, and each fit to an independent sub-
sample of local data in space and time. Because data are
subsampled for each base model, point-level uncertainty
estimates can be produced by examining variation in the
suite of base model predictions across the ensemble. All
analysis was conducted in R, version 3.4.2 (R Develop-
ment Core Team 2017) and deployed using Apache
Spark 2.1 (Zaharia et al. 2016).
In the following sections, we describe the AdaSTEM

ensemble design, the spatiotemporal sampling proce-
dure, and the base models trained within each stixel.
Then we describe how we used the ensemble to estimate
four population parameters: (1) landscape-scale esti-
mates of occurrence and abundance, (2) landscape-scale
estimates of the area of occurrence, (3) regional-scale
habitat use, and (4) landscape-scale trends in abundance.
Definitions of all four population parameters are pre-
sented in the sections below.

AdaSTEM ensemble design

Stixel size controls a bias–variance trade-off (Fink
et al. 2013) and must strike a balance between stixels
that are large enough to achieve sufficient sample sizes
to fit good base models (i.e., limiting variance of esti-
mates), and small enough to assume stationarity (con-
trolling bias). Under the AdaSTEM framework, we
set all stixels’ temporal width to 30.5 d. The spatial
dimensions were adaptively sized to generate smaller
stixels in regions with higher data density, using Quad-
Trees (Samet 1984), a recursive partitioning algorithm.
This partitioning process was constrained not to split
stixels smaller than 5° longitude 9 5° latitude, and was
forced to split stixels larger than 25° longitude 9 25° lat-
itude. The AdaSTEM ensemble consisted of 100 ran-
domly located and oriented grids of overlapping
spatiotemporal stixels generated in this way. See
Appendix S1:Fig. S2 to see two realizations of the Ada-
STEM spatial partition and see Appendix S1 for addi-
tional information about the specification of the
ensemble design.

Spatiotemporal sampling

Within each stixel, a spatial case-control sampling
strategy was used to address the challenges of highly
imbalanced data and site selection bias. Imbalanced data
arise when there are a very small number of species
detections and a very large number of non-detections.
This is a modeling concern because binary regression
methods (like the first component of the zero-inflated
boosted regression tree base model, described in Base
models), become overwhelmed by the non-detections
and perform poorly (King and Zeng 2001, Robinson
et al. 2017). Case-control sampling treats detection and
non-detection cases separately, resampling each case to

improve spatial and temporal balance in the data and
model performance (Breslow 1996, Fithian and Hastie
2014). See Appendix S2 for additional information
about the spatiotemporal sampling procedure.
For estimating interannual trends, we also balanced

the per year sample size, after spatiotemporal case-con-
trol sampling, to control for potential bias associated
with the strong interannual increases in eBird data vol-
ume, 20–30% per yr since 2005. Years with fewer data
than the average were over-sampled (i.e., randomly sam-
pled with replacement) and years with more data than
the average were under-sampled (i.e., randomly sampled
without replacement). This sampling strategy resulted in
training data sets with the same total sample size and
equal per year sample sizes for each stixel.

Base models

Within each stixel, relationships between the species
response and the predictor variables were assumed to be
stationary. To estimate occurrence and abundance from
the large predictor set while accounting for high num-
bers of zero counts, we used a two-step zero-inflated
boosted regression tree (ZI-BRT) model (Johnston et al.
2015, Ridgeway 2017). In the first step, a Bernoulli
response BRT was trained to predict the probability of
occurrence and in the second step a Poisson response
BRT was trained to predict expected counts conditional
on occurrence. To facilitate the estimation of the binary
occurrence state from the predicted occurrence probabil-
ities, we also recorded the threshold that maximized the
Kappa statistic (Cohen 1960). All predictors were
included in both BRTs. The inclusion of the five obser-
vation-effort predictors allowed the models to account
for several important sources of variation in detectabil-
ity. Similarly, including the day of the year and the year
predictors allowed the models to make daily resolution
estimates for specified years. See Appendix S3 for addi-
tional information about base model boosted regression
tree parameters.
A base model for a stixel was trained only when there

were at least 50 checklists (prior to oversampling) from
the spatially balanced case-control sampling procedure
and at least 10 species detections (prior to oversam-
pling). To guard against the effects of replicate surveys
at popular birding locations, only one detection per day
is considered from each location. Stixels that did not
meet these minimum sample size requirements were
dropped without replacement from the ensemble, lead-
ing to fewer overlapping base model estimates, and
higher variance among ensemble average estimates in
regions with low data density or low species detection
rates.
To estimate interannual trends in abundance, we

trained a second ZI-BRT base model, identical to the
one above except for two important modifications. First,
to increase species’ encounter rates and strengthen trend
signals we aggregated the training data across a
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25.2 9 25.2 km grid, separately for each year. The
aggregation summed the counts of species seen, the
durations spent searching for birds, the distances trav-
eled during the search, the numbers of people in the
search party, and the checklist calibration values
(weighted by search duration) across all checklists within
each grid cell. All other covariates were averaged across
all checklists within each grid cell. Second, to control for
the interannual increases in eBird data volume, we sam-
pled the aggregated training data to have the same num-
ber of surveys each year. See Spatiotemporal sampling
and Appendix S2 in Supporting Information for more
information about the sampling procedure, and the
rationale for using a different procedure from that used
for modeling distribution and relative abundance.

