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Imaging mass spectrometry (IMS) is a rapidly advancing
molecular imaging modality that can map the spatial distribu-
tion of molecules with high chemical specificity. IMS does not
require prior tagging of molecular targets and is able to
measure a large number of ions concurrently in a single
experiment. While this makes it particularly suited for
exploratory analysis, the large amount and high‐dimensional
nature of data generated by IMS techniques make automated
computational analysis indispensable. Research into computa-
tional methods for IMS data has touched upon different aspects,
including spectral preprocessing, data formats, dimensionality
reduction, spatial registration, sample classification, differen-
tial analysis between IMS experiments, and data‐driven fusion
methods to extract patterns corroborated by both IMS and other
imaging modalities. In this work, we review unsupervised
machine learning methods for exploratory analysis of IMS data,
with particular focus on (a) factorization, (b) clustering, and (c)
manifold learning. To provide a view across the various IMS
modalities, we have attempted to include examples from a range
of approaches including matrix assisted laser desorption/
ionization, desorption electrospray ionization, and secondary
ion mass spectrometry‐based IMS. This review aims to be an
entry point for both (i) analytical chemists and mass spectro-
metry experts who want to explore computational techniques;
and (ii) computer scientists and data mining specialists who
want to enter the IMS field. © 2019 The Authors. Mass

Spectrometry Reviews published by Wiley Periodicals, Inc.
Mass SpecRev 39:245–291, 2020.
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I. INTRODUCTION

In the area of molecular imaging, imaging mass spectrometry
(IMS) (Caprioli et al., 1997; Pacholski & Winograd, 1999;
Stoeckli et al., 2001; Vickerman & Briggs, 2001; McDonnell &
Heeren, 2007; Vickerman, 2011; Spengler, 2014) is advancing
rapidly as a means of mapping the spatial distribution of molecules
throughout a sample. Since IMS does not require prior tagging of
the molecular target of interest and can measure multiple ions
concurrently in a single experiment, it has proven to be particularly
suited for exploratory analysis. Consequently, IMS is currently
finding application in an expansive set of domains, ranging from
the biomedical exploration of organic tissue (Boxer, Kraft, &
Weber, 2009; Schwamborn & Caprioli, 2010; Hanrieder et al.,
2013; Schöne, Höfler, &Walch, 2013;Wu et al., 2013; Cassat et al.,
2018) and the forensic analysis of fingerprints (Wolstenholme et al.,
2009; Elsner & Abel, 2014), to the chemical examination of
geological samples (Orphan & House, 2009; Senoner & Unger,
2012) and material science‐related studies (McPhail, 2006;
Clark et al., 2016). Furthermore, IMS entails many different
instrument platforms, ionization techniques, and mass analyzers.
This has led to a variety of different IMS modalities, including
matrix‐assisted laser desorption/ionization (MALDI), desorption
electrospray ionization (DESI), laser ablation electrospray ioniza-
tion (LAESI), laser ablation inductively coupled plasma (LAICP),
and secondary ion mass spectrometry (SIMS)‐based IMS, each
with their own advantages and disadvantages.

Traditionally, there has been a lot of focus on solving
sample preparation and instrumental challenges. However, as
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these are being addressed, some of the complexity in IMS
has shifted toward the computational analysis of its data and to
the extraction of information from the often‐massive amounts of
measurements that an IMS experiment can yield. Computational
IMS research tends to be heterogeneous and the type
of challenges being addressed currently runs the gamut from
the spectrum level (e.g., preprocessing (Deininger et al., 2011;
Jones et al., 2012a), peak picking (Du, Kibbe, & Lin, 2006;
Alexandrov et al., 2010; McDonnell et al., 2010)) to
the intraexperiment level (e.g., clustering/segmentation
(Alexandrov & Kobarg, 2011), and from the interexperiment
level (e.g., differential analysis between IMS experiments
(Piantadosi & Smart, 2002; Le Faouder et al., 2011;
Verbeeck et al., 2014a; Carreira et al., 2015) to the
intertechnology level (e.g., data‐driven fusion between IMS
and microscopy (Van de Plas et al., 2015).

Even within the data mining of IMS experiments, there are
clear distinctions between supervised and unsupervised machine
learning approaches (Bishop, 2006). Supervised methods for IMS
analysis will seek to model a specific recognition task. For
example, classification approaches applied to MALDI IMS in a
digital pathology context can predict tissue classes and tumor
labels after having been shown representative example measure-
ments annotated by a pathologist (Lazova et al., 2012;
Meding et al., 2012; Hanselmann et al., 2013; Casadonte et al.,
2014; Veselkov et al., 2014). This supervised branch also includes
any regression approaches, such as data‐driven multimodal image
fusion (Van de Plas et al., 2015), which seeks to model ion
distributions in terms of variables measured by another imaging
technology. Unsupervised approaches to IMS analysis, on the
other hand, are not focused on a particular recognition task, but
instead seek to discover the underlying structure within an IMS
dataset, uncovering trends, correlations, and associations along the
spatial and spectral domains. These methods are generally applied
to provide a more open‐ended exploratory perspective on the data,
without particular spatial areas or ions of interest in mind. The
structure they find in the data can be employed for aiding human
interpretation, but can also serve to reduce the dimensionality and
computational load for subsequent computational analyses.
Unsupervised methods include, for example, factorization
methods such as principal component analysis (PCA) and
nonnegative matrix factorization (NMF) (Lee & Seung, 1999;
Jolliffe, 2002; Van de Plas et al., 2007b), but also clustering
approaches seeking to delineate underlying groups of spectra or
pixels with similar chemical expression (McCombie et al.,
2005; Rokach & Maimon, 2005; Alexandrov et al., 2010).

Providing a comprehensive overview of computational
methods in IMS has grown beyond the scope of a single review
paper, making any review article necessarily focused on a particular
branch of computational analysis. Since we aim to provide a
resource for those starting out in IMS data analysis, and since one of
the advantages of most forms of IMS is its exploratory potential
(due to its multiplexed nature and not requiring prior chemical
tagging), this paper will specifically review computational metho-
dology for the exploratory analysis of IMS data. More precisely, this
review attempts to collect representative examples of unsupervised
machine learning algorithms and their applications in an
IMS context. This means that work related to preprocessing
(e.g., normalization (Deininger et al., 2011; Fonville et al., 2012;
Källback et al., 2012), baseline correction (Coombes et al., 2005;
Källback et al., 2012), peak picking and feature detection

(McDonnell et al., 2010; Alexandrov et al., 2010; Bedia, Tauler,
& Jaumot, 2016; Du, Kibbe, & Lin, 2006), data formats
(Schramm et al., 2012; Rübel et al., 2013; Verbeeck et al., 2014a;
Verbeeck, 2014b; Verbeeck et al., 2017), spatial registration
(Schaaff, McMahon, & Todd, 2002; Abdelmoula et al., 2014a;
Anderson et al., 2016; Patterson et al., 2018a, 2018b), and
supervised methods such as classification (Luts et al., 2010) and
regression (Van de Plas et al., 2015) do not fall within the scope of
this review, unless there is a substantial contribution to their analysis
pipeline by an unsupervised machine learning algorithm. Our focus
will lie on three particular subbranches within unsupervised
methods, namely (i) factorization methods, (ii) clustering methods,
(iii) manifold learning methods, and any hybrid methods that feature
a strong relationship to these approaches. Figure 1 gives an
overview of these unsupervised methods, with an application to a
MALDI Fourier transform ion cyclotron resonance (FTICR) IMS
dataset acquired from rat brain (Verbeeck et al., 2017).

Furthermore, to provide a view across the various instrumental
approaches within IMS, we have attempted to include, for each
algorithm type, examples from different varieties of IMS. Some
analysis methods will show broad application with examples in, for
example, MALDI, SIMS, and DESI‐based IMS, while the
development of other methods in an IMS context seems to have
been confined to a particular instrumental branch. The latter
highlights potential for further bridging of computational approaches
between the various IMS modalities.

Overall, we have tried to be as encompassing as practically
possible and we have attempted to include representative papers
from allied areas. Due to the broad scope of IMS and its wide
variety of applications, by no means do we imply to give a
complete overview of exploratory/unsupervised IMS analysis.
However, we do hope that this review can serve as a context‐rich
stepping stone or entry point for (i) analytical chemists and mass
spectrometry experts who want to explore computational techni-
ques; and (ii) computer scientists and data mining specialists who
want to enter the IMS field. To guide the reader, we provide an
overview of the discussed methods in Table 1, with a reference to
the relevant section and a brief description of the method’s
demonstrated application area within the field of IMS.

II. FACTORIZATION

Matrix factorization techniques are an important class of
methods used in unsupervised IMS data analysis. These
methods take a large and often high‐dimensional dataset
acquired by an IMS experiment, and decompose it into a
(typically reduced) number of trends that underlie the observed
data. This reduced representation enables the analyst to gain
visual insight into the underlying structure of the IMS data, and
it often exposes the spatial and molecular signals that tend to
colocalize and correlate (usually under the assumption of linear
mixing). Furthermore, as these techniques can provide a lower‐
dimensional and lower‐complexity representation of the original
data, they regularly serve as a starting point for follow‐up
computational analysis as well.

