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Abstract

The subtle relationship between vascular network structure and mass transport is

vital to predict and improve the efficacy of anticancer treatments. Here, mathe-

matical homogenisation is used to derive a new multiscale continuum model of

blood and chemotherapy transport in the vasculature and interstitium of a vascu-

lar tumour. This framework enables information at a range of vascular hierarchies

to be fed into an effective description on the length scale of the tumour. The

model behaviour is explored through a demonstrative case study of a simplified

representation of a dorsal skinfold chamber, to examine the role of vascular net-

work architecture in influencing fluid and drug perfusion on the length scale of

the chamber. A single parameter, P, is identified that relates tumour-scale fluid

perfusion to the permeability and density of the capillary bed. By fixing the topo-

logical and physiological properties of the arteriole and venule networks, an opti-

mal value for P is identified, which maximises tumour fluid transport and is thus

hypothesised to benefit chemotherapy delivery. We calculate the values for P for

eight explicit network structures; in each case, vascular intervention by either

decreasing the permeability or increasing the density of the capillary network

would increase fluid perfusion through the cancerous tissue. Chemotherapeutic

strategies are compared and indicate that single injection is consistently more suc-

cessful compared with constant perfusion, and the model predicts optimal timing

of a second dose. These results highlight the potential of computational modelling

to elucidate the link between vascular architecture and fluid, drug distribution in

tumours.
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1 | INTRODUCTION

Solid tumours are characterised by an abnormal microenvironment that distinguishes them from healthy tissue and
reduces drug delivery to the cancerous tissue. This is a consequence of numerous factors that include a poorly organised
vascular architecture, irregular blood flow, and the compression of blood and lymphatic vessels by cancer cells.1 The
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spatial and temporal heterogeneities in blood supply coupled with variations in the vascular morphology at both micro-
scopic and macroscopic levels cause the spatial distribution of therapeutic agents in tumours to be heterogeneous. Drug
treatments (mainly antiangiogenics such as avastin and vascular disrupting and regularising agents such as
combretastatins and nelfinavir, respectively) have been developed specifically to target the abnormal vasculature in
tumours; however, their impact is hard to predict as the relationship between network structure and the functional
parameters that determine mass transport is subtle. For example, increasing the number or diameter of vessels can
impair the blood flow distribution, whilst inhibiting angiogenesis is hypothesised to improve circulation2; in addition,
tumours have been shown to display resistance to vascular disruption therapy via physical mechanisms, such network
connectivity and redundancy.3

The quality and volume of data characterising tissue vascular architecture is increasing, and it is now possible to
describe vascular structure in a highly detailed way. As the resolution of these data continues to increase, it may
become too computationally intensive to simulate flow and mass transport in the entire vascular tree using a discrete
approach, where vessels are treated individually. In addition, in order to interpret the results, they must not be too sen-
sitive to the full vascular geometry but only to some key characteristics of it. One approach is to employ continuum
models in which imaging data are used to deduce functional properties relevant to blood and mass transport.4-7 The
mathematical process of homogenisation8 is one candidate for developing these continuum models, as it enables spatial
heterogeneities at different scales to be transformed into a tractable tissue-scale model. Macroscale (or tissue-scale)
equations are derived by using a mathematical averaging process to incorporate the relevant microscale topological and
model properties. The final macroscale equations can be solved numerically and are far less computationally expensive
than solving the microscale equations throughout the domain. A well known example of mathematical homogenisation
in practice is the Darcy law; although it was first proposed as an empirical law by Darcy in 1856 (based on water flow
experiments through beds of sand),9 it was subsequently derived from the Stokes equations using homogenisation tech-
niques.10 This homogenisation approach enabled the influence of exact particle shape on hydraulic permeability to be
determined.

The hierarchy of healthy vasculature consists of branching arterioles and venules, interconnected by a mesh-like
network of capillaries embedded in the interstitium (composed of cells and extracellular and extravascular space). How-
ever, the hierarchical structure of arterioles and venules evident in healthy tissue is disrupted in tumours where it is
well-established that tumour blood vessels are heterogeneous with regard to topology, function, and structure.11

Instead, a complex tortuous network of angiogenic blood vessels exists, which are fed and drained by large, often tortu-
ous blood vessels12 that results in elevated interstitial fluid pressure13 and poor drug penetration to the core of a
tumour.1,3,14 Here, we use mathematical methods to explore this abnormal tumour microenvironment.

The method of homogenisation is applicable to vascular networks with periodic microstructure and with disparate
length scales apparent across tissue. This enables us to make progress towards a computationally tractable model whilst
retaining key architectural information. The Darcy law has also been shown to provide good predictivity of macroscale
fluid mechanics for nonperiodic structures, even if the multiscale derivation assumes periodicity.15,16 Figure 1 shows
representations of both the capillary or microscale and the tissue-scale or macroscale. On the microscale, both the capil-
laries and interstitium are identifiable and are illustrated by periodic changes of dark and light purple regions, respec-
tively. An example periodic unit cell is circled in red, which repeats in all directions (although the structure must be
periodic in this sense, there is no other assumption of homogeneity within this unit). The capillary length scale is given
by the typical intercapillary distance, d. If the ratio between the capillary length scale, d, and the tumour or macroscale,

FIGURE 1 On the left-hand side is a 2D schematic of a cross-

section through a tissue on the capillary or microlength scale. The

capillaries and interstitium are dark and light purple, respectively. A

single periodic unit is highlighted in red. The total volume of this

unit denotes V, whilst the capillary and interstitial volumes are Vc

and Vt, respectively. The right-had side depicts the macroscale,

where the distribution of fluid and mass appears as a “grey-scale”
and can be modelled as a continuum
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L is small, that is, ϵ = d/L � 1, it is possible to derive an effective macroscopic model describing both the capillaries
and the interstitium. In the schematic on the left-hand side of Figure 1, the heterogeneities can be distinguished.
By comparison, viewed from a distance, or from the tumour or macroscale, the heterogeneities average out as
shown in the right-hand side of Figure 1. Here, both the capillary network and interstitium can be represented as
continua; therefore, the distribution of fluid in the two can be represented as a “grey-scale.” This averaging to a
continuum is exactly what the mathematical process of homogenisation achieves. The space variable x = (x, y, z)
reveals the properties of the system on the length scale of the tumour. Scaling xx with ϵ−1 defines a new space vari-
able X = (X, Y, Z) = ϵ−1x, which reflects the system properties at the capillary scale. One of the fundamental
assumptions of homogenisation is that ϵ is sufficiently small that the length variables x and X are disparate and
can be treated as two independent variables.8

In this paper, we use multiscale mathematical models to investigate the dependence of fluid perfusion and drug dis-
tribution properties on vascular structure under two key assumptions. First of all, we discretise the vascular tree
according to vessel dimension, although in reality, the topological properties of healthy vessels are continuously distrib-
uted from the arteries to the capillary bed and to the veins. We divide the vascular tree into a supplying artery and
draining vein, together with arteriole, venule, and capillary networks, and categorise these networks by three different
length scales. These are the length scale of the tissue, the arterioles and venules (a typical interarteriole or intervenule
separation) and the capillaries (a typical intercapillary separation). In this way, the dependence of tumour-scale fluid
and drug perfusion properties on vasculature structure can be seen as occurring through the interaction of the various
length scales under consideration.

