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Abstract

The term gut-liver axis is used to highlight the close anatomical and functional relationship 

between the intestine and the liver. It has been increasingly recognized that the gut-liver axis plays 

an essential role in the development and progression of liver disease. In particular, in non-alcoholic 

fatty liver disease (NAFLD) and alcohol-related liver disease (ALD), the two most common causes 

of chronic liver disease, a dysbiotic gut microbiota can influence intestinal permeability allowing 

some pathogens or bacteria-derived factors from the gut reaching the liver via the enterohepatic 

circulation contributing to liver injury, steatohepatitis and fibrosis progression. Pathways involved 

are multiple, including changes in bile acid metabolism, intestinal ethanol production, generation 

of short-chain fatty acids, and other by-products. Bile acids act through dedicated bile acid 

receptors farnesoid X receptor and TGR5 in both the ileum and the liver, influencing lipid 

metabolism, inflammation, and fibrogenesis. Currently, both NAFLD and ALD lack of effective 

therapies and therapeutic targeting of gut microbiota and bile acids enterohepatic circulation hold 

promise. In this review, we summarize current knowledge about the role of gut microbiota in the 

pathogenesis of NAFLD and ALD, as well as the relevance of microbiota or bile acid-based 

approaches in the management of those liver diseases.
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INTRODUCTION

The term gut-liver axis highlights the increasingly recognized crosstalk between both organs 

that are strictly anatomically and functionally related (1-3). The gut and the liver 

communicate through the biliary tract, the portal vein, and systemic circulation exchanging a 

myriad of signaling compounds. On the one hand, the liver secretes bile acids and other 

bioactive mediators and releases them into the biliary tract reaching the intestine, and on the 

other hand, the intestine signals back to the liver secreting enterokines from the terminal 

ileum. In addition, in the distal gut, microbiota, which is mainly composed of bacteria and 

other microbial components such as fungi, have many functional roles in health and disease 

(such as digestion, vitamins production, resistance to colonization by pathogenic bacteria, 

and stimulation of the immune system) (4). Gut microbiota composition is modified by diet, 

alcohol consumption, and medications (antibiotics, probiotics, proton pump inhibitors, etc.) 

(5, 6). Also, microbiota metabolizes bile acids and amino acids, which are transported to the 

splanchnic blood vessels to reach the liver. The liver receives 75% of its blood supply 

through the portal vein, which it comes from the gut carrying both nutrients and microbial 

products exposing the liver to a multiple types of antigens. Despite the highly specialized 

intestinal epithelial barrier, some bacteria-derived molecules will enter the enterohepatic 

circulation reaching the liver and acting on both parenchymal and non-parenchymal cells 

(7).

It has been increasingly recognized that the gut-liver axis plays critical roles in the 

pathogenesis and progression of the most common causes of liver disease worldwide, non-

alcoholic fatty liver disease (NAFLD), and alcohol-related liver disease (ALD). Gut-liver 

axis-related events facilitating development and progression of liver disease in both NAFLD 

and ALD include mainly the occurrence of intestinal dysbiosis, defined as the imbalance 

between microbial communities leading to disruption of the symbiotic relationship between 

gut resident microbes and the host, and increased intestinal permeability leading to a pro-

inflammatory state (3). The molecular underpinnings of how these phenomena modulate 

liver disease are still incompletely understood, but significant advances have been made in 

recent years (8, 9). Dysbiosis and the alteration of the intestinal barrier have been described 

to act as a disease-drivers in NAFLD and ALD by influencing liver injury (i.e. promoting 

steatosis, inflammation, and fibrosis) through the modulation of the immune system by 

multiple mechanisms (10).

The hepatic immune system must balance its responses differentiating between harmless 

stimuli and dangerous bacterial pathogens, preventing them from reaching the systemic 

circulation (7, 11). If the latter fails, the subsequent proinflammatory response from 

pathogen-derived substances may promote the development and progression of chronic liver 

disease (12). Hence, in order to maintain the homeostasis, a complex interaction must be 

established between the gut epithelia, the microbiota, the immune system, and the liver. 