A. Principal Component Analysis

Principal Component Analysis (PCA) (Jolliffe, 2002) is a
widespread data analysis method, with applications ranging
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from finance (Brockett et al., 2002), ecology (Wiegleb, 1980),
and psychology (Russell, 2002), to genetics (Wall, Rechtsteiner,
& Rocha, 2003), image processing (Liu et al., 2010), and facial
recognition (Turk & Pentland, 1991). It has been widely
employed in IMS research and is the most commonly used
multivariate analysis technique in SIMS‐based IMS (Graham &
Castner, 2012). Early proponents of PCA as a data processing
tool for SIMS include Gouti et al. (1999), Biesinger et al.,
(2002), and Pachuta (2004). PCA was also one of the first
multivariate analysis techniques to be applied to MALDI IMS
data (McCombie et al., 2005; Gerhard et al., 2007; Muir et al.,
2007; Van de Plas et al., 2007b; Trim et al., 2008). Given the
ubiquitous use of PCA in IMS analysis, we devote extra
attention to the underlying principle of this technique.
Throughout this review, we have tried to organize principles
of methods and their particular interpretations and applications
in an IMS context into separate subsections. This should allow
the reader to read subsections relevant to their interests.

1. Principle

The goal of PCA is to reduce the dimensionality of a dataset, that
is, describe the dataset with a lower number of variables, while
still retaining as much of the original variation as possible
(Jolliffe, 2002). These new variables, called the principal
components (PCs), are linear combinations of the original

variables and each of them is uncorrelated to the others. This
means that the PCs are constructed such that they give the
orthonormal directions of maximum variation in the dataset. The
first PC is defined such that it explains the largest possible
amount of variance in the data. Each subsequent PC is orthogonal
to the previous PCs and describes the largest possible variance
that remains in the data after removal of the preceding PCs. This
formulation ensures that most of the variance in the dataset is
captured by the earlier PCs, while later PCs report consistently
decreasing variance and thus often reduced impact on the data. In
data that describes genuine instrumental measurements, it is often
possible to account for most of the observed dataset variance with
a number of PCs that is substantially smaller than the original
number of variables, in which that dataset was described. By
attempting to represent data using a smaller number of variables
than the number of variables it was initially recorded with, PCA
can help to uncover the underlying, or latent, structure of the
data, which is often difficult to observe natively in high‐
dimensional datasets such as IMS measurements. In current IMS
datasets, the largest trends in the data are often captured by the
first 10–20 PCs, making those PCs particularly useful for human
exploration. These PCs essentially provide by means of 10–20
images (and their corresponding spectral signatures) a summar-
ized view into the major underlying spatial and spectral patterns
present in the data, side‐stepping the need to exhaustively
examine hundreds to thousands of ion images individually.
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FIGURE 1. Unsupervised machine learning methods for exploratory data analysis in IMS. An overview of three
reviewed method branches, with application to a MALDI FTICR IMS dataset acquired from rat brain
(Verbeeck et al., 2017). (Top) Matrix factorization, with nonnegative matrix factorization as a representative
example. (Middle) Clustering analysis, with standard k‐means clustering as a representative example. (Bottom)
Manifold learning, with t‐SNE as a representative example. IMS, imaging mass spectrometry; FTICR, Fourier
transform ion cyclotron resonance; MALDI, matrix‐assisted laser desorption/ionization; t‐SNE, t‐distributed
stochastic neighborhood embedding. [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 1. Method Index. Alphabetic index of methods treated in this review and the IMS application areas in which they have been
demonstrated.

Methods Section Demonstrated applications in IMS

Adaptive edge‐preserving
denoising

Section III.E Image segmentation incorporating spatial information

AMASS Section III.F Soft image segmentation, probability‐based model, built‐in feature
selection

Artificial neural networks Section IV Nonlinear dimensionality reduction, image segmentation, visualization
of high‐dimensional IMS data

Autoscaling Section II.5 Data preprocessing

Autoencoders Section IV Nonlinear dimensionality reduction, image segmentation, visualization
of high‐dimensional IMS data

Bisecting k‐means Section III.C Image segmentation, interactive exploration of clustering tree

Compressive sensing Section II.B Dimensionality reduction, increase spatial resolution
CX/CUR matrix
decomposition

Section II.4 Non‐negative pattern extraction and unmixing (in context of IMS), data
size and dimensionality reduction

DWT Section II.B Dimensionality reduction, feature extraction
FCM Section III.F Soft image segmentation

Filter scaling Section II.5 Data preprocessing
GMM clustering Section III.D Image segmentation (hard and soft)

GSOM Section IV.B Nonlinear dimensionality reduction with built‐in dimensionality
selection, image segmentation, visualization of high‐dimensional
IMS data

HC Section III.B Image segmentation, interactive exploration of clustering tree

HDDC Section III.D Image segmentation (hard and soft), built‐in dimensionality reduction
ICA Section II.C Pattern extraction and unmixing, dimensionality reduction

k‐means clustering Section III.C Image segmentation, grouping of similar ion images
Kohonen map Section IV.B Nonlinear dimensionality reduction, image segmentation, visualization

of high‐dimensional IMS data

Latent Dirichlet allocation Section III.F Soft image segmentation, probability‐based and generative model
MAF Section II.D Pattern extraction and unmixing incorporating spatial information,

dimensionality reduction
MCR Section II.1 Non‐negative pattern extraction and unmixing, dimensionality reduction

MCR‐ALS Section II.1 Non‐negative pattern extraction and unmixing, dimensionality reduction
MNF transform Section II.D Pattern extraction and unmixing incorporating spatial information,

dimensionality reduction

MOLDL Section II.5 Non‐negative pattern extraction and unmixing (in context of IMS) using
prior information, dimensionality reduction

MRF Section III.E Image segmentation incorporating spatial information
NMF Section II.2 Non‐negative pattern extraction and unmixing, dimensionality reduction

NN‐PARAFAC Section II.E.3 Non‐negative pattern extraction and unmixing, pattern extraction,
dimensionality reduction

PCA Section II.A Pattern extraction and unmixing, data size and dimensionality reduction

pLSA Section II.3 Non‐negative pattern extraction and unmixing, dimensionality
reduction, generative and statistical mixture model

PMF Section II.2 Non‐negative pattern extraction and unmixing, dimensionality reduction

Poisson scaling Section II.5 Data preprocessing
Random projections Section II.B Dimensionality reduction

Shift‐variance scaling Section II.5 Data preprocessing
SMCR Section II.5 Non‐negative pattern extraction and unmixing, dimensionality reduction

SOM Section IV.B Nonlinear dimensionality reduction, image segmentation, visualization
of high‐dimensional IMS data, image registration

Spatial shrunken centroids Section III.F Image segmentation (hard and soft), built‐in feature selection

Spatially aware clustering Section III.E Image segmentation incorporating spatial information

▪ VERBEECK ET AL.



PCA can be written in the form of a matrix decomposition.
Let us take the data matrix D of size ×m n, where m is the
number of pixels and n is the number of spectral bins or m z/
bins, that is, each row of D represents the mass spectrum of a
pixel in the sample. PCA then decomposes D as

=D SL ,T

whereT represents matrix transposition, S is an ×m p matrix with
orthogonal columns, often called the score matrix, and L is an
×n p matrix with orthonormal columns, traditionally called the

loading matrix. The number of columns p in S and L is the
number of PCs, and =p m nmin( , ). Since in many IMS
experiments the number of spectral bins exceeds the number of
pixels, in those cases m is smaller than n and thus the total number
of PCs is limited to the number of pixels. In cases where the
number of pixels m is larger than the number of variables per pixel
n, which for example sometimes occurs in peak‐picked IMS data,
the number of PCs is limited to n. The columns in S and L are
ranked from high to low variance. If we wish to explore the k most
important trends in the data (from a variance perspective) or wish
to approximate the original dataset D as close as possible using
only k variables instead of m or n variables, we need to retain only
the k first PCs, that is, retain and store only the first k columns of S
and L. By representing the data as a product of a score matrix and
a loading matrix, and having variance directly accessible in
terms of the columns of S and L, PCA can provide the best
approximation of the data (with respect to the mean square error,
and assuming linear mixing) using only k components, with k
often being a user‐specified number. More formally, PCA provides
the best rank‐k approximation of a dataset with respect to the
L2‐norm (Jolliffe, 2002).

The PCA matrix decomposition of dataset D can be obtained
by performing an eigenvalue decomposition of D DT , a matrix that
(if D is zero mean or column‐centered) is proportional to the
covariance matrix of the measurements D up to a scaling factor

−N1/( 1) with N as the number of samples. The PCA
decomposition of D (and its underlying eigenvalue decomposition
of D DT ) are generally, however, calculated via another closely
related matrix decomposition called the singular value decom-
position (SVD) (Golub & Van Loan, 1996), which can provide
some additional insights into the meaning of S and L (Keenan &
Kotula, 2004a). SVD decomposes D as

= ΣD U V ,T (1)

where Σ is an ×m n matrix, which only contains nonzero elements
on its diagonal (called the singular values),U is a ×m m orthogonal
matrix containing the left singular vectors of D, and V is an ×n n
orthogonal matrix containing the right singular vectors of D. By
convention, the singular values are sorted from high to low,
determining the order of the singular vectors. The number of
nonzero singular values is determined by the rank of the matrix, and
rank D m n( ) ≤ min( , ). MatricesU and V have specific meanings
in case of a matrix D representing the IMS data (with each row of D
representing the mass spectrum at a particular pixel). The left
singular vectors in U form an orthonormal basis for the IMS
experiment’s pixel space. The right singular vectors in V form an
orthonormal basis for the mass spectral space (Wall, Rechtsteiner, &
Rocha, 2003). By using SVD (Equation 1), the covariance matrix of
D (omitting the scaling factor) can now also be written as:

=

= Σ Σ

= Σ Σ

= Σ

C D D

U V U V

V U U V

V V

( ) ( )

.

T

T T T

T T

T2

(2)

It can be shown that the matrixV now actually contains the
eigenvectors of the covariance matrix, which also form the PCA
loadings L. When D is column‐centered, that is, the mean is
subtracted for each column of D, the PCA loading matrix can be
directly derived from the SVD results (and Equation 2) as:

=L V ,

and the score matrix as:

= ΣS U .