Second, we assume that the structure is spatially periodic on the capillary, arteriole, and venule length scales. For
example, on the length scale of the capillaries, the tumour is composed of a periodic array of capillaries embedded in
the interstitium, as depicted in Figure 1. Although this is a simplifying assumption, the hierarchical vascular structure
evident in healthy tissue rarely occurs in vascular tumours.11,12 Therefore, we assume an unstratified, periodic tumor
vasculature enabling continuum mathematical models to be derived using homogenisation. These continuum models
are computationally tractable compared with simulations throughout the vascular tree and enable the impact of varying
vascular structure on tumour-scale fluid perfusion and mass transport to be tested, without re-deriving the models each
time. In the long term, this will help to both elucidate the mechanisms underlying transport and to quantify the impact
of vascular structure on tumour-scale fluid and drug perfusion.

In previous studies,17,18 we used homogenisation to derive effective fluid and drug perfusion models for a capillary
bed and surrounding interstitium. The final fluid equations comprised a double porous medium, with coupled Darcy
flow through the interstitium and vasculature, whereas the drug equations comprised advection-reaction equations; in
each case, the dependence of the transport coefficients on the vascular geometry was determined by solving capillary-
scale cell problems. In this paper, we extend that approach to a four-component tissue structure, so that vascular hierar-
chy may be accounted for in the models. We derive a new set of effective equations for fluid and drug distribution and
explore the role of vascular architecture in determining tissue-scale fluid and drug perfusion using an example case
study of a rodent model for monitoring of microvascular pathophysiology in vivo (a dorsal skinfold chamber).

2 | THE MODEL SET-UP

A dorsal skinfold chamber is the chronic implantation of an observation chamber on the dorsal skinfold of rodents,
which enables repeated, intravital microscopic observations.19 These chambers are a common tool for therapy develop-
ment, particularly for cancers. In this paper, we use a simplified representation of this chamber structure as a case study
to explore implementation of the four-component transport model and to explore the role of vascular architecture in
determining effective parameters relating to fluid and drug delivery. Blood flow through a chamber containing cancer-
ous tissue is captured by considering four separate components: the arteriole, venule and capillary networks, and the
interstitium (composed of cells and extracellular and extravascular space). We assume that fluid flows from a seeded
feeding artery, through the arterioles into the capillaries, then into the venules before leaving the chamber via a seeded
draining vein. Since the capillaries are leaky, there may also be fluid exchange between the capillaries and the inter-
stitium. In our model, it is not possible for fluid to travel directly from the arterioles into the venules bypassing the cap-
illaries. The fluid pathway is summarised in Figure 2. Throughout this paper, we assume that dorsal skinfold chambers
do not have functioning lymphatics because of clamping of the chamber to the skin and general lack of lymphatics in
tumours and therefore neglect this aspect in the fluid transport models. Further, whilst difficulties exist in categorising
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blood vessels into distinct groups,12 for convenience, we divide the tumour vasculature into three separate components:
arteriole, capillary, and venule networks.

The model structure explained above can be described using three different length scales. The finest scale is referred
to as the “microscale” or the “capillary length scale” and describes the capillaries and interstitium, characterised by a
typical intercapillary separation d ≈ 50 μm. The most course scale is referred to as the “chamber scale” and describes
the scale of the entire chamber, that is, L ≈ 104 μm = 1 cm. In between these scales, we introduce a third length-scale,
which relates to the separate arteriole or venule networks, characterised by a typical vessel separation s ≈ 103 μm.
These three length scales are depicted in Figure 4 and interact through two dimensionless ratios

ν=
d
s
≈5× 10−2,η=

s
L
≈10−1: ð1Þ

On the chamber scale, none of the arterioles, venules, capillaries, or interstitium are distinguishable; however, a seeded
artery and vein supply a pressure gradient across the vasculature. Zooming into any point on the chamber scale reveals the
arteriole and venule scales. Here, blood flows through the arterioles or venules and seeps into a porous tissue matrix com-
posed of capillaries and interstitium. Finally, zooming into a point in the tissue on the length scale of the arterioles and
venules reveals the capillary scale. Here, blood flows through the capillary network and seeps into the interstitium.

As ν � 1, the micro and arteriole/venule length scales are well-separated. Therefore, it is possible to use asymptotic
homogenisation to move from the micro to the arteriole/venule descriptions and derive the porous medium equations
for the capillary network and interstitium on the length scale of the arterioles and venules. Similarly, η � 1, so we can
move from the arteriole/venule to the chamber descriptions and derive the coupled porous medium equations that
describe fluid transport in the arterioles, venules, capillaries, and interstitium on the scale of the chamber.

Next, we consider fluid and drug transport in turn. We present and analyse the fluid and drug transport problems
on the length scale of the chamber, as well as a summary of the derivation steps using homogenization, including
parameter estimation on each of the length scales described above.

2.1 | Fluid transport model

We denote the fluid pressure by p and the velocity by u, with subscripts a, v, c, or t denoting the values of p or u in the
arterioles, venules, capillaries, and interstitium, respectively.

2.1.1 | Fluid transport on the scale of the capillaries

The capillaries of a tumour are embedded in the interstitium, which is itself composed of cells and extracellular space.
We assume the tumour occupies a three-dimensional volume and can be described as spatially periodic on the capillary
scale. This structure is depicted by a 2D schematic in Figure 1, where a single periodic unit cell is highlighted in red.
We denote the total volume of a unit cell by V, the volume of the capillaries in a unit by Vc, and the volume of the inter-
stitium by Vt. We denote the fluid velocity by u and the pressure by p, with subscripts t or c denoting the interstitium or
capillaries, respectively. We assume that the flow in both the interstitium and the capillaries is incompressible. The
interstitium is composed of cells surrounded by extracellular space. However, the capillaries are much larger than the
intercell separation of the interstitium, and so we treat the interstitium as an isotropic porous medium and describe
fluid flow through it by the Darcy law (eg, previous studies20,21). Therefore, in the interstitium,

FIGURE 2 The fluid pathway. Fluid flows from a source

artery, through the arterioles into the capillaries, and then out of the

chamber through a sink vein via the venules. Since the capillaries

are leaky, there may also be fluid exchange between the capillaries

and the interstitium
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r�ut =0,ut = −
kint

μ
rpt, ð2Þ

where kint is the interstitial permeability and μ is the viscosity of blood plasma.
Blood flow in the capillaries of the microcirculation is a highly complex process. Healthy human blood is a concen-

trated suspension containing red blood cells (RBCs) at a concentration (haematocrit) of 40% to 45%. In vessels much
larger than the RBCs (ie, with diameter much larger than ≈ 8 μm), blood can be treated as a continuum with a viscosity
that is approximately constant. In vessels smaller than this, the finite size of RBCs results in noncontinuum behaviour
and complex rheology that causes several important effects, for example, the Fåhraeus22 and Fåhraeus-Lindqvist23,24

effects, and phase separation at diverging bifurcations.25,26 Empirical laws have been developed to describe these non-
Newtonian effects,24,26 and these have also been incorporated into homogenisation frameworks (eg, Penta et al27). The
introduction of more realistic haemodynamic descriptions of blood are important to predict tissue-scale fluid mechanics
and would result in an effective and spatially dependent tissue-scale viscosity.