When an imbalance occurs, microbial products translocation drives disease progression. The 

present review aims to summarize the current knowledge about the role that gut microbiota 

plays in liver disease, especially in NAFLD and ALD.
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Intestinal permeability and microbiota

The highly specialized intestinal epithelial barrier allows the transport of nutrients, but, at 

the same time, protects against microbial-derived products and pathogens (13). This barrier 

is composed of a mucus layer that capture bacteria and large molecules avoiding them to 

reach the epithelium (14); a monolayer of epithelial cells that actively limit the transit of 

hydrophilic molecules; and finally, the intercellular tight junctions (claudins, occludins, and 

zonula occludens) that maintain closed the space between cells controlling the passage 

across the intestinal mucosa. It is known that alcohol, in particular acetaldehyde (a 

byproduct of the intestinal metabolism of alcohol), can disrupt the intestinal barrier by 

impairing the integrity and expression of the intercellular tight junctions leading to 

translocation and endotoxemia (15-18). Alcohol also induces changes in the expression of 

zonula occludens-1 and claudin-1, impairing the epithelial barrier function (19, 20), similar 

to the effect produced by pro-inflammatory cytokines, such as tumor necrosis factor-α 
(TNF-α), interleukin (IL)-6, and interferon-gamma (21, 22).

Dysbiosis and bacterial translocation due to disruption of the intestinal epithelial barrier in 

patients with advanced chronic liver disease is detrimental in natural history and can lead to 

serious infections (23). This chronic activation of the immune system by bacterial products 

perpetuates liver injury and inflammation (24). The immune system identifies bacterial 

products through recognition of specific pathogen-associated molecular patterns (PAMPs), 

which are a limited and defined set of conserved molecular patterns carried by all 

microorganisms of a given class (25), such as lipopolysaccharide (LPS) from gram-negative 

bacteria. Intraperitoneal LPS administration has shown to increase portal pressure (26-28) 

and influence intestinal permeability (29, 30). The liver has anti-inflammatory mechanisms 

to maintain homeostasis and immunotolerance, such as the hepatic antigen-presenting cells 

that drives the tolerogenic adaptative response (11).

When microbial products reach the liver through the portal vein, activation of membrane-

bound Toll-like receptors (TLRs) and the cytoplasmic nucleotide-binding oligomerization 

domain-like receptors (NLRs) present in both parenchymal and non-parenchymal cells 

occur. TLRs recognize PAMPs and DAMPs (damage-associated molecular patterns) and 

trigger the innate immune system activation (i.e. macrophages and dendritic cells) (31, 32), 

but also activation of hepatic stellate cells and endothelial cells that will amplify the 

inflammatory and fibrotic response (24, 33). Downstream TLRs activate NF-κB (34), which 

is constitutively expressed in all cell types and has a pivotal role in the regulation of the 

inflammatory response in the liver (inducing the release of pro-inflammatory cytokines such 

as TNFα, IL-6, and IL-1β) and it is known to drive the pathogenetic process in many liver 

diseases (35-37). Activation of TLRs leads to sterile inflammation and plays a role in the 

pathogenesis of the non-alcoholic and alcoholic liver disease (31, 38-42).

In patients with cirrhosis, impaired intestinal barrier function leads to microbial products to 

reach the liver triggering a pro-inflammatory response (43, 44). This has been particularly 

described in the pathogenesis of alcohol-related liver disease (45, 46), end-stage liver 

disease, and acute-on-chronic liver failure (ACLF) (47). In advanced cirrhosis, with 

worsening portal hypertension, there is a dysfunction of the intestinal tight junctions, as well 

as, intestinal bacterial overgrowth, and changes in microbiota, favoring bacterial 
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translocation (48). Small intestine bacterial overgrowth (SIBO) also occurs in cirrhotic 

patients (49) by multiple mechanisms including decreased bile acid secretion and impaired 

intestinal motility (autonomic neuropathy, inflammatory mediators, dysbiosis, and 

neuropeptides) (50, 51). Of note, SIBO is commonly seen in patients with cirrhosis with or 

without intestinal motility dysfunction (52). Cirrhotic patients have a decrease in the 

beneficial normal microbiota (Lactobacillus, Bifidobacterium, and Bacteroides species), 

which it can exacerbate liver disease (53). Additionally, there is an increase in Proteobacteria 

(particularly Enterobacteriaceae), Fusobacterium spp., Veillonellaceae, and 

Streptococcaceae, which are potentially pathogenic agents, responsible of most cases of 

spontaneous bacterial peritonitis (54-57).