When PCA is applied as a dimensionality reduction
technique, only the first k components (and columns) are
retained, and these relationships become:

= ΣS U( ) ,k k

=L V .k k
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TABLE 1. Continued

Methods Section Demonstrated applications in IMS

SVD Section II.A Pattern extraction and unmixing, dimensionality reduction

t‐SNE Section IV.A Nonlinear dimensionality reduction, image segmentation, visualization
of high‐dimensional IMS data

Varimax Section II.A.6 Improve interpretability of matrix decomposition

AMASS, algorithm for MSI analysis by semisupervised segmentation; DWT, discrete wavelet transform; FCM, fuzzy c‐means clustering; GMM, Gaussian
mixture model; GSOM, growing self‐organizing map; HC, hierarchical clustering; HDDC, high dimensional data clustering; ICA, independent component
analysis; IMS, imaging mass spectrometry; MAF, maximum autocorrelation factorization; MCR, multivariate curve resolution; MCR‐ALS, multivariate curve
resolution by alternating least squares; MNF, minimum noise fraction; MOLDL, MOLecular Dictionary Learning; MRF, Markov random fields; NMF, non‐
negative matrix factorization; NN‐PARAFAC, non‐negativity constrained parallel factor analysis; PCA, principal component analysis; pLSA, probabilistic
latent semantic analysis; PMF, positive matrix factorization; SMCR, self modeling curve resolution; SOM, self‐organizing map; SVD, singular value
decomposition; t‐SNE, t‐distributed stochastic neighborhood embedding.
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The PC loadings L are equivalent to the right singular
vectors spanning the spectral space, and the PC scores S are the
left singular vectors U spanning the pixel space, multiplied by
the singular values Σ. From this comparison, it also becomes
clear that performing PCA on the transpose of D,

= Σ = ΣD U V V U( ) ,T T T T

simply switches the positions ofU andV around, asΣ only contains
scalar values on the diagonal. Due to the existence of efficient SVD
algorithms and its superior numerical stability over eigenvalue
decomposition of the covariance matrix (Wilamowski & Irwin,
2011), PCA is generally calculated using the SVD decomposition.
Furthermore, given that only the first =l m nmin( , ) singular values
are nonzero, only the first l PCs will be nonzero, and it therefore
suffices to calculate only the first l PCs.

2. Interpretation

The interpretation of the loadings and scores provided by PCA
is not always straightforward (Wall, Rechtsteiner, & Rocha,
2003). An example of PCA applied to a MALDI IMS dataset
acquired from a rat brain section of a Parkinson disease model
(Verbeeck et al., 2017) is shown in Figure 2. The loading of
each PC can be seen as a pseudospectrum, a spectral signature

that explains a part of the variance of the dataset. The
magnitude of the total explained variance for a component is
codetermined by its scaling factor in the score matrix.
Generally, it is not advisable to tie biological meaning directly
to this pseudospectrum (Wall, Rechtsteiner, & Rocha, 2003).
These pseudospectra constitute linear combinations of m z/ bins,
optimized to explain as much of the data variance as possible,
but that is not necessarily the same as correctly modeling the
underlying biology or sample content. One example of this is
that PCA‐provided pseudospectra often contain negative peaks.
These can be difficult to interpret from a mass spectrometry
perspective since the original IMS data only contains positive
values, namely ion counts. Regardless of how the sign of the
intensity signal for a m z/ bin in these pseudospectra is
interpreted, it is clear that if its absolute signal intensity is
relatively high, the m z/ bin plays a role in explaining the overall
variations and patterns observed in the data. Furthermore, the
higher the absolute peak height for a particular m z/ bin is within
a PC’s pseudospectrum, the larger its contribution to the
variance accounted for by that component, and thus the larger
its importance within the data trend captured by that component
(Wall, Rechtsteiner, & Rocha, 2003). As such, without over‐
interpreting the PCs, PCA can serve to highlight among
thousands of measured m z/ bins those bins that seem to play
a more prominent role in the patterns that underlie the data.

250 Mass Spectrometry Reviews DOI 10.1002/mas.21602

FIGURE 2. Example of PCA. PCA applied to a MALDI IMS dataset acquired from a coronal rat brain section
of a Parkinson’s disease model. Details of the dataset are available in Verbeeck et al., 2017. (a) PCA decomposes
the original IMS dataset into a sum of principal components (PCs), where each component is characterized by a
spatial expression image (score) times a pseudospectrum (loading). The PCs are ranked by the amount of
variance they account for in the original dataset. The first five PCs are displayed, showing extraction of molecular
patterns specific to various anatomical structures and with some exhibiting clear differences between the left and
right hemispheres (as expected in this disease model). To estimate the number of relevant principal components
for a dataset, a scree plot (b) or Pareto plot (c) can be used. These visualize the variance explained per PC, and
can thus suggest a cut‐off threshold. IMS, imaging mass spectrometry; MALDI, matrix‐assisted laser desorption/
ionization; PCA, principal component analysis. [Color figure can be viewed at wileyonlinelibrary.com]
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Each loading vector has an accompanying score vector,
which constitutes the spatial expression tied to the PC. These
images obtained from the score matrix (and its equivalent in
other factorization methods) can be considered spatial expres-
sion images or spatial mappings. The scores can be seen as the
strength with which a loading is expressed at a particular
location in the tissue or sample. These, again, consist of linear
combinations of the pixels in the dataset, and thus negative
values are generally included. Nevertheless, the spatial expres-
sion images of the k most important PCs often give a good
overview of the k most prominent spatial patterns that make up
the majority of measured variation in the IMS dataset, and can
thus be very useful in gaining initial insight into the data. One
helpful way of using these spatial expression images (scores)
and their accompanying spectral signatures (loadings) is to
employ them as guides to find correlating and anticorrelating
ion peaks and ion images. Effectively, PCA can be used as a
multivariate way of finding among thousands of pixels those
that show similar spectral content, or among thousands of ions
those that exhibit a similar spatial distribution. A less powerful,
univariate version of this task can also be explored using
correlation, which will be discussed in greater detail in
Section III.G.

3. Number of Components

Determining the correct number of components to retain after a
PCA analysis is an important but difficult challenge to tackle,
and several papers have been dedicated to the subject (Peres‐
Neto et al., 2005). As mentioned by Jolliffe (2002), there is no
straightforward solution to the problem available. One of the
most commonly used and easiest methods to determine the
number of components is by means of a scree plot (Cattell,
1966) (Fig. 2b), which consists of plotting the eigenvalues of
the PCs in descending order, and selecting a cut‐off at the point
where there is no longer a significant change in the value of two
consecutive eigenvalues. Alternatively, a Pareto plot (Fig. 2c)
can be used, which plots the cumulative percentage of variance
explained by each consecutive PC. Here, one can either use a
predefined threshold of what percentage of variance must be
maintained, or, similar to the scree plot method, select a cut‐off
point when there is no longer a significant change in percentage
explained. Determining the correct number of components is a
recurring issue for various pattern extraction techniques in IMS,
and various methods exist that can be readily applied, including
the minimum description length (Rissanen, 1978; Verbeeck,
2014b), the Bayesian information criterion (BIC) (Schwarz,
1978; Hanselmann et al., 2008), the Akaike information
criterion (AIC) (Akaike, 1973), and the Laplace method
(Minka, 2000; Verbeeck, 2014b).

4. Application to IMS

Graham & Castner (2012) lists applications of PCA in SIMS
imaging, along with other multivariate analysis methods.
Recent work by Bluestein et al. (2016) shows the use of PCA
in lipid‐focused TOF‐SIMS data, acquired from breast cancer
tissue, using PCA as a means of selecting regions of interest
(ROIs). Fletcher et al. (2011) used PCA for data reduction and
visualization of 3D TOF‐SIMS measurements collected from
HeLa‐M cells, allowing for visualization of different cellular

components such as the membrane and nucleus. Additionally,
PCA provided a method to adjust and register the cellular signal
along the z axis.

PCA has also been extensively used in DESI‐based
imaging. Dill et al. (2009) used PCA to distinguish tumor
regions and associated lipid profiles in DESI IMS data, acquired
from canine bladder cancer samples. In follow‐up work
(Dill et al., 2011), PCA was applied to DESI imaging data of
a relatively large set of 20 human bladder carcinomas, to
investigate the variation within and between both healthy and
diseased tissues. The first PC showed a high expression in the
tumor tissue and a low expression in the healthy tissue,
indicating a strong difference in molecular expression between
the two tissue types. However, as PCA does not provide explicit
classification rules, a follow‐up with a supervised approach,
namely orthogonal projection to latent structures (O‐PLS), was
used to create a classification model for these samples. Pirro et al.
(2012) have used PCA to provide an interactive way to explore
DESI IMS data, while Calligaris et al. (2014) employed PCA in
the characterization of biomarkers in DESI imaging data
collected from breast cancer samples.

PCA has also found application in the analysis of rapid
evaporative ionization mass spectrometry (REIMS) imaging
data of human liver samples and bacterial cultures, where it
enabled differentiation between healthy and cancerous tissue
and between three bacterial strains (Golf et al., 2015).