Because of the additional computational expense of incorporating non-Newtonian haemodynamics, and the empha-
sis here on the development and application of a new modelling framework, we neglect non-Newtonian effects here
and assume that the fluid flow in the capillaries is described by the Navier-Stokes equations for a fluid of constant vis-
cosity. Therefore, in the capillaries, we have

r�uc =0,ρ
∂uc

∂t
+ uc�rð Þuc

� �
= −rpc + μr2uc, ð3Þ

where ρ is the fluid density. The leakage from the capillaries into the interstitium is given by the Starling law,
qe = Lp(pc − pt)n, where qe is the leakage flux, Lp is the vascular permeability (assumed constant), n is the unit outward
pointing normal to the capillary surface, and pc, pt are evaluated on the interior and exterior sides of the capillary wall,
respectively. Given this, we impose continuity of mass flux across the capillary walls, so that

ut�n=uc�n=Lp pc−ptð Þon the capillary walls: ð4Þ

Finally, we impose a no-slip condition on the capillary walls so that

uc�τ=0 on the capillary walls, ð5Þ

where τ is a unit tangential vector to the capillary wall. In practice, there is slip at the capillary surface, and it is deter-
mined by the microvascular rheology, in particular, the structure of the endothelial glycocalyx. Given that we have
neglected non-Newtonian effects here, it is sensible to simplify to the no-slip boundary condition (5).

2.1.2 | Parameter estimation

Geometrical parameters
Geometrical data on capillaries are presented in Konerding et al,28,29 with data on the capillaries, arterioles, and venules
in a dorsal skinfold chamber summarised in Table 1. A typical intercapillary distance d is 50 μm, whilst a representative
mean interarteriole or intervenule distance s is 103μm. This gives a typical value of ν as 5 × 10−2, justifying the assump-
tion ν � 1.

Physiological parameters
Experimental values of the hydraulic conductivity kint/μ are determined in previous studies30-32 for rat squamous cell
tissue, hepatoma in vitro, mouse mammary carcinoma, and rat hepatocarcinoma tissue; values lie in the range 10−9 to
10−6 cm3 s kg−1. However, these values are obtained by applying the Darcy law to in vitro filtration data; measuring the
hydraulic conductivity in vivo is very difficult. The blood viscosity, μ, depends on the hematocrit (the density of RBCs)
and the temperature and (though we are approximating blood as a Newtonian fluid) also on the shear rate. Neverthe-
less, for a normal 40% hematocrit and 37�C, μ ≈ 4 × 10−3 kgm−1 s−1.33 On this basis, the interstitial permeability kint lies
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between 4 × 10−14 and 4 × 10−11 cm2; although the range in practice is likely to be much larger and highly dependent
on the tissue type.

The vascular hydraulic permeability Lp can be difficult to estimate. In Sevick and Jain,34 the authors attempt to
address this by measuring the capillary filtration coefficient. Using this technique, values for Lp can be extracted from
the data in previous studies31,35 for mouse mammary carcinoma and healthy rat hindquarter tissue and are about
10−6 cm2 s kg−1. Finally, the blood density ρ ≈ 1040 kg m−3,36 and we assume a typical velocity in the capillaries is
U ≈ 25 μm s−1.

There are three dimensionless parameters that characterize the fluid transport problem. First of all, the Reynolds
number, Re = ρUd/μ represents the ratio of inertial to viscous forces in the capillaries. Therefore, if inertia dominates
over viscosity, Re is large, whereas if viscosity dominates over inertia, Re is small. Here, we find that Re ≈ 3.3 × 10−4,
and therefore, the importance of inertia is negligible on the microscale. The final two dimensionless parameters are

κ=
kints

d3
andR=

μLps3

d4
, ð6Þ

which represent the relative permeability of the interstitium and capillary walls, respectively, in comparison with fluid
transport. We find that R ≈ 6.4 × 10−5 and κ lies in the range 3.2 × 10−8 to 3.2 × 10−5. The relative sizes of these param-
eters are important for the homogenisation analysis. Specifically, the average fluid velocity on the length scale of the
arterioles and venules will be dominated by that in the capillaries, and the contribution of the interstitium to the aver-
age fluid velocity is of size ν.

2.1.3 | Fluid transport on the scale of the arterioles and venules

We homogenise the model for fluid transport in the capillaries and interstitium, given by Equations (2) to (5), to give a
description for transport in the capillaries and interstitium on the scale of the arterioles and venules.

TABLE 1 A table of the fixed parameters

Parameter Value Units Formula Description

Geometrical and physiological parameters

s 100 μm / Arteriole and venule length scale

L 1 cm / Chamber length scale

d2 50 μm / Capillary length scale (region 2)

μ 4 × 10−3 kg/m/s / Viscosity of blood

kint 0.4 μm2 / Permeability of the interstitium

Ra = Rv 10−2 / / “Leakiness” of the arterioles and venules

k2 37.4 μm2 / Permeability of the region 2 capillary network

h 37.4 μm2 / Permeability of the arteriole and venule networks

Sa/Va = Sv/Vv 6.47 × 10−4 μm−1 / Surface area to volume ratio

Sa/Vp = Sv/Vp 9.86 × 10−5 μm−1 / Surface area to volume ratio

Length scale ratios

ν 5 × 10−2 / d/s Length scale ratio

η 0.1 / s/L Length scale ratio

Modelling parameters

n 0.152 / Va/Vp Volume ratio

r 0.986 / μLaL
4Sa/Vps

4 Modelling ratio

C 4 × 10−9 m2 kintL2/s2 Modelling ratio

Pmal 9.36 × 10−12 m2 kmalL
2dmal

2/s4 Modelling ratio
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The homogenisation steps are detailed in previous studies18,37 and may be summarised as (a) assuming length scale sep-
aration between the micro and arteriole/venule length scales by substituting r = rmicro + νrarteriole/venule in
Equations (2) to (5), (b) expanding all variables asymptotically in powers of ν, (c) equating coefficients of powers of ν in
(2) to (5), (d) decomposing the fluid velocity u into components that vary on the microscale and arteriole/venule scales,
with the component relating to the micro problem being defined through a cell problem on the microscale geometry,
(e) averaging over the microscale to derive the arteriole/venule scale relationships. On the arteriole/venule length scale,
the capillaries and interstitium appear as continua and behave as a double porous medium with coupled Darcy flow
between the two. The equations for fluid transport in the capillaries and interstitium, on this length scale, are

uc = −
η

μ
K�rpc, r� K�rpcð Þ=0, ut = −

νη

μ
E�rpt, r� E�rptð Þ= RSd

Vt
pt−pcð Þ, ð7Þ

where R (which is dimensionless) represents the leakiness of the capillary walls (and is given in 6) and S/Vt is the ratio
of the surface area of the capillaries to the volume of interstitium. Further, K and E are the fluid permeability tensors
associated with the capillary network and interstitium and are determined by the homogenisation process. They are
given explicitly at the end of this section in terms of two cell problems that must be solved on the length scale of the
capillaries, once the capillary-scale geometry has been specified. It is precisely these permeability tensors K and E that
relate transport on courser length scales to the geometry and transport properties on the capillary scale.