Estimating occurrence and abundance

Within each stixel, we used the binomial BRT sub-
model to predict the expected occurrence rate. To esti-
mate the expected abundance we computed the product
of the predicted occurrence and the predicted abundance
conditional on occurrence. To control for variation in
detection rates, the search effort predictors (search dura-
tion, protocol, search length, number of observers, and
checklist calibration index) were held constant for the
predictions. Additionally, to maximize the species’ avail-
ability for detection within each stixel, we calculated the
expected values for the time of day value that maximized
the species’ probability of being reporting, based on the
partial dependence estimate for time of day (see Regional
habitat associations for information on partial depen-
dence estimates.)
The resulting quantity used to estimate occurrence was

defined as the probability that an expert eBird partici-
pant (top 1% of checklist calibration indices) would
detect the species on a search at the optimal time of day
for detection while traveling 1 km on the given day at the
given location. Abundance was estimated as the expected
count of individuals of the species on the same standard-
ized checklist. Although this approach accounts for vari-
ation in detection rates, it does not directly estimate the
absolute detection probability. For this reason, our esti-
mates of occurrence can only be considered as a relative
measure of species occupancy. Similarly, the expected
count of individuals of the species on the same standard-
ized checklist is a measure of relative abundance, an
index of the total count of the individuals of the species
present in the search area. Note that this measure of
abundance is equivalent in many respects to the relative
abundance estimates used to estimate trends with the
North American Breeding Bird Survey (BBS; Sauer and
Link 2011, Sauer et al. 2017) and with the North Ameri-
can Christmas Bird Count (Meehan et al. 2019). To
match the common terminology in the literature, we will
also refer to this as an estimate of relative abundance.
The ensemble estimates of occurrence and relative

abundance were calculated by averaging across all the

base model estimates for a given location and date. We
generated two sets of ensemble estimates for relative
abundance, one designed for high-resolution, year-
round, population mapping and one designed as the
basis of the seasonal trend estimates. For the high-
resolution, year-round, population mapping, we esti-
mated occurrence and relative abundance for a single day
at the center of each week for all 52 weeks of 2016 for
each 2.8 9 2.8 km grid cell across the study area. For the
seasonal trend estimates, we generated weekly estimates
of relative abundance for each week within the specified
seasons, separately for each year 2007–2016, within each
25.2 9 25.2 km grid cell across the study area.
Uncertainty was estimated as the lower 10th and

upper 90th percentiles based on the variation in the base
model estimates. Ensemble average estimates were not
made in areas of low data density, where base model
minimum sample size requirements were not met. See
Appendix S4 for information about subsampling proce-
dures used to estimate uncertainty of the occurrence and
abundance estimates.

Estimating area of occurrence

To estimate the area of occurrence (AOO) we evalu-
ated whether grid cells should be considered occupied vs.
unoccupied, what we refer to as the binary un/occupied
state, for each week and prediction location using both
the 2.8- and 25.2-km spatial grids, described in Estimat-
ing occurrence and abundance. The resulting set of AOO
values provides landscape-scale information about the
distributional range of a species and can be used to gen-
erate range boundaries throughout the year.
At the base model level, each location was considered

to be occupied if the predicted occurrence probability
was above the Kappa-maximized threshold for that
base model. Aggregating across the ensemble, a loca-
tion was considered to be occupied if at least one out
of seven base models predicted it was occupied. This is
equivalent to an expert observer detecting the species at
least once during seven consecutive days of standard-
ized surveys, taking account of the variation across base
models. See Appendix S5 in Supporting Information
for further information about the methods used to esti-
mate AOO.

Estimating trends

To estimate the average annual rate of change in a spe-
cies’ relative abundance with landscape-scale spatial res-
olution (25.2 km 9 25.2 km) we use a two-step
approach that exploits the ensemble structure of
AdaSTEM. In the first step, a hypothesis-testing
approach uses the variation across the ensemble to filter
out regions where the estimated direction of the trend
was inconsistent. We call this step the signal filter. Then
we averaged across the ensemble to remove the intra-
ensemble variation while generating trend estimates.
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The signal filter began by generating the base model
estimates of the slope of the log-linear regression of rela-
tive abundance on year and then testing across the
ensemble to determine if the slopes were increasing or
decreasing. The ensemble averaged estimate of the trend
was computed as the percent per year change in popula-
tion size. This trend was estimated as the slope from the
log-linear regression of the ensemble average estimates
of relative abundance, as described in Estimating occur-
rence and abundance.
Finally, we estimated the range-wide trend for the

breeding and non-breading seasons computed as the
abundance-weighted average of the 25.2-km estimates
across the species’ range for each season. We compared
the breeding season estimate to the independently esti-
mated range-wide breeding season trend based on the
North American Breeding Bird Survey data (Sauer et al.
2017; data available online).2 See Appendix S6 in Sup-
porting Information for further information about the
methods used to estimate local trends.