In MALDI IMS, there has been extensive use of PCA
both for aiding human interpretation of IMS data, as well as
for reducing the dimensionality and size of the data to
enable subsequent computational analysis. Examples include
McCombie et al. (2005), who used PCA to extract spatial trends
from MALDI IMS measurements acquired from the mouse
brain, employing the technique primarily as a dimensionality
reduction step preceding further data analysis. Gerhard et al.
(2007) used PCA in the analysis of MALDI IMS data acquired
as part of a clinical breast cancer study, with spatial expression
images correlating well with the histology and showing a clear
separation of the different tissue parts. Deininger et al. (2010,
2008) used PCA in the analysis of MALDI IMS of gastric
cancer tissue sections, where the first PCs reflected the histology
quite well. However, they noted that the PC loadings and scores
were difficult to interpret, particularly when compared with
hierarchical clustering (HC) (see Section III.B), which can
summarize the data in a single image rather than spread out over
multiple components. Siy et al. (2008) applied PCA in the
analysis of MALDI IMS data from the mouse cerebellum, and
compared the results to those of independent component
analysis (ICA) and non‐negative matrix factorization (NMF),
which we discuss in Sections II.C and II.E, respectively. While
PCA allowed identification of the major spatial patterns, both
the loadings and scores were noisier than those of NMF and
ICA. Hanselmann et al. (2008) used PCA in a comparison with
pLSA, ICA, and NN‐PARAFAC on SIMS as well as on
MALDI IMS datasets. In this setting, PCA was found to be the
least successful of the compared techniques for extracting
spatial patterns from the dataset. Furthermore, Hanselmann
et al. note that the pseudospectra are difficult to interpret due to
the negative values they contain. Gut et al. (2015) included PCA
as one of several matrix decomposition methods to analyze
MALDI IMS data acquired from pharmaceutical tablets. In this
study, PCA allowed for good retrieval of sources of variation in
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the data, but provided limited spectral information compared to
the other matrix decomposition methods used.

Due to the ubiquity of PCA in IMS research, subsequent
subsections focus primarily on papers that made changes to the
standard PCA workflow, adapting it specifically toward
application in an IMS setting.

5. Preprocessing—Scaling

While PCA offers a robust method for the extraction of
underlying components, statistical preprocessing of the data can
have a large impact on the decomposition results. This topic has
been studied in depth in the SIMS imaging community (Keenan
& Kotula, 2004a; Tyler, Rayal, & Castner, 2007). There are
several reasons for this. First, preprocessing will influence the
impact or weight that a single variable has in the overall PCA
analysis. PCA pushes variables toward more important PCs on
the basis of how much variance the variables represent in the
data. In the case of IMS data, high‐intensity peaks that vary will
tend to represent a much larger part of the overall variance than
low‐intensity peaks that vary in a similar way. As a result, tall
peaks can exert a greater influence on the retrieved PCs than
short peaks. On the one hand, this is a desirable effect: large
differences in high intensity peaks are often very informative,
and should therefore be reported prominently. On the other
hand, these peaks can be so dominant that changes in relatively
small, yet biologically relevant, peaks can be lost in the overall
PCA decomposition of a dataset, as these small peaks are not
essential to explaining the majority of variance in the data. One
way of countering this phenomenon is by scaling the variables
prior to performing PCA analysis.

Autoscaling. One popular method is autoscaling (Jackson,
1991; Keenan & Kotula, 2004a; Tyler, Rayal, & Castner, 2007),
where each variable has its mean subtracted and is divided by its
standard deviation. This scaling is equivalent to performing the
PCA analysis on the correlation (coefficient) matrix instead of
the covariance matrix. Autoscaling makes each m z/ bin exhibit
unit variance, thus giving high and low intensity peaks equal
influence in the PCA analysis (Tyler, Rayal, & Castner, 2007;
Deininger et al., 2010). It is important to note though that this
type of scaling can allow noisy low‐signal m z/ bins to have an
increased (and sometimes disproportionate) impact on the PCA
analysis results, potentially delivering noisy uninformative PCs
in the process.

Poisson Scaling. Besides the weight that a variable (pixel
or m z/ bin) has in an overall PCA decomposition, a more
fundamental reason to apply statistical preprocessing or scaling
prior to PCA lies in the underlying assumptions behind PCA.
Due to the fact that PCA finds relationships between features
based on their variance, and a Gaussian distribution is fully
determined by its variance and mean, PCA works optimally on
data with a Gaussian distribution. If the data are not Gaussian‐
distributed, however, there are usually higher‐order statistics
beyond variance present that are not being taken into account by
PCA. While PCA captures components that are uncorrelated,
these components are not necessarily statistically independent
for general distributions, a topic we will discuss in greater detail
in Section II.C. For example, the spectra in TOF‐based mass
spectrometry are typically formed by counting the number of
ions that hit a detector. This means that both the noise and

variability of the signal are likely to be governed by Poisson
statistics (Keenan & Kotula, 2004a) and will not necessarily
approximate a Gaussian distribution. One of the further
consequences of a Poisson distribution of ion counts is that
the variance, and thus uncertainty, of an ion intensity
measurement is directly proportional to the magnitude of the
measurement (the mean and variance of a Poisson distribution
are identical to each other). Thus, high peaks will tend to have
higher noise intensities than low peaks, which will again
influence their importance in the PCA decomposition.

This aspect also plays an important role in the selection
of the correct number of PCs: the graph of eigenvalues or
scree plot that is commonly used to select the correct number
of PCs should be near‐zero for components that only describe
(Gaussian) noise, and should take substantial values for
components that describe systematic and structural informa-
tion (Malinowski, 1987). However, this is not the case for
variables that report a non‐Gaussian noise distribution, as is
illustrated in Keenan & Kotula (2004a). Consequently, noisy
but high‐intensity components can rank very high in the order
of PCs, whereas small but relevant peaks can end up in
components with a substantially lower rank, and might go
unrecognized as a result. For this reason, a popular scaling
method, especially in SIMS research, is the Poisson scaling
described in Keenan & Kotula, (2004a). This is essentially a
form of weighted PCA that aims to mitigate the effects of the
Poisson distributed noise, by transforming the variables to a
space better suited for PCA analysis, prior to performing the
actual PCA analysis. This form of scaling involves dividing
each row of the matrix D by the square root of the mean
spectrum row vector, and dividing each column of the data
matrix by the square root of the mean pixel (or image)
column vector. In a related setting, Wentzell et al. (1997)
applied a maximum likelihood PCA (MLPCA) approach to
compensate for deviating noise structure in the PCA of near
infrared spectra. Keenan (2005) compared Poisson‐scaled
PCA to MLPCA on simulated SIMS data with known
amounts of Poisson noise, and showed that, while MLPCA
performed the best in extracting the original components,
Poisson‐scaled PCA performed nearly as well, at a much
lower computational cost. In another comparison of scaling
methods, Keenan & Kotula (2004b) show that Poisson
scaling outperforms autoscaling as a statistical preprocessing
method.

Filter Scaling and Shift Variance Scaling. Several other
scaling methods exist, including filter scaling (Tyler, Rayal, &
Castner, 2007), which consists of dividing each peak by the
standard deviation of a set of pixels near that peak, in order to
account for local intensity variation and noise, and shift
variance scaling (Tyler, Rayal, & Castner, 2007), which is
based on the same concept as maximum autocorrelation
factorization (MAF), a matrix factorization method akin to
PCA that we will discuss in Section II.D. Briefly, shift variance
scaling entails dividing each peak by its standard deviation in
the shift matrix, a data matrix obtained by subtracting from the
original data matrix a copy that has been spatially shifted by a
pixel horizontally and/or vertically. In a comparison of PCA
using autoscaling, Poisson scaling, filter scaling, shift variance
scaling, and MAF, Tyler et al. (2007) demonstrated that MAF
performed best, albeit at the cost of greater computation time,
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while Poisson‐scaling and shift variance scaling provided
results similar to MAF at a lower computational cost.

Intensity Scaling to Incorporate Prior Knowledge. Be-
sides its use for noise correction, weighted PCA by means
of scaling also provides the tools for directly incorporating
domain‐specific knowledge into the analysis. Scaling the
absolute intensity values of specific m z/ bins on the basis of
prior knowledge provides a mechanism for giving known ions
of interest a greater weight, and thus pushing a normally
unsupervised PCA algorithm to identify, in a more supervised
way, ion species that correlate and anticorrelate with the specific
ions of interest. In a similar fashion, the weight of known noise
peaks or ion species that are not relevant to the biological
mechanism at hand, can be diminished in the overall
decomposition, essentially clearing up PCA bandwidth for
patterns of interest. By downscaling undesirable peaks, their
variance is reduced and consequently their corresponding
components move into a less prominent position in the PC
ranking. This essentially allows for prior knowledge to be
straightforwardly incorporated into PCA, without a fundamental
change to the underlying algorithm, and provides a means for
dynamically testing the influence of ion species on the final
PCA result (by testing the response to scaled versions). With
these uses in mind, we demonstrated on MALDI IMS data the
influence of weighted PCA (Van de Plas et al., 2007a). The
scaling was done using digital image enhancement techniques,
specifically gray level transformations on the basis of
histograms, to enhance the contrast of individual ion images
and eliminate noise patterns, while concurrently leading to a
reduction in the resulting PCA expression images.

Although the issue of scaling is treated here within the
context of PCA, it is clear that all unsupervised data mining
methods can be influenced by it. This can serve different
purposes, including accounting for underlying algorithm
assumptions, noise reduction, as well as contrast enhancement
and incorporation of prior knowledge.