In order to target gut microbiota in liver disease, non-absorbable disaccharides, such as 

lactulose and lactitol have been used. However, despite its widespread use, no studies have 

clearly shown that lactulose leads to significant changes to microbiota composition or 

function (58). The proposed mechanisms of action of lactulose are: laxative, prebiotic, 

acidifying and modifying the colonic flora (59, 60). A recent trial assessed the effects of 

single-dose lactulose ingestion on the growth of intrinsic Escherichia coli. The authors 

concluded that the ingestion of a single dose of 50 g lactulose does not significantly alter E. 

coli density in stool samples of healthy volunteers, however, this dose seems unlikely to be 

sufficient to alter alter gut microbiota (61). Gut microbiota changes after the use of rifaximin 

has been also evaluated (62, 63). An elegant study by Bajaj et al. (64) showed that cirrhotic 

patients under rifaximin treatment despite having a slight change in microbiota composition, 

have less endotoxemia and an improvement in cognition. In the same study, rifaximin 

changed bile acid composition. Recently, a randomized, double-blind, placebo-controlled 

trial in 54 patients with cirrhosis and ascites showed no effect on hemodynamics (hepatic 

venous pressure gradient or systemic hemodynamics) (65).

Bile acids and enterohepatic circulation

Bile acids (BAs) are amphipathic steroid molecules synthesized in the liver from cholesterol 

and excreted into bile as one of its main components. BAs (amino-acyl-conjugates of the 

primary BAs, cholic acid [CA] and chenodeoxycholic acid [CDCA], and their secondary 

metabolites) are actively secreted by the hepatocyte into the canaliculus where they serve as 

the main driving force for bile production by specific transporters (i.e., bile salt export 

pump, BSEP)(66). Once in the small intestine, BAs function aiding in the emulsification and 

absorption of dietary fat, cholesterol, and fat-soluble vitamins. After reaching the terminal 

ileum, BAs are efficiently absorbed (95% recapture) by an active uptake mechanism 

mediated by the apical sodium bile acid transporter (Asbt). BAs loss in feces are 

approximately 0.2-0.6 g/day, which is balanced by the daily hepatic synthesis of BAs. In the 

gut, the primary BAs, CA and CDCA, undergo deconjugation and dehydroxylation by 

microbiota, resulting in the formation of secondary BAs (i.e., deoxycholic acid [DCA] and 

lithocholic acid [LCA]) (67). These secondary BAs can be reabsorbed passively and 

constitute a portion of the total BA pool that cycles in the enterohepatic circulation, a system 

of exchange between the gut and the liver. (68). As a result of their efficient hepatic 

extraction, the concentration of BAs in the systemic circulation and peripheral tissues is 

extremely low, with only small incremental rises in postprandial periods (69). For decades 
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BA were considered just detergents helping digestion of ingested food, but in last decades 

BA have emerged as relevant signaling molecules that may act at both hepatic and 

extrahepatic tissues to regulate both lipid and carbohydrate metabolism as well as energy 

homeostasis (67, 70). These actions are exercised through activation or modulation of BA 

receptors, such as the farnesoid X receptor (FXR; also known as NR1H4) and G protein-

coupled bile acid receptor 1 (GPBAR1; also known as TGR5), and may be influenced by 

changes in abundance or activity of BA transporters, such as the Asbt, the sodium-dependent 

taurocholate polypeptide (NTCP) or the export pump BSEP (66, 67, 71). Bile acids activate 

FXR in the ileum and liver, leading to the production of fibroblast growth factor 19 (FGF19; 