On the length scale of the arterioles and venules, fluid flows from the arterioles into the porous tissue matrix (com-
posed of the capillary network and interstitium) and then into the venules; a schematic of this set-up is shown in
Figure 3. We denote the volume of arterioles and venules in a unit by Va and Vv, respectively, and the volume of porous
tissue matrix by Vp. Equation (7) describes the fluid transport in the porous tissue matrix. We use subscripts a and v to
denote the arterioles and venules, respectively, and describe blood flow in the arterioles and venules using the Navier-
Stokes equations so that

r�ui =0,ρ
∂ui

∂t
+ uc�rð Þui

� �
= −rpi + μr2ui, ð8Þ

FIGURE 3 A schematic of a cross-section through the tumour

on the length scale of the arterioles and venules. The arterioles,

venules, and porous tissue matrix (composed of the capillary bed

and interstitium) are in red, blue, and white, respectively. The

arteriole, venule, and porous tissue volumes in a unit cell are

denoted Va, Vv, and Vp, respectively

FIGURE 4 The three

characterizing length scales are the

microscale of the capillaries

(d ≈ 50 μm), the arteriole/venule scale

(s ≈ 103 μm), and the chamber scale

(L ≈ 104 μm). These three length scales

interact through the dimensionless

ratios ν = d/s and η = s/L
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where i = a, v distinguishes between the arterioles and venules. Fluid flows from the arterioles into the capillary bed (and
from the capillary bed into the venules) because of a pressure drop across the vascular tree. Therefore, on the boundaries of
the arterioles and porous tissue matrix, and the venules and porous tissue matrix, we impose the boundary conditions

ua�na =uc�na= La pa−pcð Þ, uv�nv =uc�nv =Lv pv−pcð Þ, ð9Þ

respectively, where La and Lv represent the “leakage” of fluid from the arterioles into the porous tissue matrix, and from
the porous tissue matrix into the venules, respectively, and na, nv are the unit outward pointing normals to the arteriole
and venule boundaries, respectively. Finally, to close the model, we impose no slip on the arteriole/porous tissue matrix
and venule/porous tissue matrix boundaries, so that ua�τa = 0 and uv�τv = 0 on the appropriate boundaries, where τa, τv
are the unit tangential vectors to the arteriole and venule boundaries.

2.1.4 | Parameter estimation

Geometrical parameters
A representative mean interarteriole/venule distance is 103 μm, and the typical size of a dorsal skinfold chamber is
1 cm. This gives a typical value of η = s/L of 10−1, justifying the assumption η � 1.

Physiological parameters
There are two key physiological parameters that are not measured experimentally, to the best of our knowledge; these
are La and Lv, which represent the “leakage” of fluid from the arterioles into the porous tissue matrix and from the
porous tissue matrix into the venules, respectively. We define dimensionless parameters Ra and Rv that capture these
leakage factors and are defined by Ra = μLaL

4/s5, Rv = μLvL
4/s5. Finally, to complete the homogenisation process, we

must relate the magnitude of the blood velocity in the capillaries to that in the arterioles or venules. If V is a typical
blood velocity in the arterioles or venules, then V is certainly larger than U. We let the ratio V/U be of size 1/η (which is
large, as η � 1), so that V/U = V★/η, where V★ = s4/d2L2 ≈ 4.

2.1.5 | Fluid transport on the chamber scale

Finally, we homogenise from the arteriole/venule scale to the chamber length scale to derive the effective model on the
length scale of the chamber. The steps here are analogous to those detailed in Shipley and Chapman18,37 and also com-
prise the counterpart to those steps described in Section 2.1.3 for averaging from the microscale to the arteriole/venule
scale. This process yields the following model for pressure in the arterioles, venules, capillaries, and interstitium,

r� Ka�rpað Þ= ηRaSas
Va

pa−pcð Þ, r� Kv�rpvð Þ= ηRvSvs
Vv

pv−pcð Þ, ð10Þ

r� F�rpcð Þ= RaSas
Vp

pc−pað Þ+ RvSvs
Vp

pc−pvð Þ, pt = pc, ð11Þ

where the fluid velocities are given by

ua = −
1
μ
Ka�rpa, uv = −

1
μ
Kv�rpv, uc = −

η

μ
F�rpc, ut = −

νη2

μ
E�rpt: ð12Þ

On this length scale of the chamber, the arterioles, venules, capillary bed, and interstitium behave as porous media, with
coupled flow between the four. As described above, Sa/Va is the ratio of arteriole surface area to its volume, Sv/Vv is the ratio
of the venule surface area to its volume, Sa/Vp is the ratio of arteriole surface area to porous tissue volume, and Sv/Vp is the
ratio of venule surface area to porous tissue volume. The parameters Ra and Rv are dimensionless and represent the “leak-
age” of fluid from the arterioles into the porous tissue matrix and from the porous tissue matrix into the venules, respec-
tively. All parameters are defined in Table 1. The fluid permeability tensors Ka, Kv, and F for the arterioles, venules, and
capillaries, respectively, on the length scale of the chamber are given in terms of three cell problems as defined next.
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Permeability tensors for the interstitial and capillary domains
The fluid permeability tensors E and K associated with the interstitial and capillary domains are given by

Eij = δij +
1
Vt

ð
capillary boundary

Pj
tni dS,Kij =

1
Vc

ð
Vc

wj
ci dV , ð13Þ

where Pj
t and wj

c,i solve the cell problems

r2Pj
t =0 in the interstitium,n�rPj

t =n�ej on the capillary walls, ð14Þ

and

r�wj
c =0, rPj

c =r2
Xw

j
c + ej in the capillaries,n�wj

c =0, wj
c�τ=0on the capillary walls: ð15Þ

Permeability tensors associated with the arteriolar and venular domains
The fluid permeability tensors F, Ka, Kv are given by

Fkj = δik +
1
Vp

ð
porous matrix boundary

Pk
pni dS

" #
Kij,K

a
ij =

1
Va

ð ð ð
Va

wj
a,i dV ,K

v
ij =

1
Vv

ð ð ð
Vv

wj
v,i dV : ð16Þ

The vector Pp solves the cell problem

r� K�rPk
p

� �
=0, ð17Þ

in the porous matrix of the arteriole/venule scale, with

K�rPk
p

� �
�ni = −KT �ni, ð18Þ

for i = a, v on the arteriole/porous matrix and venule/porous matrix boundaries. Additionally, Pp must be periodic and
satisfy the uniqueness condition

ð ð ð
Vp

Pp dV =0: ð19Þ

Finally, wj
a and wj

b are solutions of the cell problem,

r�wj =0, rPj =r2wj + ej, in the arterioles=venules withni�wj =0, wj�τi =0on the boundaries, ð20Þ

with wj and Pj periodic on the arteriole/venule length scales.