6. Postprocessing—Varimax

PCA, and several other factorization methods, suffer from what
is known as “rotational ambiguity.” This means that there are an
infinite number of orientations of the factors that account for the
data equally well (Russell, 2002). More precisely, given a
matrix factorization

=D AB ,T

and any invertible transformation matrix R, the matrix D can
also be written as

= =−D AR R B AB( )( ) ˜ ˜ .T T1
(3)

In other words, there exist an infinite number of factor pairs
Ã and ̃B that will fit the data equally well (Keenan, 2009). PCA
aims to find the solution to this factorization where the matrices
have mutually orthogonal vectors, and the components serially
represent maximal variance in the original data. As stated, PCA
provides the best rank‐k approximation of the data (in a least
squares sense). This means that PCA aims to represent as much

information as possible, using as few components as possible.
This setup makes sense when PCA is used as a dimensionality
and data reduction tool; however, it also leads to very “dense”
components, components with many nonzero weights, which
makes them difficult to interpret by humans. It is therefore often
useful to apply a rotation of the resulting PCA loading vectors
in order to simplify the factor model for human examination
(Russell, 2002). Similar to Equation 3, this rotation does not
affect the goodness of fit of the solution, or more formally: the
subspace defined by the PCs remains the same. However, we
are selecting a different solution among all the equally valid
solutions of rank k (Paatero & Tapper, 1994). A rotation of the
loadings will, however, relax the orthogonality constraints on
the scores when projected on the new loadings, that is, the
scores will no longer be uncorrelated (Jolliffe, 2002;
Keenan, 2009).

One of the most frequently used criteria for rotation of
PCA components is the Varimax rotation proposed by Kaiser
(1958), which performs an orthogonal rotation that maximizes
the variance of the squared loadings. This approach results in
loading vectors that are more sparse, that is, have many
elements that are zero, while having a lower number of nonzero
loading coefficients with higher absolute values. In the case
where the loadings are the spectral features, this means fewer
m z/ bins that are nonzero, which greatly improves the
interpretability of the loading components. Klerk et al.
(Broersen, Van Liere, & Heeren, 2005; Klerk et al., 2007)
have applied Varimax rotation to PCA components in LDI and
SIMS imaging datasets. Performing the Varimax rotation on the
chemical loadings increased calculation times only slightly, but
led to a high increase in contrast in the spatial expression
images, while simultaneously leading to sparser chemical
component spectra with higher peaks. When comparing the
results to those obtained through non‐negativity constrained
parallel factor analysis (NN‐PARAFAC; see Section II.E),
PCA+Varimax offered the best trade‐off between calculation
time and result quality. On the other hand, NN‐PARAFAC
offered the advantage that loadings were positive or zero,
more closely approximating the non‐negative ion counts
naturally encountered in MS. Due to its negligible calculation
time, the authors recommended the use of Varimax as a default
postprocessing step after PCA for improved interpretability.
Fornai et al. (2012) used PCA+Varimax in the investigation of
a 3D SIMS dataset of rat heart, consisting of over 49 billion
spectra collected from 40 tissue sections. Keenan (2009) has
applied Varimax rotation in SIMS data on the spatial‐domain
components rather than the spectral components, which resulted
in a higher contrast for the expression images, as shown in
Figure 3. Furthermore, due to the fact that this was a relatively
uncomplicated sample with only a few components present in
each spatial location, the spectral components are relatively
simple, making them similar to those obtained through MCR‐
ALS, a NMF method discussed in Section II.E.

Despite the many strengths of PCA, that is, availability of an
analytical solution, ease of use, existence of optimized algorithms
(see Intermezzo below), and availability in many software
packages, several disadvantages remain. One disadvantage is the
presence of negative peaks in the pseudospectra and negative
values in the spatial expression images, which can lead to
difficulties in interpreting PCA results (Deininger et al., 2010).
Another is that the assumptions underlying PCA do not
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necessarily agree with the characteristics of IMS data. Fortu-
nately, the method has shown remarkable robustness to such
violations of its assumptions, and continues to provide useful
insight into IMS data regardless. An issue that we have not yet
discussed is that PCA treats each pixel as an independent sample.
This is technically not true in imaging data if detectable levels of
spatial autocorrelation are present in the measurements (Van de
Plas et al., 2015; Cassese et al., 2016), and it merits further
investigation. Furthermore, standard PCA does not take the
available spatial information into account in its decomposition,
an aspect that could be used to improve the analysis further.
Some of these disadvantages have been addressed by alternative
matrix factorization approaches, which will be discussed in the
next sections.

B. Intermezzo: Dimensionality Reduction and
Computational Resources

Current state‐of‐the‐art IMS datasets can reach massive sizes,
with raw data ranging in the GBs and TBs for a single experiment,
typically containing 104–106 m z/ bins per pixel, and 103–106 or
more pixels, depending on the instrumentation used. When
applying factorization or clustering techniques to these data, their
sheer size can easily lead to computer memory shortages and very
long calculation times on standard desktop computers. A common
method to deal with these issues is to perform a feature selection
step such as peak‐picking, which precedes the data analysis
(McDonnell et al., 2010; Jones et al., 2012a; Alexandrov et al.,
2010; Du, Kibbe, & Lin, 2006). This greatly reduces the number

of variables, and consequently the size of the data, by eliminating
from the analysis the spectral bins that do not contain peak
centers. Peak picking is, however, a rather drastic form of feature
selection that discards a large amount of information from the
original data (e.g., peak shape), while also holding the risk of
discarding peaks that go unrecognized by the peak‐picking
algorithm. This makes the quality of the subsequent analysis
dependent on the quality of the preceding peak‐picking or feature
selection method, which may not always be desirable (Palmer,
Bunch, & Styles, 2013, 2015). Furthermore, IMS datasets with
large numbers of pixels may still be too large to be analyzed even
after peak‐picking (Halko, Martinsson, & Tropp, 2011; Race et al.,
2013). Other methods that are sometimes used to reduce the size
of the data are spectral binning (Broersen et al., 2008a) and spatial
binning (Henderson, Fletcher, & Vickerman, 2009), which
average (or sum) ion intensities over multiple m z/ bins and
pixels, respectively. While these methods sometimes increase the
signal‐to‐noise‐ratio, they inherently lead to loss of spatial or mass
resolution, which is usually undesirable.

As a result, several groups have investigated efficient
algorithms and techniques capable of handling these large
amounts of data without the need for peak picking and with
minimal loss of information.

1. Memory‐Efficient PCA

A number of studies have focused specifically on the development
of memory‐efficient PCA algorithms, which allow PCA analysis to
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FIGURE 3. Example of Varimax rotation. Original caption: Comparison between (a) the abstract factors
obtained by SVD with (b) the same factors after Varimax rotation to maximize spatial‐domain simplicity for the
palmitic/stearic acid sample. Source: Keenan, 2009, Figure 7, reproduced with permission from John Wiley &
Sons. SVD, singular value decomposition. [Color figure can be viewed at wileyonlinelibrary.com]
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be performed despite large data sizes. Race et al. (2013) have
applied a memory‐efficient PCA algorithm that allows sequential
reading of the pixel data, and thus does not require keeping the full
dataset in computer memory. This allows for processing of very
large datasets, albeit that the full covariance matrix must still be
constructed and therefore extremely high‐dimensional datasets
may still prove to be problematic. This method allowed for
processing of a 50GB 3D MALDI IMS dataset that was
previously too large to analyze. A MATLAB (The Mathworks
Inc., Natick, MA) toolbox by Race et al. (2016) carries an
implementation of this method, and allows application of this and
other IMS data mining algorithms without loading the full data
into memory. Klerk et al. (2007) used the PCA algorithms in
MATLAB together with its sparse data format to exploit the sparse
nature of IMS data, that is, the fact that many of the values
measured in IMS are near‐zero. Rather than loading the full data
matrix, this MATLAB format only stores nonzero values, which
allows for much larger datasets to be loaded into memory. They
used the native MATLAB algorithms to solve the eigenvector
problem for sparse matrices, using restarted Arnoldi iteration
(Sorensen, 1992). Cumpson et al. (2015) have compared four
different SVD algorithms for PCA in SIMS imaging data. The
“random vectors” SVD method proposed by Halko et al. (2011)
was selected. Similar to the method of Race et al., it did not require
loading the full dataset into memory. This method was used to
analyze a 134GB TOF‐SIMS imaging dataset in around 6 hr on a
standard desktop PC. In recent work, Van Nuffel et al. (2016)
achieved good decomposition results using a random subsampling
approach to perform PCA in a 3D TOF‐SIMS dataset from an
embryonic rat cortical cell culture. The loadings were calculated
using a training set consisting of only 6.11% of the total number of
pixels, and the IMS data was then projected on the loading vectors
to create the (score) images. Cumpson et al. (2016) have similarly
used a subsampling approach for the PCA analysis of large size 3D
SIMS datasets, although here quasirandom Sobol sampling was
used to obtain a more even spatial sampling throughout the
sample. Graphical processing units (GPUs) were used to speed up
the calculation of the PCs, as has also previously been
demonstrated by Jones et al. (2012b) for PCA, pLSA, and NMF
(see Section II.E). The quasirandom subsampling strategy used by
Cumpson et al. has also been used by Trindade et al. (2017) in the
calculation of the NMF decomposition of 3D TOF‐SIMS IMS data
with very high spatial resolution.

Broersen et al. (2008a) have alleviated some of the memory
and calculation constraints of PCA by using a multiscale approach,
in which PCA is first calculated on a rebinned version of the data,
grouping together multiple m z/ bins (e.g., through averaging). It
reduces the number of variables and the size of the data, while
increasing the signal‐to‐noise ratio. In an interactive approach, the
user can then select features of interest, which can be zoomed in
on, and the PCA can be recomputed (without rebinning) for that
smaller area or reduced set of features. In other work,
Broersen et al., 2008a showed how the denoising effect and
dimensionality reduction provided by PCA can be used in the
alignment and combination of multiple SIMS datasets, imaging
different areas of a large sample.