FGF15 in mouse). FGF19 is an endocrine, gastrointestinal hormone that suppresses the 

hepatocyte expression of CYP7A1, a rate-limiting enzyme in the synthesis of BAs, thereby 

creating a negative feedback loop. Activation of FXR and TGR5 may affect both steatotic 

and inflammatory responses and therefore influence NAFLD and ALD pathogenesis at 

multiple levels (72, 73). FGF19 has shown to regulate glucose homeostasis, body weight and 

alcohol consumption at central nervous system level (74, 75). Of note, dysregulated BA 

levels have also been found in patients with severe AH (76). Additionally, BAs bind to 

TGR5 on the plasma membrane and act on tissues beyond enterohepatic circulation. This 

binding mediates host energy expenditure (77, 78), glucose homeostasis (79), and anti-

inflammatory immune responses (80, 81).

There is a close, and the bidirectional interplay between BA metabolism and the gut 

microbiota and cholestasis may alter intestinal bacterial populations (3, 82). Changes in BA 

pool composition have been found in ALD patients suggesting that FXR activation may be 

decreased (83). The role of gut microbiota in controlling BA pool composition has also been 

recognized as BAs, and gut microbiota have a reciprocal relationship (84-86). Indeed, on the 

one hand, BAs shape the intestinal microbiome through direct antimicrobial effects and 

FXR-induced production of antimicrobial peptides and in the other hand gut microbiota 

modify the BA pool composition through defined enzymatic activities (such as 

deconjugation, dihydroxylation, oxidation, and epimerization, among others) (87, 88). 

Additionally, FXR modulates the gut-vascular barrier by regulating the entry sites for 

bacterial translocation (89). In the setting of NAFLD and ALD, both altered BA metabolism 

and changes in microbiota composition have been found, which potentially promotes disease 

development (83, 90-94). Recent studies have explored the effects of ursodeoxycholic acid 

(UDCA) on gut microbiome composition in healthy subjects and also in individuals with 

liver dysfunction (95, 96). Interestingly, UDCA influenced bacterial populations inducing a 

marked decrease in abundance of Bifidobacterium, Lactobacillus, and Lactobacillaceae (95). 

If these effects have any relevance for the therapeutic action of UDCA, remain to be 

determined. One interesting recent study showed that the absence of the intestinal 

microbiota results in exacerbation of liver injury in a murine model of primary sclerosing 

cholangitis (PSC), the mdr2−/− mice (97). This genetically engineered mouse is deficient in 

the canalicular transporter of phospholipid and has very low levels of biliary 

phosphatidylcholine, which results in biliary injury. The biliary alterations of this 

experimental model are similar to those observed in PSC (98). In the study by Tabibian et al. 

(97), germ-free mdr2−/− mice exhibited significantly worse liver chemistry and histological 

lesions than conventionally housed mice underscoring the importance of commensal 
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microbiota in protecting against biliary damage. Furthermore, few studies have analyzed the 

gut microbiome in cholestatic diseases (99, 100). Of note, a significant reduction of within-

individual microbial diversity has been found in primary biliary cholangitis (PBC) (101), 

which is partially relieved by UDCA administration. Similarly, reduced diversity and 

significant shifts in the microbiome composition have been found in stool samples from PSC 

patients (102) but is unclear the relationship to the bile secretory failure present in 

cholestatic diseases. Furthermore, oral microbiota correlates with gut microbiota, and oral 

dysbiosis influences liver disease (103-108). Collectively, these findings suggest that an 

imbalance in BAs and gut microbiota elicits a cascade of host immune responses relevant to 

the progression of liver diseases.

Microbiota and ALD

Gut microbiota modulates ALD, however, the exact mechanisms are not fully understood 

(67, 109-111). Ethanol is absorbed in the stomach (20%) and small intestine (70%) by 

simple diffusion (112, 113). The largest portion of ethanol in the intestine comes from the 

systemic circulation, although microbial fermentation also contributes to luminal ethanol 

concentration (114).

ALD is characterized by increased levels (both luminal and circulating) of ethanol and its 

metabolites (115, 116). These high levels promote leaky gut with translocation of bacterial 

products, triggering inflammatory and adaptative host immune responses. Gut microbiota 

and enterocytes metabolize alcohol through enzymes such as alcohol dehydrogenase into 

byproducts like acetaldehyde (117, 118). Once alcohol reaches the liver is also metabolized, 

and the liver can upregulate its metabolic pathways to adapt to higher concentrations (118, 

119).