Estimating regional habitat associations

For each base model, we quantified the strength and
direction of association for each cover class predictor.
Predictor importance (PI) statistics measured the
strength of the overall contribution of individual predic-
tors as the change in predictive performance between the
model that includes all predictors and the same model
with permuted values of the given predictor (Breiman
2001). PI statistics capture both positive and negative
effects arising from both additive and interacting model
components. Partial dependence (PD) statistics
described the functional form of the additive association
for each individual cover class predictor by averaging
out the effects of all other predictors (Hastie et al.
2009). To measure the direction of association, we esti-
mated the slope of each PD estimate using simple linear
regression.
To examine how species’ habitat use varied among

regions and seasons, we computed two seasonal trajecto-
ries: one describing the strength of the cover class associ-
ations based on the PI statistics and one describing the
direction of the cover class associations based on the
slope of the PD estimates. Given the region and the set
of predictors to compare, we standardized the PI statis-
tics to sum to 1 across the predictor set for each base
model within the specified region. Then, loess smoothers
(Cleveland et al. 1992) estimated the trajectories of the
strength of the cover class associations measured as the
relative predictor importance throughout the year for
each predictor. Similarly, a loess smoother was used to
estimate the direction of the cover class associations
measured as the proportion of increasing PD estimates,
based on the slope of the estimates, throughout the year
for each predictor. We considered predictors with

proportions of increasing cover class associations >70%
across base models to have consistent positive associa-
tions with species abundance. Similarly, we considered
predictors with proportions of increasing cover class
associations <30% to have consistent negative associa-
tions. Predictors with inconsistent directions, those
between 30% and 70%, were excluded from summaries.
To quantify changes in habitat use throughout the

annual cycle, we made weekly estimates of the associa-
tion between Wood Thrush occurrence and the amount
of each habitat class in the local landscape. For each
week, we summarized the associations across the popu-
lation core area, the 5° longitude 9 5° latitude area
located at the abundance-weighted population center for
that week. For each cover class, values were combined
for both PLAND and LPI predictors to describe the rel-
ative strength and direction of the association. Larger
absolute values indicate stronger associations. Classes
with inconsistent direction of association were removed,
resulting in total weekly relative importance that sums
to <1.

Model validation

To assess the quality of the ensemble estimates of
AOO, occurrence, and abundance, we validated the
model predictions at 2.8 km 9 2.8 km 9 1 week reso-
lution using independent validation data. Evaluations
were performed separately for each week of the year to
control for seasonal variation in occurrence and abun-
dance of the species’ population.
To help control for the uneven spatial distribution of

the validation data within each week, we used a Monte
Carlo design of 25 spatially balanced samples to evalu-
ate all predictive performance statistics (Fink et al. 2010,
Roberts et al. 2017).
To quantify the predictive performance for the AOO

we used the area under the curve (AUC) and Kappa
(Cohen 1960) statistics to describe the models’ ability to
classify occupied vs. unoccupied sites (Freeman and
Moisen 2008). To quantify the quality of the occurrence
estimate as a rate within areas estimated by the AOO to
be occupied, we also used AUC and Kappa statistics.
AUC measures a model’s ability to discriminate between
positive and negative observations (Fielding and Bell
1997) as the probability that the model will rank a ran-
domly chosen positive observation higher than a ran-
domly chosen negative one. The AUC statistic ranges
from 0 to 1.0. Larger values indicate better discrimina-
tion, with 1.0 indicating perfect discrimination and 0.5
or below indicating no better than random discrimina-
tion. Cohen’s Kappa statistic (Cohen 1960) was
designed to measure classification performance account-
ing for the background prevalence. The Kappa statistics
ranges from �1.0 to 1.0. Larger values indicating better
classification performance, with 1.0 indicating perfect
classification and 0 or below indicating no better than
random discrimination. Guidelines for interpreting the2 https://www.mbr-pwrc.usgs.gov/
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magnitude of the Kappa statistic have appeared in the
literature (Landis and Koch 1977, McHugh 2012)
though they are subjective and tend to be geared toward
specific application domains. Cohen’s original article
suggested that values 0.01–0.20 be interpreted as slight
agreement, 0.21–0.40 as fair, 0.41–0.60 as moderate,
0.61–0.80 as substantial, and 0.81–1.00 as almost perfect
agreement. When interpreting AUC and Kappa, it is
useful to keep in mind that imperfect detection of species
among the validation data will produce misclassifica-
tions even when estimates of AOO and occurrence rates
are perfect. Thus, the maximum attainable AUC and
Kappa statistics are always <1.0. Additionally, both
AUC (Lobo et al. 2008) and Kappa (Sim and Wright
2005) are known to increase with decreasing prevalence
rates among the validation data. For these reasons, AUC
and Kappa are best used as relative measures of predic-
tive performance useful for comparing outputs from dif-
ferent analyses.
To quantify the quality of the abundance estimates we