2.1.6 | Discussion

The chamber-scale model (10) to (12) assumes that fluid flow on the length scale of the chamber is dominated by the
arterioles and venules, followed by the capillaries and interstitium in turn (the fluid velocities in the arterioles and

SHIPLEY ET AL. 9 of 22



venules are largest, whereas those in the capillaries and interstitium are order η and order νη2 smaller, respectively).
The arteriole and venule pressures are coupled to that in the capillaries; indeed, the arteriole and venule pressure
appear as sink terms in the capillary pressure Equation (11), whereas the capillary pressure appears as a sink in both
the arteriole and venule pressure Equations (10). Finally, the capillary and interstitial fluid pressures are indistin-
guishable on the length scale of the chamber, but their associated velocities differ because of the different permeabil-
ity tensors for transport through the capillary bed and interstitium.

The permeability tensors Ka, Kv, F, and E can be determined by either comparing predictions of the models (10) to
(12) with medical imaging data or by solving explicitly the four unit cell problems (13) to (20) that must be solved on
the length scale of the arterioles, venules, and capillaries, once the geometry of these networks has been specified.
Essentially, the calculation of Ka, Kv, F, and E involves averaging the counterpart local flow variations over their repre-
sentative unit cell.

We employ this model to investigate the key architectural and functional features that influence fluid perfusion in
the capillaries, in a case study relating to a simplified representation of a dorsal skinfold chamber. To simplify the
model to one that is sufficiently computationally tractable to explore the impact of key vascular parameters on the
model predictions, first of all, we assume that the arteriole and venule networks have identical topological and physio-
logical properties (ie, Ka = Kv, Sa = Sv, Va = Vv, and Ra = Rv), and that all networks are isotropic so that permeability
tensors are proportional to the identity matrix. Specifically, we let Ka = Kv = hI, F = (k/V★)I, and E = (ks2/V★)I. Here,
V★ = η2/ν2 relates the magnitude of the blood velocity in the capillaries to that in the arterioles or venules (specifically
if V is a typical blood velocity in the arterioles or venules, and U is a typical capillary blood velocity, then V/U = V★/η),
and κ = kints/d3 is the dimensionless interstitial permeability on the length scale of the capillaries. These relationships
are a direct consequence of the homogenisation approach. Now, the pressure and velocity equations can be written in
terms of parameters that depend purely on the arteriole and venule network and those that depend on the capillary net-
work properties,

r2pa =
ηr
hn

pa−pcð Þ, r2pv =
ηr
hn

pv−pcð Þ, r2pc =
r
P

2pc−pa−pvð Þ, pt = pc, ð21Þ

and

ua = −
h
μ
rpa, uv = −

h
μ
rpv, uc = −

ηP
μ
rpc, ut = −

η2C
μ

rpt: ð22Þ

Here, n and r depend purely on the arteriole and venule network properties; n is the volume ratio of arterioles
(or venules), as a proportion of the volume of the porous tissue, n = Va/Vp = Vv/Vp, whilst r depends on the arteriole
and venule length scale, s, and the chamber length scale, L, together with the geometrical and physiological properties
of the arteriole and venule networks, through r = RasSa/Vp = RvsSv/Vp.

The parameter C = kintL2/s2 depends on the arteriole and venule length scale, s, and chamber length scale, L,
together the with permeability of the interstitium, kint. Finally, P = kν2/η2 is the key parameter that depends on the cap-
illary permeability, k, and capillary length scale, d (note that varying d is equivalent to changing the density of the capil-
lary network). The parameter P is a measure of the capillary permeability, multiplied by the ratio of the capillary to
arteriole with respect to the arteriole to tumour length scales.

2.2 | Drug transport model

We denote the drug concentration by c, with subscripts a, v, c, and t denoting the arterioles, venules, capillaries, and
interstitium, respectively. Here, we focus on vinblastine, a widely used cell-cycle specific chemotherapy drug for which
the transport kinetics were characterised in Modok et al38; however, our models are applicable to any tracer molecule
and can be extended to include different drug kinetics. Vinblastine is advected and diffuses in the arterioles, venules,
capillaries, and interstitium, and the Péclet number (which represents the ratio of diffusive to convective timescales) is
a good way to compare the relative importance of these transport mechanisms. The Péclet number for transport in the
capillaries is Ud/Dc ≈ 3.8, where U ≈ 25 μm s−1 is the blood velocity and Dc ≈ 3.3 × 10−6 cm2 s−1 is the diffusion coeffi-
cient38; therefore, advection and diffusion are in balance on the length scale of the capillaries. On the length scale of
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the chamber, the Péclet number for transport in the capillaries is UL/Dc ≈ 7.6 × 103 indicating that advection domi-
nates over diffusion. Advection also dominates in the arterioles and venules on the length scale of the chamber.

We describe transport from the vessels into the tissue using a membrane law that relates the jump in concentration
flux across the membrane, J�n½ �+− (where J denotes the concentration flux, n is the unit outward pointing normal to the
vessel/tissue boundary, and “−“ and “+” denote either side of this boundary), to the concentration jump across it, c½ �+− ,
via J�n½ �+− = r c½ �+− , where r is the boundary permeability (units cm s−1).14 To give an example, we describe drug trans-
port on the micro-scale by

∂c
∂t

+ u�rð Þc=Dr2c, ð23Þ

where D takes the value Dc within the capillary domain and Dt within the interstitial domain, with

ccuc−Dcrccð Þ�n− ctut−Dtrctð Þ�n= r cc−ctð Þ, on the capillary walls, ð24Þ

subject to an initial condition on the drug concentration field. As for the fluid transport problem reported in
Section 2.1, we proceed by first homogenising from the microscale to the arteriole/venule scale and then to the chamber
scale to derive an effective model for drug transport. Full details of this process are not reported for succinctness and
closely follow the approaches in Shipley and Chapman.18,37 The key steps involve (for the example of homogenising
from the microscale to the arteriole/venule scale) (a) assuming length scale separation so that = = =micro + ν=arteriole/

venule in Equations (23) and (24), (b) moving onto the timescale for advection on the arteriole/venule length scale by
rescaling t = t/ν, (c) expanding all variables asymptotically in powers of ν, (c) equating coefficients of powers of ν in
(23) and (24), averaging over the microscale to derive the arteriole/venule scale relationships.

This process determines the following transport model for vinblastine on the chamber scale are

∂ca
∂t

+r� cauað Þ= −
SaTa

Va
ca−ccð Þ, ∂cv

∂t
+r� cvuvð Þ= −

SvTv

Vv
cv−ccð Þ, ð25Þ

∂cc
∂t

+r� ccucð Þ= SaTa

Vp
ca−ccð Þ+ SvTv

Vp
cv−ccð Þ, ð26Þ

where the fluid velocities ua, uv, and uc are given by (22), and Ti for i = a, v are coefficients given by Ta = ra/η
2, Tv = rv/

η2 that represent drug transport from the arterioles (or venules) into the porous tissue matrix composed of capillaries
and interstitium. The drug concentration in the interstitium and capillaries is indistinguishable on the chamber scale
so that ct = cc. This is a direct consequence of the fact that (a) advection and diffusion of vinblastine are balanced in the
capillaries and interstitium (the concentration of vinblastine is well-mixed over the distances relevant here) and
(b) vinblastine is a tracer, so there is no uptake to introduce spatial gradients in concentrations.