When there is chronic and high alcohol consumption, ALD can develop. ALD is a 

consequence of multiple environmental (diet, viral hepatitis, etc.), genetic/epigenetic, 

immune, and microbiome factors interaction (120-122). Similar to what occurs in NAFLD, 

the early stage of ALD is characterized by the accumulation of fat within the liver 

(steatosis), and it can progress to more advanced forms of liver disease with inflammation 

and liver injury (alcoholic steatohepatitis [ASH]).

During recent years, many studies at the preclinical and experimental level have shed light 

on the relationship between ALD and gut microbiota. Dysbiosis and SIBO have been 

demonstrated as relevant disease factors in both human (123, 124) and mouse models (122, 

125). Microbiota in subjects with ALD is characterized by marked enrichment of 

Enterobacteriaceae and reduction of Bacteroidetes and Lactobacillus (56, 125, 126). This 

phenomenon of dysbiosis is only partially reversible by alcohol withdrawal or probiotic 

therapy (56, 127). The presence of SIBO has been shown to significantly correlate with a 

higher prevalence of spontaneous bacterial peritonitis and with the severity of alcohol-

related cirrhosis (128). These changes in the gut microbiota of ALD patients seem to be 

accompanied by changes in colonic pH and liver steatosis (129). It also correlates with a 

higher level of serum endotoxin and increased intestinal TNF-α levels, as well as increased 

levels of nitric oxide, IL-6, and IL-8 (2). Another recent discovery is that patients with ALD 

not only have bacterial dysbiosis but also display reduced fungal diversity as well as 
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Candida overgrowth (130-133). Indeed, using antifungal agents in mouse models have 

shown to decrease β-glucan translocation and ameliorate alcohol-induced liver injury 

produced via the C--type lectin domain family 7 member A receptor on hepatic Kupffer cells 

(130). In the same line, since microbiota has been shown to be a relevant disease driver in 

ALD, fecal microbiota transplantation (FMT) has been explored as a therapeutic option for 

ALD (122, 134). Philips et al. demonstrated an improvement in 1-year survival rate in FMT-

treated patients compared to historical controls (87.5% vs. 33.3%). The FMT was given 

daily for 7 consecutive days in 8 patients (134). However, larger and carefully designed trials 

are needed before FMT can be considered safe in routine clinical practice for managing 

ALD. Careful donor selection is recommended considering the risk of transmission of drug-

resistant bacteria (135).

Preclinical studies using animal models of ALD have advanced our knowledge regarding the 

role of microbiota in the pathogenesis and progression of the disease. Using TLR4 chimeric 

mice, it has been shown that endotoxin--induced release of TGFβ is mediated by an 

MYD88–NF-κB-dependent pathway, providing an explanatory mechanism for endotoxin-

induced liver inflammation (136). Other studies have used Reg3b/g KO or Muc2-deficient 

mice to show that REG3 lectins protect against alcohol-induced liver injury by reducing 

mucosa-associated microbiota, thereby preventing translocation of viable bacteria (137, 

138). Moreover, IgA KO mice led to increased levels of IgM and overall protection against 

alcohol-induced liver injury (139). Recently, Duan Y et al. described that the presence of 

cytolysin-positive E. faecalis correlated with the severity of liver disease and with mortality 

in patients with AH. Furthermore, using humanized mice that were colonized with bacteria 

obtained from feces of patients with AH, they investigated the therapeutic effects of 

bacteriophages that target cytolytic E. faecalis. The authors found that bacteriophages 

decreased cytolysin in the liver and abolish ethanol-induced liver disease in humanized 

mice. These findings link cytolytic E. faecalis with more severe clinical outcomes and 

increased mortality in patients with AH, and it can specifically be targeted by bacteriophage 

againts cytolytic E. faecalis (140).