computed Spearman’s rank correlation (SRC) and the
percent Poisson deviance explained (P-DE). SRC mea-
sures how well the abundance estimates rank the
observed abundances. The SRC ranges from �1.0 to 1.0
with values above zero indicating a positive association
between estimated and observed abundances with a
value of 1.0 indicating perfect ranking. The P-DE mea-
sures the correspondence between the magnitude of the
estimated counts and observed counts relative to an esti-
mate of the sample mean. The P-DE ranges between
�100% and 100% with positive values indicating that
the abundance estimates explain more variation in the
observed counts than using a constant estimate equal to
the sample mean. In practice, imperfect detection will
decrease the maximum attainable values of the SRC and
P-DE statistics. Finally, because the sample mean for the
P-DE statistic is computed based on the validation data,
P-DE values will be conservative measures of predictive
performance.

Trend simulations

To validate the methods used to estimate the trends, we
conducted a simulation analysis to assess performance
across awide range of trend scenarios coupledwith a real-
istic data observation process. Qualitatively, we wanted to
understand how performance varies with the strength of
the trend and if this analytical approach can detect spatial
patterns among the landscape-scale trend estimates.
By comparing estimated trends to the simulated truth,

we quantified false detection (type I error) and power
(type II error) rates at the 25.2 km 9 25.2 km resolu-
tion when identifying locations with increasing and
decreasing trends. To test how power varied with trend
strength, simulations were constructed with increasing
and decreasing trends across a range of magnitudes. To
test if the method could detect spatial patterns in local
trends both spatially constant and spatially varying

trends were constructed. Spatially varying trends were
constructed so that trend direction and magnitude var-
ied as a function of local population density, giving rise
to different trend directions at the core and edges of
population distributions. Flat population trends were
also included in the design to assess false-positive rates.
Altogether, the study consisted of 22 combinations of
spatial pattern and magnitude.
For each simulation, we evaluated the power and error

rate of the signal filter along with the correspondence
between the magnitude of known and estimated trends.
The proportion of false detections was calculated as the
number of cells within the 25-km grid for which trends
were erroneously detected as a proportion of the total
number of cells where trends were detected. The power
was calculated as the number of cells within the 25-
km grid for which a trend was correctly identified as a
proportion of the total number of cells known to have
non-zero trends across the entire range. To understand
how power varied as a function of the local trend
strength, power was also evaluated across all grid cells
with known trends with a minimum magnitude, rang-
ing from 0 to 15% per year. Where the signal filter
detected local trends, the coefficient of determination
(R2) was computed to describe the proportion of vari-
ation in the known magnitudes explained by the esti-
mates.
Two simulation studies were conducted for the Wood

Thrush over the 2007–2016 study period, one for the
breeding season (30 May–3 July) across the species’
range in the northeastern North America and the second
for the non-breeding season (1 December–28 February)
across the species’ range in Mesoamerica. The informa-
tion generated from the simulation study provides
insight about the robustness of the trend analysis. See
Appendix S7 for further information about the trend
simulation study design.

RESULTS

Weekly area of occurrence, occurrence, and relative
abundance

Using the Wood Thrush as exemplar analysis, we gen-
erated estimates of AOO, occurrence and relative abun-
dance at a spatiotemporal resolution of
2.8 km 9 2.8 km 9 1 week (Fig. 1). Across the study
extent, the AOO estimates show seasonal changes in the
range size and shape while the abundance estimates cap-
ture regional and seasonal variation in population struc-
ture within the species’ range. The breeding season
range fills in the eastern deciduous forests east of the
Great Plains with highest population concentrations in
the Appalachian Mountains (Fig. 1A). During autumn
migration, the population concentrates in the southern
part of the Appalachian Mountains (Fig. 1B) before
crossing the Gulf of Mexico into Central America. The
non-breeding distribution (Fig. 1C) is concentrated in
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the Yucat�an Peninsula, with lower concentrations
extending north into Veracruz and south to Costa Rica
and Panama. During the spring migration (Fig. 1D),
Wood Thrush crosses the Gulf of Mexico, concentrating
on the Gulf Coast and again in the southern part of the
Appalachian Mountains.
Overall, all of the predictive performance statistics

for AOO, occurrence, and relative abundance were
above baseline levels indicating the model’s ability to
explain spatial variation in these 2.8-km landscape-
scale quantities throughout the annual cycle at a weekly
resolution. Variation in all the predictive performance
statistics was highest during the non-breeding season
for all metrics, reflecting the challenges of estimating
AOO, occurrence, and relative abundance during the
spring and autumn migrations when the Wood Thrush
population is moving, as well as the lower data densities
in Mesoamerica.
To assess the accuracy of estimates at 2.8 km, we