3 | FLUID TRANSPORT RESULTS

We investigate the impact of varying the properties of the capillary bed on fluid perfusion in a case study of a simplified
geometry representative of a dorsal skinfold chamber, by solving the fluid transport Equations (21) and (22) using the
finite element package COMSOL Multiphysics. To achieve this, we fix the geometry of the chamber, the topology and
physiological properties of the arteriole and venule networks (ie, the parameters n and r), and the interstitial permeabil-
ity (ie, the parameter C) and test the impact of varying the capillary configuration, which explicitly means varying the
parameter P.

Experimentally chambers are imaged in 2D slices through their centre, so we simplify the investigation by assuming
a 2D set-up. The chamber is represented in 2D by a square of dimensions L cm × L cm with a central circle of cancerous
tissue (region 1), as depicted in Figure 6. A source artery and sink vein are seeded in region 1 and are represented by a
circle, where the upper half-circle is the artery, and the lower half-circle is the vein (this mimics the typical experimen-
tal scenario where the tumour mass is connected to the host blood supply through seed ing an artery and vein into the
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region). The remainder of the chamber is composed of malignant tissue (region 2). Throughout the chamber, we solve
Equation (21) for the arteriole and venule pressures; we impose a pressure drop across the vasculature by applying
pa = 50 mmHg on the artery boundary and pv = 10 mmHg on the vein boundary. We also apply no flux of pa and pv
across the outer boundary of the chamber and no flux jump across the interface between regions 1 and 2. In region
2, we fix the value of P at P2 = k2L

2d2
2/s4. We impose no flux of pc through the outer boundary of the chamber and no

flux jump across any internal boundaries. Finally, for simplicity, we assume that the arteriole, venule, and capillary net-
works in region 2 each have a hexagonal structure, as shown in Figure 8B. This allows us to test the perfusion sensitiv-
ity in response to variation in the capillary structure in region 1. Table 1 provides a summary of the fixed parameters.

To test the impact of varying P on fluid perfusion in the capillaries and interstitium, we evaluate the flux of fluid in
the capillaries and interstitium that travels from region 1 into region 2,

Qc =
ð
uc�ndS= −

η

μ
P
ð
Γ
rpc�ndS, Qt =

ð
ut�ndS= −

η2C
μ

ð
Γ
rpt�ndS=

ηC
P
Qc, ð27Þ

where Γ is the interface between both regions and n is the unit outward pointing normal to Γ.
The results presented here are for a fixed value of Ra = Rv = 10−2. These parameters characterise the leakage of fluid

from the arterioles and venules into the capillary bed and are not measured experimentally. Model outcomes are only
sensitive to the value of Ra = Rv when this leakage coefficient is small (representing the physiologically unrealistic situa-
tion of the arterioles and venules short-circuiting the capillary bed). Otherwise, model predictions are much more sensi-
tive to the value of P, which captures the capillary bed properties.

Figure 5 shows how the fluxes Qc and Qt vary as a consequence of changes in the permeability and density of the
region 1 capillary network (through P). For the smallest value of P tested (P = 10−16 m2), Qc and Qt are small and posi-
tive, corresponding to a net flux of fluid from region 1 to region 2. As P increases, so do Qc and Qt until maxima are
reached when P ≈ 1.25 × 10−12 m2 (here, Qc = 1.45 × 104 μm2 s−1 and Qt = 6.18 × 103 μm2 s−1, respectively). As P now
increases from 1.25 × 10−12 m2, Qc and Qt decrease and are negative for P > 5.2 × 10−6 m2, corresponding to a net flux
of fluid from region 2 to region 1.

FIGURE 6 The solutions for pa
and pv when P = 1 × 10−14 m2. Chamber

dimensions are metres, and all pressures

are given in units of mmHg

FIGURE 5 A plot of Qc and Qt

(both measured in μm2 s−1) against the

parameter P (measured in m2) that

captures the permeability and density of

the capillary network
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Figure 6 shows the arteriole and venule fluid pressures throughout the chamber for an example value P = 10−14 m2.
Given that the arteriole and venule properties are fixed, arteriole and venule pressure distributions are similar for all
values of P; however, the precise pressure drop across the arteriole and venous networks does vary as the underlying
capillary bed properties are varied (results not shown).

Figure 7A shows the capillary pressure distribution when P = 10−14 m2. This low value of P corresponds to either a
low capillary network permeability, k, or high density (through the capillary length scale d) in region 2. The capillary
pressure is highest (or lowest) in the immediate vicinity of the source artery (or sink vein) but decays relatively quickly
to a background value of around 31 mmHg. Indeed, the capillary pressure in most of the chamber is approximately con-
stant. This results in gradients in pc from the immediate vicinity of the source artery/sink vein and the consequent posi-
tive values of Qc and Qt at this value of P.

Figure 7B shows the pressure distribution for P = 1.25 × 10−12 m2, corresponding to the maxima of Qc and Qt (see
Figure 5). The spatial gradients in the capillary pressure throughout the chamber are larger, resulting in larger capillary

FIGURE 7 The solutions for pc = pt for various values of P. Chamber dimensions are metres, and the arrows represent uuc (arrow
length is proportional to the magnitude of the velocity vector). All pressures are given in units of mmHg
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and interstitial fluid velocities and the consequent high values of Qc and Qt. This increase in P relative to Figure 7A
could be achieved by either increasing the permeability of the region 1 capillary network or decreasing its density.

As P increases from 1.25 × 10−12 m2, Qc and Qt progressively decrease and are negative for P > 5.2 × 10−12 m2,
corresponding to a net flux of fluid from region 2 to region 1. The consequence of increasing P (from 1.25 × 10−12 m2)
on the pressure distributions can be seen in Figures 7C-E. As a result of the asymmetrical position of the seeded artery
and vein (and the value of P relative to P2 = 9.36 × 10−12 m2), as P increases, a localised region of high/low capillary
pressure develops in the top/bottom left hand corner of the chamber and the capillary pressure in region 1 approaches
constant. Therefore, although there is a net flow from the region 2 to region 1, the capillary and interstitial fluid veloci-
ties within region 1 become very small, and drugs will accumulate in the tumour periphery as opposed to being trans-
ported throughout the tumour.

Larger capillary and interstitial velocities in region 2 are beneficial to distribute drugs by advection to the cancerous
cells. This analysis indicates that an optimal P value of 1.25 × 10−12 m2 will achieve this and can be realised by varying

FIGURE 8 Some explicit network examples
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the permeability or density of the capillary bed. For example, if the P value of region 1 is larger than 1.25 × 10−12 m2,
vascular intervention that reduces the P value would benefit drug distribution and could be achieved by either reducing
the permeability or increasing the density of the capillary network. Similarly, if P < 1.25 × 10−12 m2, vascular interven-
tion that increases the P value would benefit drug distribution.