Besides bacterial product translocation and immunological responses, it has been recognized 

the role of bile acids as signaling compounds. Alcohol leads to an increase in bile acid 

biosynthesis in both humans and mice (141, 142). Of note, clinically, as in other chronic 

liver diseases, mild cholestasis is common in patients with ALD (143). Bile acids activate 

FXR in the ileum; impaired FXR activation has been associated with more alcohol-induced 

liver injury (144). Currently, multiple FXR agonists are being tested, and initial results have 

shown a protective effect against alcoholic steatohepatitis (145). A recent preclinical study 

showed that obeticholic acid (OCA), INT-767, or INT-777 (BA derivatives with selective 

agonist properties for FXR, TGR5, or both, respectively) administration are effective in 

reducing acute and chronic ethanol-induced steatosis and inflammation in mice, with 

varying degrees of efficacy depending on the duration of ethanol administration, indicating 

that both FXR and TGR5 activation can protect from liver injury in ALD models (146). 

Additionally, it has been shown that the modulation of the intestinal BA/FXR/FGF15 axis 

improves ALD in mice by modulation of hepatic Cyp7a1 and lipid metabolism (92). 

Concordantly, Lactobacillus rhamnosus GG showed to prevent liver fibrosis through 

inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice (92). 
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Lactobacillus rhamnosus GG supplementation decreased hepatic BA by increasing intestinal 

FXR/FGF15 signaling pathway-mediated suppression of BA de novo synthesis and 

enhanced BA excretion, which prevents excessive BA-induced liver injury and fibrosis in 

mice (92).

Microbiota and NAFLD

Non-alcoholic fatty liver disease (NAFLD) is an umbrella term used to describe a 

clinicopathological entity defined by the presence of a spectrum of hepatic histological 

changes that range from simple steatosis, steatohepatitis to cirrhosis (147). The hepatic 

histological findings in NAFLD are similar to those observed in heavy-drinkers but detected 

in patients that deny significant alcohol consumption and in whom other known causes of 

chronic liver disease (i.e., viral hepatitis, autoimmune liver disease or exposure to 

hepatotoxic drugs) are excluded (148). The histological hallmark of NAFLD is steatosis, 

which refers to the pathological accumulation of fat in the liver predominantly in the form of 

triglycerides, although several additional lipid species accumulate inside hepatocytes in this 

setting. Hepatic steatosis may or may not be accompanied by the presence of necro-

inflammatory changes (i.e., cellular ballooning) and various degrees of hepatic fibrosis. 

When the latter features are present, the term non-alcoholic steatohepatitis (NASH) is used 

(149). NAFLD is commonly associated with overweight or obesity as well as impaired 

glucose tolerance, type 2 diabetes mellitus, arterial hypertension, and hypertriglyceridemia 

(148). For this reason, NAFLD is widely considered as the hepatic manifestation of the 

metabolic syndrome and is thought to be mainly driven by the occurrence of insulin 

resistance (148, 150).

In recent years, it has become evident that NAFLD pathophysiology is complex and involves 

diverse immunological and metabolic pathways. Importantly, these pathways can influence 

disease phenotype in diverse fashion, thus determining disease heterogeneity (151, 152). 

Several studies have highlighted the role of the gut microbiota in NAFLD (153-155). Pre-

clinical studies have shown that germ-free mice are protected against obesity and hepatic 

steatosis (156). Despite the large number of preclinical data investigating and demonstrating 

a relationship between microbiota and NAFLD, only a limited number of human studies, 

mostly cross-sectional, are available with variable results. NAFLD patients have a higher 

prevalence of dysbiosis with increased Bacteroides, Escherichia, and Ruminococcus and 

decreased Prevotella bacteria (115, 157) in those with advanced forms of the disease 

indicating an association between Gram-negative bacteria and progression of liver fibrosis 

(108). Additionally, fecal-microbiome-derived signatures associated with fibrotic NASH and 

NAFLD-related cirrhosis has been described (158, 159). Also, a significant association 

between NAFLD and SIBO has been established (111, 160, 161), Studies using mouse 

models have shown that impairment of intestinal permeability, achieved by using junctional 

adhesion molecule A protein (Jam1)-knockout mice or mice deficient in Muc2, leads to 

increased liver inflammation when the high-fat diet is administrated (138, 162). The role of 

translocated bacterial products has also been assessed by using inflammasome-deficient 

mouse models (Nlrp3 KO or Nlrp6 KO). NLRP3 inflammasome pathway is important in the 

modulation of microbiota in the intestine. Defective NLRP3 inflammasome pathway results 
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in dysbiosis with an increased translocation of endotoxins, accumulation of PAMPs in the 

portal circulation, and, thereby, promoting liver inflammation and NASH progression (10).