calculated range-wide validation estimates based on

spatially balanced samples of independent eBird
observations for each week of the year. AOO weekly
median AUC scores were between 0.73 and 0.91 with
mean 0.82 (Fig. 2A) and AOO weekly median Kappa
scores were between 0.26 and 0.62 with mean 0.40
(Fig. 2B) Because these statistics were calculated
across full study extent, they can be used to assess
and compare the quality of the weekly range bound-
aries at a 2.8-km spatial resolution. Occurrence
weekly median AUC scores were between 0.57 and
0.91 with mean 0.72 (Fig. 2C) and occurrence weekly
median Kappa scores were between 0 and 0.61 with
mean 0.28 (Fig. 2D). Because the assessment of the
occurrence estimates is limited to those areas esti-
mated to be occupied, the validation data used for the
occurrence estimates are better balanced than valida-
tion data used for the AOO estimates. This difference
results in AUC and Kappa statistics that tend to be
lower for the occurrence estimates compared to the
AOO estimates. These weekly occurrence AUC scores

FIG. 1. Wood Thrush estimates of area of occurrence (AOO) and relative abundance at 2.8 9 2.8 km resolution during (A) breed-
ing (20 June), (B) autumnmigration (3 October), (C) non-breeding (12December), and (D) springmigration (28March) seasons. Pos-
itive abundance is only shown in areas estimated to be occupied and the AOO is depicted as the boundary between pixels with and
without color. Darker colors indicate areas occupiedwith higher abundance. Relative abundance was measured as the expected count
of the species on a standardized 1-km survey conducted at the optimal time of day for detection. Note that detectability varies season-
ally, complicating comparisons of population size between seasons. [Color figure can be viewed at wileyonlinelibrary.com]
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are much higher than those reported in Fink et al.
(2010) as part of the continent-scale eBird analyses of
Tree Swallow and the Northern Cardinal, two easily
detected and identified species. This improvement in
AUC statistics reflects increases in eBird data volume
and improvements in predictor data and modeling
methodology.
Relative abundance weekly median P-DE scores were

between 0 and 0.52 with mean 0.19 (Fig. 2E) and rela-
tive abundance weekly median SRC scores were between
0.16 and 0.70 with mean 0.41 (Fig. 2F). The positive
weekly median P-DE scores indicate that the model reli-
ably captures landscape-scale spatial structure in weekly
abundance patterns. The weekly SRC statistics are lower
than the monthly SRC statistics reported as part of the
state-wide eBird analysis of shorebirds (Johnston et al.
2015). This is likely due to the fact that Wood Thrush
are not typically encountered in large flocks, resulting in
lower average counts, and, consequently, a more chal-
lenging ranking task.

Seasonal habitat use

The breeding season is characterized by the strong
positive association with deciduous broadleaf forest and
the non-breeding season is characterized by the strong
positive association with broadleaf evergreen forest
(Fig. 3). During spring and autumn migrations, the pop-
ulation is associated with a wider variety of cover classes,
and a more even distribution of associations, both posi-
tive and negative. This includes a notable positive associ-
ation with the urban developed class.

Breeding season trends

The largest population changes have occurred across
the core of the population, the large area of high abun-
dance in Eastern Kentucky, West Virginia, and southern
Ohio (Fig. 4A). Declines of 1–3.5% per yr were esti-
mated in most locations across this region. However,
declines have not occurred range-wide. Population

FIG. 2. Box plots of range-wide weekly predictive performance for area of occurrence, occurrence, and relative abundance esti-
mates across 25 Monte Carlo samples of spatially balanced validation data. (A) AUC and (B) Kappa scores for area of occurrence
estimates. (C) AUC and (D) Kappa scores for occurrence estimates. (E) Spearman’s rank correlation and (F) percent of deviance
explained scores for relative abundance estimates.
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increases occurred in regions of low abundance in the
southeastern part of the range and in a small region in
Wisconsin. Appendix S6: Fig. S1 shows trend maps of
the location-wise upper 2.5% and lower 97.5% confi-
dence limits from the subsampling analysis. These maps
show declines with similar spatial patterns and magni-
tudes to those in Fig. 4A.
The range-wide, abundance-weighted trend estimate

for the breeding season was �1.48% per yr, with a 95%
confidence interval between �1.89% and �1.01% per yr.
The range-wide population trajectory, standardized as
the percent change since 2007 (Fig. 4B), shows the steep-
est declines in population size (�10% to �15%) between
2010 and 2013 followed by shallower rates of decline in
the population size from 2013 to 2016. The BBS range-
wide trend estimate for Wood Thrush from 2007 to 2016
has a posterior mean of �1.26% per yr with 95% credi-
ble interval between �1.7259 and �0.7980. Fig. 5 shows
the range-wide population trajectories, standardized as
the percent change since 2007, for the eBird and BBS
estimates.
The simulation study for the breeding season Wood