Finally, we investigate some explicit network examples. We test eight different structures for the region 1 capillary
network; the unit cells for these networks are shown in Figure 8. Figure 8A,B are two examples of regular networks
(a grid and hexagonal structure, motivated by the honeycomb structures imaged in Konerding et al28), whereas the
remaining six structures are more irregular (the networks in Figure 8E-H have identical inlets and outlets to the grid
network and are formed by progressively removing one link of the network each time). Figure 9 shows the values of
the permeability tensor F = Fij (μm2), which are determined by solving the full cell problems given in Section 2.1.5
using COMSOL Multiphysics. We assume that the arteriole and venule networks, and the region 2 capillary network,
take the hexagonal structure of Figure 8B. We also take d = 50 μm in both regions.

The P values and corresponding values of Qc and Qt for each network are summarised by bar charts in Figures 9.
The P values for these networks lie in the range 9.52 × 10−12 m2 to 6.98 × 10−10 m2 and increase from smallest to largest
in the order Hexagonal, Irregular-II, Irregular-I, Grid, Grid-III, Grid-I, Grid-II, Grid-IV (see Table 2). If we exclude the
Hexagonal case, all P values lie in the range 3.13 × 10−11 m2 to 6.98 × 10−10 m2 and correspond to virtually constant
capillary pressure in region 1. These values are larger than the optimal value of P = 1.25 × 10−12 m2 identified earlier,
indicating that vascular intervention to decrease the P value would benefit anticancer drug distribution throughout

FIGURE 9 The P values and corresponding values of Qc and Qt for each of the explicit networks of Figure 8
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region 1. This decrease in P value could be achieved by either decreasing the permeability of the networks (ie, decreas-
ing the matrix components Fij) or by increasing the density of the capillary bed by decreasing d.

4 | VINBLASTINE DISTRIBUTION RESULTS

Vinblastine is a chemotherapeutic drug frequently used to treat various cancers via intravenous delivery. As its proper-
ties are well-characterised,39 we next investigate vinblastine perfusion in a dorsal skinfold chamber, by solving the
equations for vinblastine transport given by Equations (25) and (26) using the finite element package COMSOL Multi-
physics. To facilitate the computation, Equations (25 and (26) are solved with an additional numerical diffusion con-
stant of value O η2ð Þ in keeping with the next order corrections to the transport model, which are neglected. Vinblastine
is delivered exclusively intravenously to a patient using either (a) a single injection or (b) constant perfusion of the drug
to the patient over a long time period. These correspond to two different boundary conditions for the arteriole concen-
tration, ca, on the artery wall. The functional form for this boundary condition is denoted by σ and discussed in more
detail below. On the external boundaries of the chamber, we apply no flux condition for each concentration component,
with no flux jump on the internal boundaries.

4.1 | Treatment through a single injection

A dose of drug delivered by injection will be metabolised in the bloodstream as time progresses. For vinblastine, this
metabolism occurs over four phases,39 namely, an initial fast phase that represents the distribution of the blood through
the body and three further slow phases representing the redistribution and metabolism of the drug in different organs
of the body. This can be represented mathematically by the function

σ tð Þ=Ae−k1t +Be−k2t +Ce−k3t +De−k4t, ð28Þ

where the ki (i = 1, 2, 3, 4) represent the half lives of the four separate phases, and A, B, C, and D are constants to be
determined for a specific individual. The half lives for the four distribution/metabolism phases are 1, 4, 53, and
1173 seconds, respectively, giving k1 = 41.6 min−1, k2 = 0.17 min−1, k3 = 1.3 × 10−2 min−1, and k4 = 5.9 × 10−4 min−1.

The constants A, B, C, and D are determined from the initial dose, together with three conditions on the level of
metabolism after each phase's half life.39 We consider an initial dose of 2700nM; for a person of weight 64 kg (and blood
volume ≈ 4.4 L), the remaining conditions are σ(t = 4 min) = 700 nM, σ(t = 53 min) = 150 nM, and
σ(t = 1173 min) = 10 nM, which give A = 1557nM, B = 862nM, C = 261nM, and D = 20nM.

4.2 | Treatment through constant perfusion

An alternative regime involves maintaining a constant concentration of vinblastine in the bloodstream over a longer
time period. To limit damage to the patient, the achievable concentration is lower than the initial injection concentra-
tion; indicative values are a concentration of 8nM applied constantly to the patient over a period of 5 days.40 The
boundary condition on the artery wall is therefore

σ tð Þ= 8nM for 0≤ t≤ 120 hours

0 for t>120 hours

�
: ð29Þ

Next, we solve Equations (25) and (26) to test whether treatment through a single injection or constant perfusion is
more efficient at killing tumour cells in a dorsal skinfold chamber. To the best of our knowledge, there are no data
available on ra and rv, which represent the timescale for vinblastine transfer between the arterioles and capillary bed
and between the capillary bed and venules. Here, we fix ra = rv = 23.1 × 10−12 s−1 based on our order of magnitude esti-
mates using homogenisation theory. Varying ra = rv influences the time delay before the maximum value of the
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capillary/interstitial concentration, together with the values at the peak. It does not, however, alter the qualitative con-
clusions that will be made.

We evaluate the cell kill rate as a consequence of the vinblastine treatment. The maximum kill rate is 1/24 h−1,41 whereas
the concentration of vinblastine required to kill cells at the half-maximal kill rate is 2nM.42 Finally, the cell kill rate is

FIGURE 10 The variation of the average interstitial volume fraction as a function of time
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proportional to concentration for low drug concentrations so we assume that the cell-kill rate, Mc ctð Þ= ρ1ct
ρ2 + ct

, where
ρ1 = 1/24 h−1, ρ2 = 2nM.

We test the impact of the cell-kill rate on the interstitial volume fraction by modelling the time-dependent changes
in this volume fraction using a partial differential equation, where we explicitly focus on the competition between cell
proliferation and death, with the latter determined as a function of the local concentration of drug. This serves as a first
approximation to the impact of the treatment therapy, as there is no mechanism for volume change because of tumour
growth or regression in the models presented here, but provides an illustrative example of the utility of the model. We
denote the interstitial volume fraction by ϕ and capture changes in this volume fraction through

∂ϕ

∂t
x, tð Þ=Kϕ x, tð Þ−Mc ct x, tð Þð Þϕ x, tð Þ, ð30Þ

subject to the initial condition ϕ(x, 0) = nt, where K is the net cell proliferation rate and depends on the cell line used. We note
that Equation (30) assumes that the cell proliferation and cell kill rates are proportional to the interstitial volume fraction, fol-
lowing similar approaches in the literature. Finally, we assess cell kill by evaluating the spatial average of ϕ, given by

ϕav tð Þ= 1
Area of Region 1

ð
Region 1

ϕ x, tð ÞdV , ð31Þ

where the area of the region 1 is 0.4948 cm2 for the simulations in this paper. We present results for three cases of the
cell proliferation rate K = 1/29, 1/31, 1/33 h−1.

The individual average vinblastine concentrations in the arterioles, venules, capillaries, and interstitium are shown in Fig-
ures 11 and 12. For both treatments through injection or constant perfusion, the concentrations in the arterioles closely mimic
the treatment profile. Variation due to the capillary structure in region 1 is barely detectable as the timescale for vinblastine

FIGURE 11 The average vinblastine concentration in each of the arterioles, capillaries, interstitium, and venules for a single injection
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transport ismuch faster than that for uptake or proliferation. Indeed for constant perfusion, the vinblastine concentration is con-
stant (to three significant figures) across the entire chamberwithin 3.5 hours (the simulation length is 712 hours).