A growing number of studies confirm the association between NAFLD and microbiota at 

both the observational and mechanistic levels. Microbiota from adult subjects with NAFLD 

exhibits differences in carbon and amino acid metabolism (157). Also, they have increased 

serum TMAO and hepatic bile acid synthesis (123) and decreased the production of 

phosphatidylcholine (163). Interestingly, a recent elegant paper by Yuan J. et al. showed that 

high-alcohol-producing Klebsiella pneumoniae was associated with up to 60% of individuals 

with NAFLD in a Chinese cohort. (164). These results suggest that, at least in some cases of 

NAFLD, an alteration in the gut microbiome drives the condition due to excess endogenous 

alcohol production, highlighting the link between NAFLD and ALD, and the pivotal role of 

microbiota (133, 165). Gut microbiota is also altered in subjects with hepatocellular 

carcinoma-associated NASH. Clostridium, Escherichia, and Helicobacter species have been 

found to be enriched in mouse models of NASH-related hepatocellular carcinoma as well as 

in humans with this neoplasia (166-171).

The role various bacterial metabolites and microbiota-generated secondary BA in NAFLD 

pathophysiology has been unveiled in recent years (165). These substances may affect a 

myriad of signaling pathways that may directly influence metabolic dysfunction and 

contribute to NAFLD development and progression. Importantly, gut microbiota can 

modulate BA metabolism contributing to diversification of host BA, thus regulating BA-

dependent pathways mediated by dedicated BA receptors such as FXR and TGR5 (67, 172). 

In addition, similar to ALD, early in the disease, subjects with NAFLD may exhibit impaired 

BA secretion resulting in increased intracellular BA concentrations (173). Thus, BA 

retention and changes in BA metabolism might have a role as mediators of liver injury and 

triggers of inflammation, promoting disease progression (67, 174) including HCC 

development (90). On these grounds, therapeutic approaches based in the activation or 

modulation of FXR and TGR5, as well as of specific BA transporters, such as the ileal apical 

sodium-dependent bile acid transporter, has been explored in NAFLD/NASH and hold 

promise (67). Also, modulation of gut microbiota using probiotics, prebiotics, symbiotics of 

FMT could have impact on NAFLD/NASH through their effects in BA metabolism among 

other mechanisms (175). Given the shared histological features of AH and NASH, BA 

dependent targets investigated in NASH could be tested in AH (176), for example, the 

already available NGM282 (a non-tumorigenic variant of FGF19 analogue) and tropifexor 

(non-steroidal FXR agonist). Currently, an FXR agonist is already available and under study 

as a therapeutic agent for severe AH (TREAT, NCT02039219 on ClinicalTrials.gov). Further 

preclinical and clinical studies are needed to advance our knowledge about the relationship 

between gut microbiota and NAFLD.

Conclusions

It has been increasingly recognized that the gut-liver axis plays an important role in the 

development and progression of liver disease, where bacterial products and bile acids reach 

the liver through the portal circulation and modulate liver injury (Figure 1). NAFLD and 

ALD are the two most common causes of liver disease, and in both effective therapies are 
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urgently needed. Gut-liver axis signaling pathways such as BA-related pathways and 

microbiota-related mechanisms (i.e., dysbiosis and endogenous ethanol production are 

attractive candidates for new targeted therapies.
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Figure 1: 
Gut-liver axis in NAFLD and ALD: In response to ethanol or diet, bacterial overgrowth, 

dysbiosis, impaired intestinal permeability, bile acids dysregulation, and dysmotility 

promote bacterial translocation from the intestinal lumen to the portal vein. Microbial 

products and ethanol can reach the liver contributing to liver disease.
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