Thrush trends provides information about likely false
detection (type I error) and power (type II error) rates
when identifying locations with increasing and decreas-
ing trends. The black contour lines in Fig. 4A delineate
those regions across which the expected false discovery
rate is at most 5%. These regions include most of the
high-abundance areas within the breeding range. The
breeding season power analysis (Appendix S7: Fig. S5A)
suggests that regions within the black contours contain
~60% of all locations across the entire breeding range
with non-zero trends, >67% of trends ≥|1% per yr|, >75%
of trends ≥|3.5% per yr|, and 80% of trends ≥|6.7% per
yr|. Based on the results of this power analysis, we can

infer the likely number of locations with trends of a given
magnitude outside the black contour. The breeding sea-
son simulation study also suggests that a variety of spa-
tially varying trend patterns can be reliably estimated
(Appendix S7: Figs. S1 and S2). Overall, these simula-
tion results suggest that there is sufficient data density to
estimate trends across a range of magnitudes with low
false discovery rates (FDR; type I errors) and fairly high
power (i.e., low type II errors) across much of the breed-
ing range at a 25.2-km spatial resolution.

Nonbreeding season trends

There were declines of 1–3.5% per yr across most of
the non-breeding range with the steepest declines in
areas of high abundance in the northeastern part of the
Yucatan peninsula, in the northernmost part of Guate-
mala and Belize, and in a low abundance area in the
southern portion of the range extending though eastern
Nicaragua (Fig. 6A). Trend maps of the location-wise
upper and lower 95% confidence limits (Appendix S6:
Fig. S2) generally show similar spatial patterns with con-
sistent declines surrounding the high-abundance popula-
tion areas centered near the shared boundaries of
Mexico, Guatemala, and Belize.
The estimated non-breeding season trend is �2.16%

per yr, with a 95% confidence interval between �2.98%
and �1.28% per yr, a little steeper than the breeding sea-
son range-wide estimate. The range-wide population tra-
jectory (Fig. 6B) shows the steepest declines in
population size between 2010 and 2013 followed by
lower rates of decline in the population size from 2013
to 2016, qualitatively similar to the range-wide trajec-
tory for the breeding season (Fig. 4B). However, the rate
of change between 2010 to 2013, almost 30%, is steeper

FIG. 3. The weekly relative importance for the amount of each land and water cover class for the core Wood Thrush population.
Positive importance indicates class use and negative importance indicates class non-use. The strength of the association with each
class is proportional to the width of the class color. Classes with inconsistent direction of association were removed, resulting in
total weekly relative importance that sums to <1.
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than the corresponding drop for the breeding season
estimate.
The 5% FDR regions delineated by the black con-

tour lines in Fig. 6A surround the high-abundance
region centered near the shared boundaries of Mex-
ico, Guatemala, and Belize. The non-breeding-season
power analysis (Appendix S7: Fig S5B) found that
regions within the black contour contain ~40% of all
locations across the non-breeding range with non-zero
trends, >41% of trends ≥|1% per yr|, 50% of trends ≥|
3.5% per yr|, and 70% of trends ≥|6.7% per yr|. These
simulation results suggest that there is sufficient data
density to estimate stronger trends across a range of
magnitudes with low FDR and moderate power.
However, it should be noted that higher power can be
achieved by accepting higher false detection rates, a
trade-off often considered to be prudent in conserva-
tion monitoring applications. The estimated and simu-
lated non-breeding trend maps presented in
Appendix S7: Figs. S3, S4 suggests that spatially vary-
ing trend patterns can be reliably estimated.

DISCUSSION

Our results show that the use of semi-structured
(Kelling et al. 2019) citizen science data with analyses
designed to deal with the biases in these data can accu-
rately estimate complex patterns of species’ distribution,
abundance, and trends at landscape spatial scales across
continental extents, and at weekly temporal scales across
the full annual cycle. The resolution, extent, and com-
pleteness of the information that can be generated with
this approach have the potential to increase our under-
standing of the processes that affect species populations
and improve monitoring and conservation planning
across a range of spatial and temporal scales (Runge
et al. 2015).
The comprehensive Wood Thrush analysis presented

here fills important knowledge gaps on population-level
information during the less studied migration and non-
breeding periods (Evans et al. 2011). For example, the
spatiotemporally explicit habitat association estimates
provide a previously unavailable source of quantitative