2. Non‐PCA Dimensionality Reduction

Besides peak‐picking and PCA, many other data reduction and
feature extraction/selection techniques exist and allow for high

levels of data compression while retaining much of the original
information. These are often less memory‐intensive than PCA
or can be serially applied on individual spectra, avoiding the
need to load the full IMS dataset into memory. For example, we
have demonstrated the application of the Discrete Wavelet
Transform (DWT) for the dimensionality reduction of IMS data
(Van de Plas, De Moor, & Waelkens, 2008; Van de Plas, 2010;
Verbeeck, 2014b). DWT is a popular data transformation that
allows compact representation of the original mass spectra in
a much lower‐dimensional wavelet coefficient space, with
arbitrarily little loss of signal or information. DWT‐based
compression greatly reduced the size of MALDI IMS datasets,
and resulted in a 63‐fold reduction in memory requirements
when performing PCA on a MALDI TOF IMS measurement
set, while obtaining comparable PCs to those calculated without
prior dimensionality reduction. Furthermore, we used this
technique (Van de Plas, 2010) to reduce the dimensionality of
a 19.6 GB MALDI FTICR IMS dataset by a factor of 128, after
which the reduced data could be successfully analyzed through
k‐means clustering (see Section III.C), showing clear overlap
with biologically significant histological features.

In other work, Palmer et al. (2013) have investigated the use of
random projections for dimensionality reduction of hyperspectral
imaging datasets, such as MALDI IMS and Raman spectroscopy
data. The full original IMS data are projected onto a set of
randomly chosen vectors, rather than a calculated set of basis
vectors as is the case in, for example, PCA. By projecting the data
onto randomized vectors, a large part of the data redundancy that is
often present in IMS data due to colocalization and correlation is
removed, which reduces the data size, while preserving distances
between points and angles between vectors, a property that is
desirable in many machine‐learning approaches. Using this
approach allowed impressive 100‐fold reductions in dimensionality
and data size, while still allowing reconstruction of the original data
within noise limits. In follow‐up work, Palmer et al. (2015)
demonstrated consistent clustering results that followed histologic
changes, using less than one percent of the original data, as is
demonstrated in Figure 4.

3. Compressive Sensing

A method for reducing the measurement dimensionality of
IMS, and thus also keeping computational and instrumental
requirements to a minimum, is the use of a compressive (or
compressed) sensing framework. Compressed sensing builds
on the famous Whittaker‐Nyquist‐Shannon‐Kotelnikov sam-
pling theorem, which establishes the minimum sampling
frequency required to fully reconstruct a signal. Candès, Tao,
and Donoho (Candès & Tao, 2006; Donoho, 2006; Candès &
Wakin, 2008) have posed that, given knowledge on the
signal’s sparsity, the original signal may still be reconstructed
with fewer samples than the sampling theorem technically
requires. Compressed sensing has been applied in various
domains such as image reconstruction (Mairal, Elad, &
Sapiro, 2008), hyperspectral imaging (Golbabaee, Arberet &
Vandergheynst, 2010), and clustering (Guillermo, Sprech-
mann, & Sapiro, 2010). In the case of IMS, this would enable
a reduction in the number of samples (pixels) collected in
tissue, and enable the computational processing of smaller
datasets. Gao et al. (2014) have demonstrated the use of
compressed sensing in DESI imaging data, where it was used
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to reconstruct ion images using only half the sampling points
in the original data. Only 40 out of approximately 104 m z/
values were identified as important to allow this reconstruc-
tion. Bartels et al. (2013) used compressed sensing with the
assumption of sparse image gradients and compressible
spectra, to reconstruct smoothed ion images using different
fractions of samples of the original data (20–100%). Tang et al.
(2015) have used compressed sensing to increase the spatial
resolution in AFAI‐IMS data. To demonstrate this approach,
the spatial resolution of the original imaging data was lowered
by merging pixels. The compressed sensing approach was
then used to reconstruct the image at the original resolution.
Results were compared to bicubic interpolation, with
compressed sensing reconstruction showing improved peak
signal‐to‐noise‐ratio over the bicubic interpolation approach.
In a similar application, Milillo et al. (2006) have used
geospatial statistics, namely Kriging and inverse distance
squared weighted methods, to reconstruct ion images from
SIMS data, achieving reconstruction with recognizable
images using only 10% of the original pixels in the image.

To conclude this intermezzo, it is worth noting that in recent
years there has been increased use of high‐performance computing
(HPC) resources in the processing of IMS data. For example,
Smith et al. (2015) used HPC in the exploration of large FTICR
imaging datasets. Further support comes from the emergence of
HPC‐capable data processing environments such as openMSI
(Rübel et al., 2013; Fischer, Ruebel, & Bowen, 2016). It is to be
expected that this trend toward HPC will continue and even
accelerate over the coming years, as IMS datasets grow ever larger
due to advances in mass spectrometry instrumentation.

C. Independent Component Analysis

ICA is a matrix decomposition technique that originated from
the area of blind source separation, and that aims to find
statistically independent components that underlie the observed
data (Jutten & Herault, 1991; Comon, 1994). ICA has been used
extensively in a wide range of applications, including facial
recognition (Bartlett, Movellan, & Sejnowski, 2002), functional
magnetic resonance imaging (fMRI; Calhoun, Liu, & Adalı,
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FIGURE 4. Example of k‐means clustering performed on random projections. Original caption: Top‐to‐bottom:
increasing the number of projections up to around 100 increases the segmentation reproducibility; after this
point, the segmentation result completely stabilizes and the same tissue patterns are produced. Left‐to‐right:
each column is the result of a different set of random vectors. At low numbers of projections, the exact choice of
projection vectors affects the results of the segmentation, whereas for higher numbers of projections, the
segmentation is stable and reproducible against a different choice of projection vectors. Source: Reproduced
from Palmer et al. (2015), Figure 4, under Creative Commons Attribution License. [Color figure can be viewed at
wileyonlinelibrary.com]
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2009), and remote sensing (Du, Kopriva, & Szu, 2005; Wang &
Chang, 2006). In IMS research, ICA has been used in the
analysis of MALDI IMS measurements (Hanselmann et al.,
2008; Siy et al., 2008; Verbeeck, 2014b; Gut et al., 2015), but,
to our knowledge, not yet in other IMS varieties.

1. Principle

While PCA and ICA are similar in premise, ICA requires its
components to be statistically independent of each other, where
PCA requires its components only to be uncorrelated. The
requirement by ICA is stronger than that imposed by PCA: if
two variables x and y are statistically independent, they are also
uncorrelated, however, uncorrelated variables are not necessa-
rily independent. Another distinction between PCA and ICA is
that ICA assumes the underlying sources to follow a non‐
Gaussian distribution, and in fact exploits this non‐Gaussianity
for their recovery (Hyvärinen, 2013). While the assumption of
non‐Gaussianity may seem limiting at first, many real‐life
signals are in fact non‐Gaussian when considering the
probability distribution of the signal (De Lathauwer, De
Moor, & Vandewalle, 2000). Siy et al. (2008) note that the
probability distribution of IMS data are highly non‐Gaussian
given the large number of near‐zero values in a typical mass
spectrum, and as we have previously noted (see Section II.A),
the peaks in mass spectrometry signals tend to be Poisson‐
distributed for most varieties of mass spectrometry. Further-
more, biological or other sample‐specific processes, underlying
the observed mass spectra, could give rise to non‐normally
distributed signals (Hebenstreit & Teichmann, 2011;
Dobrzyński et al., 2014). In ICA, non‐Gaussianity of signals
is an integral part of the analysis and is even utilized to
accomplish its task. In PCA, most use cases will deal with non‐
Gaussianity prior to analysis, and apply some form of statistical
preprocessing (e.g., Poisson scaling) to make the data and noise
more Gaussian‐like before doing PCA analysis.

Rather than a single technique, ICA constitutes a class of
methods that use assumptions of independence and non‐
Gaussianity to find underlying components. A number of
different strategies exist and the ICA approaches can be roughly
divided into two categories, although many ICA algorithms
combine both: (1) approaches primarily rooted in information
theory, which are aimed at minimizing mutual information
between the components (or maximizing entropy exhibited by the
components), such as the popular Infomax algorithm (Linsker,
1988); and (2) approaches aimed at finding maximally non‐
Gaussian signals using higher‐order statistics (De Lathauwer, De
Moor, & Vandewalle, 2000) such as kurtosis (skew or tailedness
of the probability distribution) and negentropy (deviation from
Gaussianity), for example, JADE (Cardoso & Souloumiac, 1993)
and fastICA (Hyvärinen & Oja, 1997).

ICA is generally performed as a two‐step process. First, the
data are whitened, and then the whitened data are used to
retrieve the independent components. Whitening entails that the
data are transformed to a new set of variables, such that its
covariance matrix is the identity matrix, meaning that the new
variables are decorrelated and all have unit variance. This is
often done by performing PCA and then normalizing the PCs to
unit length, but other approaches exist and it is important to note
that this whitening step is not unique. Whereas for Gaussian
variables, decorrelation by whitening implies independence, this

is not necessarily the case for non‐Gaussian variables. Since the
independent components ICA is looking for need to be at least
decorrelated, that is, orthogonal to each other, PCA can
however deliver a good starting point. As we discussed in
Section II.A, the decorrelated variables provided by PCA will,
however, suffer from rotational ambiguity, i.e there are still an
infinite number of possible rotations of this decorrelated set of
vectors possible, and PCA thus offers a “space” of possible
solutions rather than a unique solution. The stronger require-
ments of ICA resolve the issue of rotational ambiguity, and the
additional information provided by the higher order statistics
can be used to retrieve the true independent sources (De
Lathauwer, De Moor, & Vandewalle, 2000; Hyvärinen, 2013),
that is, find a unique solution/rotation.