The value of ϕav increases and decreases from the initial value because of the balance of cell kill and proliferation,
as described by Equations (30) and (31). Given that the concentration of vinblastine is uniform throughout the chamber
after about 3.5 hours, the only dependence of ϕav on vascular structure occurs through the initial condition ϕ(x, 0) = nt.
A comparison of treatment through single injection and constant perfusion is shown in Figure 10 for three different
cases of the cell proliferation rate K = 1/29, 1/31, 1/33 h−1. The concentration of vinblastine delivered to the chamber is
much lower for constant perfusion than for a single injection but is maintained for a longer period of time. This does
not appear to have a significant cumulative effect. For example when the rate of cell proliferation K = 1/29 hours−1, the
final values of ϕav were in the range (1.4936, 2.0616) for a single injection and the range (9.2587, 12.7797) for constant
perfusion. This pattern of behaviour is replicated for other values of the rate of cell proliferation, K.

The modelling outputs can also predict the timing of a second injection of vinblastine. This decision could be made
based on various criteria such as when the value of ϕav reaches a minimum value, or when the vinblastine concentra-
tion in the capillaries drops to a prescribed value. For example, when the cell proliferation rate K = 1/31 h−1, the mini-
mum value of ϕav is achieved after 14.8 days and could motivate a 2-week cycle of vinblastine treatment. We note that
this framework neglects multiple features necessary to quantitatively predict drug treatment efficacy (eg, tumour
growth and toxicity); however, this case study does enable the behaviour of the new four-compartment model to be
explored. We also note that a much more marked dependence on vascular architecture would be expected for drugs that
decay and are metabolised, because of the impact of spatial gradients in the drug profile at the scale of the capillaries.

FIGURE 12 The average concentration in each of the arterioles, capillaries, interstitium, and venules for constant perfusion

TABLE 2 The values of Vt/Vc for each explicit network under consideration

Network Grid-I Grid-II Grid-III Grid Irregular-II Irregular-I Grid-IV Hexagons

Vt/Vc 1.6933 2.4458 3.6812 4.2632 4.4358 6.0295 6.0571 6.5651
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5 | CONCLUSIONS

We have presented a new four-component model to investigate fluid and vinblastine perfusion in a dorsal skinfold
chamber. The model incorporated arteriole, capillary, and venule networks, together with the interstitium, and provides
a framework for incorporating the impact of these hierarchical structures on fluid and drug perfusion to tumours. The
impact of treatment through a single injection and through constant perfusion was tested, and the dependence of both
the fluid and vinblastine perfusion results on the vascular network was highlighted.

The multiscale model of blood transport was used to identify a single parameter (P in this paper), which relates
chamber-scale fluid perfusion to the capillary bed properties (specifically the permeability and density of the capillary
network). By fixing the topological and physiological properties of the arteriole and venules networks, a P value of
1.25 × 10−12 m2 was identified that maximises fluid perfusion through the tumour region of the chamber.

The multiscale model of vinblastine transport was used to explore the effectiveness of treatment via a single injec-
tion or constant perfusion of the drug, when the cancer cell proliferation rate in chamber was K = 1/29, 1/31, 1/33 h−1.
In each case, treatment through injection was significantly more effective than that through constant perfusion,
although we note the necessity for more complexity to be incorporated, and model validation, before these predictions
could be taken forward. In addition, it was demonstrated how to use the model outputs to predict when to deliver a sec-
ond course of chemotherapy.

There are numerous opportunities for further extension of the approach in this paper, spanning incorporating more
complexity into the modelling frameworks, and validation of the model predictions against real world data. The current
work focuses on the development of a new four-component model that incorporates relevant transport information on
a hierarchy of length scales and its implementation in a case study to explore fluid and drug perfusion in a relevant
experimental set-up. Further opportunities for model development include extension to realistic, 3D vascular geome-
tries and tumour architectures acquired using medical imaging, including more realistic haemodynamic descriptions at
the capillary scale, the incorporation of more sophisticated drug kinetics (eg, decay and metabolism, which will involve
a different homogenised model), and also tumour growth. There is an outstanding need for more sophisticated descrip-
tions of tumour perfusion, growth, and response to treatment to inform therapy developments for cancer. This would
require extensive validation of the assumptions and predictions of the model against measurable data. We leave these
as important next steps to develop the utility of this approach in informing tumour treatment strategies.
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GLOSSARY OF TERMS

DIMENSIONAL PARAMETERS
d Intercapillary separation μm
s Interarteriole and intervenule separations μm
L Chamber length scale cm
u Fluid velocity cm s−1

p Fluid pressure mmHg
Ka and Kv Arteriole and venule fluid permeability tensors m2

F and E Capillary and interstitial fluid permeability tensors m2

Sa and Sv Arteriole and venule surfaces areas in contact with porous tissue matrix m2

Va, Vv and Vp Arteriole, venule and porous tissue matrix volumes m3

μ Viscosity of blood Pa s
h Isotropic component of arteriole and venule permeability tensors m2

k Isotropic component of capillary permeability tensor m2

kint Interstitial permeability m2

P = kν2/η2 Parameter that captures the region 2 capillary network properties m2

20 of 22 SHIPLEY ET AL.



C = kint/η2 Parameter that captures the interstitial permeability m2

c Vinblastine concentration nM
U Typical capillary velocity μm s−1

Dc Vinblastine diffusivity in the capillaries cm2 s−1

r Membrane permeability to vinblastine transport s−1

Ta = ra/η
2 Parameter representing drug transport from the arterioles into the porous tissue matrix s−1

Tv = rv/η
2 Parameter representing drug transport from the arterioles into the porous tissue matrix s−1

Qc Flux of fluid in the capillaries from region 1 to region 2 μm2 s−1

Qt Flux of fluid in the interstitium from region 1 to region 2 μm2 s−1

σ(t) Vinblastine treatment boundary condition on the artery wall nM
Mc Functional form for cell kill rate due to vinblastine nM hr−1

K Net cell proliferation rate s−1

DIMENSIONLESS RATIOS
ν = d/s Ratio of capillary to arteriole/venule length scales -
η = s/L Ratio of arteriole/venule to chamber length scales -
Ra and Rv Dimensionless parameters that represent fluid “leakage” from the arterioles and venules into the

porous tissue matrix -
n = Va/Vp = Vv/Vp Volume ratio of arterioles (and venules) as a proportion of the volume of the porous tissue -
r = RasSa/
Vp = RvsSv/Vp

Dimensionless parameter that depends on the geometrical and physiological properties of the
arteriole and venule networks -

na Volume fraction of arterioles -
nv Volume fraction of venules -
np Volume fraction of porous tissue matrix -
nc Volume fraction of capillaries -
nt Volume fraction of interstitium -
ϕ(x, t) Interstitial volume fraction -
ϕ(t)av Volume-averaged interstitial volume fraction -
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