FIG. 4. Wood Thrush breeding trend map and range-wide population trajectory. (A) The breeding season (30 May–3 July) aver-
age annual percent change in relative abundance from 2007 to 2016. Increases in population size are shown in blue and decreases
are shown in red. Darker colors indicate stronger trends. Each dot on the map represents a 25 9 25 km area. To help visualize the
relative change in population size at each location, the size of each dot has been scaled according to the average abundance at that
location during the 10-yr study period. Within the regions delineated by the black contour line, the expected false discovery rate
(type I error) is up to 5% when identifying locations with increasing and decreasing trends. Outside the black contours, the direction
of population change is less certain. The breeding season power analysis suggests that regions within the black contours contain
60% of all locations across the breeding range with non-zero trends and contain 80% of all trends with trend magnitudes of 6.7%
per yr or more (approximately equivalent to halving or doubling of the population across 10 yr). (B) The trajectory shows the
range-wide change in population size standardized as the percent change since 2007. The dark black line is the conditional mean
estimate, the red polygon are the 95% confidence limits, and the light gray trajectories show the 500 replicate estimates.
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information about Wood Thrush habitat use throughout
the annual cycle. The general patterns of habitat use
shown in Fig. 3 are consistent with the qualitative pat-
terns described in Evans et al. (2011); however, the cur-
rent results provide more specific details about where and
when transitions in habitat associations occur. Moreover,
because these estimates are based on a single source of
both observational and environmental data, they provide
a basis for direct comparisons across regions and seasons.
The seasonal patterns of habitat use shown in Fig. 3 are
also consistent with those documented by Zuckerberg
et al. (2016) for eastern North America, including the
increased diversity of habitats used during migrations
and the strong positive association with deciduous forest
during the breeding season. In particular, the positive
association with the urban developed class has also been
found to be common among Neotropical migrants dur-
ing their migrations across eastern North America (La
Sorte et al. 2017) and is at least is partially explained by
an attraction to artificial night light during migration
(Van Doren et al. 2017).
The spatially and seasonally explicit trend estimates

also provide new information about interannual changes
in Wood Thrush population size. The spatial resolution
of the trend estimates presented here is relatively high
compared to other studies with similarly broad spatial
extents (Sauer et al. 2017, Baker et al. 2019, Meehan
et al. 2019, Rushing et al. 2019). Both breeding and
non-breeding trend maps show significant spatial varia-
tion in the pattern of declines, with the steepest declines
within the 5% FDR regions (Figs. 4A, 6A; Appendix S6:
Figs. S1, S2). The high spatial resolution of these esti-
mates is valuable for informing state wildlife action
plans and other regional conservation initiatives, instead
of relying on trends from coarser regions, e.g., Bled et al.
(2013). Trend estimates with high spatial resolution are
also valuable because of the increased power to detect
correlations with other spatial processes potentially
affecting populations.

The range-wide breeding season population trajectory
shows a close correspondence with the range-wide
breeding season population trajectory estimated from
the independently collected and analyzed BBS data
(Fig. 5). Both estimates show a similarly steep decline
between 2010 and 2013 followed by shallower rates of
decline in the population size from 2013 to 2016. Inter-
estingly, the previously unavailable non-breeding season
population trend estimate shows the same qualitative
pattern (Fig 6B). The strong correspondence between
the independently estimated eBird breeding (Fig. 4B)
and non-breeding (Fig. 6B) population trajectories pro-
vides compelling evidence that the same population is
sampled in each season. Understanding this provides a
basis for cross-season comparisons and simplifies integra-
tion with other seasonal sources of information. The
range-wide annual rate of decline is slightly stronger for
the non-breeding season (�2.2%) compared to the breed-
ing season (�1.5%), with 95% confidence intervals
(�3.0%, �1.3%) and (�1.9%, �1.0%), respectively. The
non-breeding population trajectory also shows stronger
rates of decline during the 2010–2013 dip, with non-
breeding rates as high as �30% (Fig. 6B) and breeding
rates nearly �20% (Fig. 4B). These differences could be
due to differences in mortality during migration, since
demographic work points to relatively high survival for
the non-breeding period (Rushing et al. 2017).
This spatial trend information, in conjunction with the

spatiotemporally explicit habitat association estimates,
could also help tease apart current contrasting results on
the drivers of population declines for Wood Thrush.
Taylor and Stutchbury (2016) concluded that WOTH
declines are most likely driven by habitat loss during the
non-breeding season, while Rushing et al. (2017) con-
cluded that declining trends are likely driven by habitat
loss during the breeding season. However, both studies
relied on much coarser spatial information from the
breeding season trends. Therefore, the ability to generate
spatially explicit estimates of trends and habitat associa-
tions at different times of the year provides essential
additional contextual information to understand where
and when in the annual cycle populations are most lim-
ited, and point toward possible causes of these limita-
tions. Based on the strong positive associations with
deciduous and evergreen broadleaf forests during the
majority of the year, coupled with significantly declining
trends in both breeding and non-breeding seasons, forest
loss may be important driver of Wood Thrush declines.
For Wood Thrush, these results highlight the need to for-
mally evaluate how spatial information on regional
threats (e.g., deforestation, fire, drought), during all
stages of the life cycle (e.g., breeding, migratory, non-
breeding), correlate with seasonal trends and influence
population declines (Kramer et al. 2018).
We designed the analytical framework presented here

for pattern discovery and description of broadly dis-
tributed and migratory species across the full annual
cycle. However, several of the analytical approaches