However, some considerations should be taken into
account. Statistical independence is a strong property with
potentially infinite degrees of freedom (Hyvärinen, 2013) (as it
requires checking all possible combinations of all linear and
nonlinear functions). Whitening the data reduces the degrees of
freedom by restricting the search to orthogonal matrices, but the
search space is still very large. To find a unique solution, most
ICA algorithms operate in an iterative way using local
optimization methods, and aim to increase an objective
function. While a global optimum for the ICA problem exists,
there is a chance that the algorithm gets stuck in a local
minimum. For this reason, ICA often requires multiple runs
with random initializations and a consequent search for
consensus over these runs (e.g., using ICASSO (Himberg &
Hyvärinen, 2003)). Additionally, most ICA algorithms cannot
identify the actual number of source signals, and therefore
require the user to specify the number of expected components
beforehand (which further restricts the search space). Finally,
unlike PCA, ICA does not provide an inherent ordering of the
source signals or components it found.

2. Application to IMS

Siy et al. (2008) applied the fastICA algorithm to MALDI IMS
data of mouse cerebellum and compared the results to those
of PCA and NMF. Overall, the components retrieved by ICA
showed less noise than those obtained by PCA, both in the
component images as in the pseudospectra. Contrary to PCA,
much of the noise, including the baseline, was separated by ICA
into a single component. The pseudospectra contained fewer
negative values than those in PCA, and spectra and expression
images were comparable to those of NMF (see also Section II.E).
Hanselmann et al. (2008) also applied the fastICA algorithm to
MALDI IMS measurements and compared its results to PCA,
NN‐PARAFAC (which can be considered a type of NMF), and a
newly introduced method, pLSA. The approaches were tested in
both simulated and real IMS data. In the simulated data, ICA
extracted fewer components than NN‐PARAFAC and pLSA,
while in the real IMS data ICA returned component images with
lower contrast than those of NN‐PARAFAC and pLSA. One
critique was that its spectra contained a relatively high number of
negative peaks, which are difficult to interpret. These components
did not clearly delineate the underlying tissue or cell types, an
aspect which was more readily apparent from NN‐PARAFAC and
pLSA, both of which only give non‐negative components. In
recent work, Gut et al. (2015) have compared pharmaceutical
tablets of known composition, using PCA, ICA, NMF, and
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MCR‐ALS. Similar to previous studies, Gut et al. noted that the
components provided by PCA are difficult to interpret. ICA
provided the most accurate method to extract appropriate
contributions of chemical compounds. In contrast, NMF and
MCR‐ALS were better at distinguishing semiquantitative informa-
tion in heterogeneous tablets due to their non‐negativity
constraints. In our own research, we have used a variant of ICA,
namely group ICA (GICA), to discover differences between
different MALDI IMS experiments (Verbeeck, 2014b). GICA was
originally developed for the differential analysis of fMRI data
(Calhoun, Liu, & Adalı, 2009), and entails two pattern extraction
and dimensionality reduction steps with PCA, one at the individual
experiment level, and one at the level of the full dataset, after
which ICA is performed. This two‐step pattern extraction
improves retrieval of signals at the single experiment level, while
reducing the size of the data at the level of the full dataset, making
the analysis faster and less memory intensive. Similar to Siy et al.
(2008), the resulting pseudospectra contained fewer peaks and
contained fewer negative values than those obtained with PCA,
while obtaining spatial expression images with very little noise. In
an artificially generated dataset, GICA allowed near‐perfect
retrieval of the original signals.

D. Maximum Autocorrelation Factorization

Maximum Autocorrelation Factorization (MAF) was originally
proposed by Switzer and Green (1984) as an alternative method to
PCA to analyze satellite and other multivariate spatial data. MAF
has been used as a multivariate analysis technique in SIMS on
several occasions (Tyler, Rayal, & Castner, 2007; Henderson,
Fletcher, & Vickerman, 2009; Park et al., 2009; Hanrieder et al.,
2014), but has been used only sparsely in MALDI IMS, primarily
in combination with other data analysis techniques (Jones et al.,
2011; Balluff et al., 2015). Stone et al. (2012) used the minimum
noise fraction (MNF) transform, a related technique.

1. Principle

Similar to PCA and ICA, MAF aims to decompose the original
data as

=D S L ,MAF MAF

where SMAF and LMAF are the scores and loadings, respectively.
MAF aims to find the transformation that maximizes the
autocorrelation between neighboring observations, that is,
neighboring pixels in images. This is under the assumption that
signals of interest will exhibit a high autocorrelation, whereas
most noise sources will exhibit much lower autocorrelation
(Larsen, 2002), and will consequently have a lower ranking in the
extracted components. The autocorrelation is generally calculated
by taking the correlation between an image and that same image
offset by a number of pixels, for example, one pixel diagonally
(Henderson, Fletcher, & Vickerman, 2009). Switzer and Green
(1984) originally proposed a horizontal offset of one and a
vertical offset of one, followed by a pooling of the two variance‐
covariance matrices resulting from each individual offset. The
resulting covariance matrix is then used as the input for a PCA
analysis, and the extracted PCs are the MAF factors, which are
ranked from high autocorrelation to low autocorrelation. Due to
the way it is formulated, MAF has the advantage that it can

incorporate both spatial information (through the autocorrelation)
and spectral information (correlation between mass channels)
into a single analysis, contrary to other factorizations that
consider these separately. As the technique uses PCA, the
number of components does not need to be selected prior to the
analysis. Larsen (2002) have shown that MAF analysis is
equivalent to the Molgedey‐Schuster ICA algorithm (Molgedey
and Schuster, 1994).

When applied to remotely sensed spectrometer data with 62
spectral channels, MAF performed much better than PCA in
separating interesting signal from noise (Larsen, 2002). Further-
more, components retrieved by MAF tend to have a more
intuitive ordering (components of interest ranked higher, noise
ranked lower) compared with those retrieved by PCA (compo-
nents of interest interspersed with noisy components). PCA’s
suboptimal result is most probably due to some of the interesting
components having high autocorrelation (=high ranking in
MAF), but having lower variance (=low ranking in PCA) than
some of the noisy components. By incorporating additional
structural information into the model, Larsen (2002) pose that
MAF achieves a better ordering and compression of the data.

2. Application to IMS

Tyler et al. (2007) compared MAF to PCA in analyses that used
different types of scaling on SIMS data, acquired from several
types of samples. Unlike PCA, MAF is scaling independent, as the
correlation calculated between an image and an offset of that same
image will cancel out any (linear) scaling applied to the imaging
data (Tyler, Rayal, & Castner, 2007; Larsen, 2002). Overall, MAF
produced the best result, achieving better dimensionality reduction,
offering the highest image contrast, and recovering important
spectral features. Furthermore, MAF was able to retrieve subtle
features that were lost with PCA, and could not be visualized in
individual ion images. Park et al. (2009) reported comparable
findings. Although MAF outperforms PCA with different scalings,
Tyler et al. (2007) did report that MAF was computationally more
intensive, taking two to five times longer to compute for their data.
Furthermore, MAF typically requires more computer memory as
the autocorrelation needs to be computed on the full image,
resulting in a matrix of size ×m m, where m is the number of
pixels in the image. With increasing sizes of IMS images, this
requirement can become prohibitively large.

However, Nielsen (2011) proposed the use of chunking
(splitting up the image in multiple sections) to counter this
issue. Furthermore, Tyler et al. note that PCA using root mean
scaling and shift variance scaling (which was inspired by MAF)
offers comparable results, and is less computation and memory
intensive. In contrast, Kono et al. (2008) did not retrieve any
meaningful results using MAF, due to the fact that the algorithm
did not converge.

Henderson et al. (2009) found that MAF outperforms PCA
specifically in data with a low signal to noise ratio: the
autocorrelation allows MAF to better filter out noise and extract
genuine signal, as is demonstrated in Figure 5. They also
investigated the effects of spatial resolution on MAF results by
summing up neighboring pixels, which can be done to improve
signal intensity in low intensity datasets. From this comparison,
they concluded that MAF should not be used in situations where
spatial resolution is important, such as where the size of the
sample features of interest is approaching the spatial resolution
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of the measurement, as in such cases there will remain little
autocorrelation to exploit. This observation holds true for most
techniques that rely on the local pixel neighborhood to filter
noise and improve analysis results (see e.g., Section III.E on the
incorporation of spatial information into the clustering of IMS
data). In such resolution‐strained cases, the spatial context is
less informative since there are fewer local measurements
available to describe the same underlying biological pattern. In
that case, techniques that do not use neighborhood information
have the advantage (by exclusively looking at the chemical
information to make their assessment), while local neighbor-
hood‐based techniques run the risk of filtering out such signals
as noise (due to insufficient local representation of a genuine
biological or sample‐born pattern). Ideally, a combination of
both types of analysis would be used.

Stone et al. (2012) have used the minimum noise fraction
(MNF) transform (Green et al., 1988) in the analysis of coronal
murine midbrain sections. MNF has ties to MAF, and aims to
incorporate spatial noise estimation into hyperspectral data analysis.
In the original work on MNF, Green et al. (1988) used the shift
difference MAF approach as a method to estimate the spatial
variance in the data. However, more complex spatial relationships
can be plugged into the analysis as well if desired. Stone et al.
showed extraction of spatially coherent components from murine
tissue data using MNF with a relatively simple local linear fit,
outperforming what could be achieved with PCA. Furthermore,
when using the extracted MNF components to perform HC (see
Section III.B), the results demonstrated good segmentation of the
image into clusters with high spatial coherence.