FIG. 5. Wood Thrush range-wide breeding season popula-
tion trajectories for eBird and BBS. The trajectories show the
estimated range-wide changes in population size standardized
as the percent change since 2007. The dark lines indicate the
conditional mean estimates and the polygons are corresponding
95% confidence intervals. The eBird estimate is shown in red
and the BBS estimate in blue.
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described here can be used for other applications. The
AdaSTEM framework can be modified to estimate dis-
tributions and abundance for species with smaller
ranges, by modifying the ensemble to have a single spa-
tial region, or for resident species, by modifying the
ensemble to have a single full-year temporal season.
Similarly, the AdaSTEM framework can be geared
toward the analysis of rare species by using alternative
base models, modifying the spatiotemporal case-control
sampling, and increasing the number of base models in
the ensemble. In general, the selection of the class of
base models should be made to match the objectives of
the analysis. For example, confirmatory analysis can be
performed by selecting base models that support hypo-
thetico-deductive analysis (Mentch and Hooker 2016,
Wood 2017) or causal analysis can be performed by
selecting models designed for this purpose (Wager and
Athey 2018). The ZI-BRT base models are generally well
suited for pattern discovery; however, because they only
account for variation in detection rates and do not
directly estimate the absolute detection probability,
strong changes in detectability (e.g., across seasons or

species) can make it harder to compare predictions.
Practical solutions to this problem include standardizing
the relative abundance estimates by the total relative
abundance to generate a measure of the proportion of
the total population or using the AOO estimates of the
binary un/occupied state, which is less sensitive to
changes in detectability (La Sorte et al. 2017). Finally,
several of the approaches used here to control for biases
in citizen science data can be applied more generally.
Johnston et al. (2019) discuss how information describ-
ing participant search effort along with complete check-
lists can be used to account for the bias of imperfect
detection and how spatiotemporal sampling can be used
to balance the data used to train distribution and abun-
dance models.
Deploying the AdaSTEM framework at scales suffi-

cient to cover the full annual cycle for broadly dis-
tributed species with landscape-scale resolution is
computationally intensive, requiring thousands of CPU-
hours and terabytes of storage on high performance and
cloud computing systems. To ensure that this computa-
tional cost is not an impediment to those wishing to

FIG. 6. Wood Thrush non-breeding trend map and range-wide population trajectory. (A) The non-breeding season
(1 December–28 February) average annual percentage change in relative abundance from 2007 to 2016. Increases in population size
are shown in blue and decreases are shown in red. Darker colors indicate stronger trends. Each dot on the map represents a
25 9 25 km area. To help visualize the relative change in population size at each location, the size of each dot has been scaled
according to the average abundance at that location during the 10-yr study period. Within the regions delineated by the black con-
tour line, the expected false discovery rate (type I error) is up to 5% when identifying locations with increasing and decreasing
trends. Outside the black contours, the direction of population change is less certain. The breeding season power analysis suggests
that regions within the black contours contain 40% of all locations across the breeding range with non-zero trends and contain 70%
of all trends with trend magnitudes of 6.7% per yr or more (approximately equivalent to halving or doubling of the population
across 10 yr). (B) The trajectory shows the range-wide change in population size standardized as the percent change since 2007.
The dark black line is the conditional mean estimate, the red polygon are the 95% confidence limits, and the light gray trajectories
show the 500 replicate estimates.
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analyze other bird species with eBird data, we have ana-
lyzed a taxonomically diverse set of North American
breeding species. Visualizations, summaries, and the
data products (i.e., AOO, occurrence, and relative abun-
dance estimates) from these analyses are available
online.3 We have also made the ebirdst R package avail-
able to facilitate the access and analysis of these data
products (available online).4

More broadly, this study helps demonstrate the relia-
bility of using citizen science data to estimate trends in
relative abundance, a task usually left to monitoring pro-
grams that employ more stringent sampling protocols
that can be challenging to deploy, manage, and maintain
across such broad spatial and temporal extents. The
analysis presented here also demonstrates how citizen
science data can be used to generate accurate species-
level information for broad-scale biodiversity monitor-
ing like those outlined by the Group on Earth Observa-
tions Biodiversity Observation Network (Kissling et al.
2017, Jetz et al. 2019). However, we are not suggesting
that citizen science data can or should supplant data col-
lected using more formal sampling protocols. On the
contrary, data collected from formal sampling protocols
and citizen science projects tend to be complementary.
Data collected using formal sampling protocols are
often, by design, higher resolution, and repeatedly sam-
ple the same locations to effectively detect changes in
population size during specific time periods and loca-
tions. Citizen science data, on the other hand, provide
information outside of the scope of any one individual
sampling design, providing a basis for inference in addi-
tional habitat types, regions, and seasons. The frame-
work presented here can be used as a unified data
backbone to integrate other data sources, e.g., monitor-
ing, migratory connectivity, isotope, etc., and to identify
the most critical and threatened places that are vital for
preserving North America’s avifauna.
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