E. Non‐negativity Constrained Matrix Factorizations

A disadvantage of the previously discussed factorization methods
is that they will often have negative peaks in the pseudospectra or
negative values in their spatial expression images. Such negative
peaks are often difficult to interpret, since there is no straightfor-
ward physical meaning to negative ion intensity counts. Never-
theless, these negative values can be relevant, for example, they
can signify a downregulation of the peak compared to the mean or
compared to other components. However, they can also be the
result of mathematical constraints that do not necessarily line up

with the physical constraints of the underlying measurement
process or sample reality. For example, PCA of IMS data tries to
capture as much variation as possible in each component.
Although this objective is useful for data compression, it does
not limit the results to follow the physical reality of mass
spectrometry (i.e., allowing only zero or positive ion counts). As a
result, negative values are not uncommon (since the data are
often mean‐centered) and interpretation from a mass spectrometry
viewpoint becomes more difficult.

In order to avoid the issue of difficult‐to‐interpret negative
values, researchers have adopted the use of non‐negativity
constrained matrix factorization. As the name suggests, it
enforces the resulting components to contain only non‐negative
(i.e., positive and zero) values. Non‐negativity is a useful
constraint in a host of applications where negative values are
absent from the native measurements, including facial recogni-
tion (Lee & Seung, 1999), audio signal separation (Wang,
2010), and analysis of gene expression data (Kim & Park,
2007). There are various approaches to the problem of non‐
negativity constrained matrix factorization, with origins in
different fields and differences in underlying ideas and
implementation. Of these, multivariate curve resolution
(MCR) has been predominantly used in SIMS research, whereas
NMF has been mostly applied in MALDI IMS research.

1. Multivariate Curve Resolution

MCR was originally introduced in analytical chemistry in the
1970s through the work of Lawton and Sylvestre as Self
Modeling Curve Resolution (SMCR) (Lawton & Sylvestre,
1971). The goal was to extract the concentrations and pure
representative spectra of the individual components in two‐
compound mixtures measured by UV spectroscopy. SMCR is
based on the multicomponent Lambert‐Beer law and aims to
decompose the observed mixture data matrix D of size ×m n as

= +D CS E,T (4)

where C (of size ×m k) and ST (of size ×k n) contain,
respectively, the pure concentration profiles and pure spectra of
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FIGURE 5. A comparison of PCA and MAF results. Original caption: Scaled, smoothed images of HeLa cells
showing (a) the total ion image; (b) PC 6; and (c) MAF 4. MAF captures the distinction between inner and outer
cellular regions more clearly than PCA. Comparison with the total ion image shows the additional information
available following multivariate analysis. Source: Henderson et al. (2009), Figure 3, reproduced with permission
from John Wiley & Sons. MAF, maximum autocorrelation factorization; PCA, principal component analysis.
[Color figure can be viewed at wileyonlinelibrary.com]
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the k species of the unknown mixture (Ruckebusch & Blanchet,
2013), and E is a matrix containing error terms. Lawton and
Sylvestre imposed a non‐negativity constraint to ensure that the
obtained solutions were limited to physically realizable pure‐
component abundances and spectra. The technique was later
expanded to mixtures with more than two components (Borgen
& Kowalski, 1985; Borgen et al., 1986). Tauler (1995)
subsequently developed multivariate curve resolution by
alternating least squares (MCR‐ALS), which has since become
the most widely adopted MCR algorithm (Ruckebusch &
Blanchet, 2013). One of the reasons for the popularity of the
alternating least squares approach to MCR, is the ease with
which constraints can be integrated into the calculation.

Like many bilinear decomposition methods, the solutions
provided by MCR are not unique. The retrieved components
suffer from rotational ambiguity (Albuquerque & Poppi, 2015)
(see Section II.A.6) and, similar to ICA, they are not ranked
(sometimes referred to as permutation ambiguity (Albuquerque
& Poppi, 2015)). A third type of ambiguity, not previously
discussed, that is present in many decomposition methods
including MCR, is intensity ambiguity. Intensity ambiguity
arises from the fact that any nonzero scalar multiplication on the
spectral side can be compensated by a division with the same
scalar on the spatial expression side, and vice versa. The result
is that the spatial expression images and pseudospectra
generally have different relative scales, and thus cannot be
directly compared (in terms of absolute values) between
components. This becomes especially important in a quantita-
tive setting where the resulting components are used to estimate
concentrations in the sample. Combined with the fact that
absolute quantitation is a nontrivial challenge in many forms of
IMS (e.g., due to occurrence of matrix and ion suppression
effects (Heeren et al., 2009)), an aspect that goes beyond the
scope of this review, one might be skeptical about the use of
such methods for quantification in an IMS context. However, it
should be noted that even with intensity ambiguity, many
factorization methods can be very useful in delivering at least
relative quantitative insight into underlying distribution patterns
and correlations.

In light of the stated ambiguities, researchers using MCR
often aim to narrow the range of potential solutions by
supplementing the non‐negativity constraint with additional
constraints. These constraints can be based on physical
properties or prior information on the system at hand, such as
kinetic constraints (De Juan et al., 2000). Other approaches
narrow the search space by using prior information to limit the
number of components, for example, the number of chemical
compounds known to be present in certain regions of a Raman
spectroscopy image (De Juan et al., 2008). The iterative
alternating least squares approach devised by Tauler (1995)
makes it straightforward to introduce such additional constraints
into the calculations.

MCR has been used in a host of chemometrics applica-
tions, including various types of hyperspectral imaging, such as
Raman Spectroscopy (Gallagher et al., 2004) and near‐infrared
imaging (Gendrin et al., 2008). MCR has only recently started
being employed in MALDI and DESI‐based imaging (Rao et al.,
2013; Jaumot & Tauler, 2015; Gut et al., 2015). However,
together with PCA, it is one of the most‐used techniques in the
analysis of SIMS imaging, and has a large body of work
dedicated to it. Some of the earliest applications of MCR in

SIMS imaging were done at the Sandia National Laboratory and
General Electric using the AXSIA toolbox, which was
originally developed for the analysis of energy dispersive
X‐ray spectroscopy (EDS) data. In 2004, Ohlhausen et al.
(2004) analyzed SIMS imaging data of a MEMS device using
MCR. The data was Poisson scaled and resulting spectra and
images were easy to interpret, with the technique being able to
retrieve small and unexpected peaks from the sample.
Smentkowski et al. (2004) analyzed polymer samples, wherein
MCR analysis allowed identification of two metallic contami-
nants that were not apparent using the standard data analysis
protocol. Gallagher et al. (2004) developed a sequential
MCR‐ALS that progressively expands to include additional
factors, allowing very controlled integration of constraints, per
factor and element. They presented a robust algorithm for
initialization in SIMS imaging and Raman spectroscopy data.
More recently, Hook et al. (2015) have used such an iteratively
expanding approach to parallellize and speed up the calculation
of MCR‐ALS in large SIMS imaging datasets, reducing
calculation time, and memory requirements. Wagner et al.
(2006) compared PCA and MCR with different preprocessing in
SIMS data of a thin film of poly(methyl methacrylate) spin‐cast
onto a silicon wafer substrate. PCA and MCR showed
comparable image contrast, but MCR retrieved spectra the
most reliably. Poisson scaling showed the best results
preprocessing‐wise (over image normalization and unnorma-
lized). Tyler (2006) compared MAF, PCA, and MCR in
simulated SIMS data. Here, MAF achieved the best image
contrast, followed by PCA and finally MCR. However, MCR
achieved the best correlation with the original spectra. MCR
was initialized using guesses for the component spectra.
Yokoyama et al. (2015) compared PCA and MCR in SIMS
data of polymer samples, and saw a larger influence/better
detection of introduced contaminants (Ar‐ions sputtered onto
the sample) by PCA than by (Poisson‐scaled) MCR.

Lee et al. (2008) have compared PCA and MCR with
different types of preprocessing (no scaling, TIC normalization,
variance scaling, and Poisson scaling) in SIMS imaging data of
a PVC‐PC polymer blend. Both PCA and MCR were suitable
for identification and quantification of components. Poisson
scaling showed marked improvements over other preprocessing
methods, allowing PCA to capture the data with fewer
components, and MCR with Poisson scaling showing quanti-
fication and retrieval of the original spectra.

Lee et al. (2009) compared PCA to MCR on SIMS data of
human hairs, using different scaling methods (no scaling,
Poisson scaling, and binomial scaling). They found relatively
good robustness to scaling for the MCR results (with binomial
scaling providing the best scaling to deal with detector
saturation). In SIMS data of a PP/PE polymer, Miyasaka et al.
(2008) found good retrieval of the original PE and PP spectra
using MCR. Unlike Lee et al., Miyasaka et al. reported high
influence of scaling on the MCR results, with autoscaling giving
the most accurate results. Gelb et al. (2013, 2015) developed a
maximum a posteriori approach for multivariate analysis, rooted
in Bayesian probability theory. It specifically considers the
statistical characteristics of SIMS data, namely its Poisson
distribution, and detector saturation. When compared to
standard MCR‐ALS, their method showed better retrieval of
the original signal from data simulating detector saturation. This
method allows straightforward extension to include nonlinearity
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and other IMS‐specific properties, and facile incorporation of
a priori knowledge into the analysis. In Gelb et al. (2013),
simulated annealing was used to solve the optimization problem
rather than ALS, as it allows more flexibility on the choice of
the model. Aoyagi et al. (2011, 2012) used MCR with Poisson
scaling in SIMS data of mouse skin to determine the
concentrations of hair restoring compounds and their effective-
ness on hair growth. Smentkowski et al. (2005) applied MCR to
SIMS data of a mixed oxide/metal sample, using Poisson
scaling and initialization by PCA+Varimax. Positive and
negative mode ion images were concatenated and analyzed
together. Later, Smentkowski et al. (2007) showed the
application of MCR to 3D SIMS data of a nanoporous SiO2
film on a GaAs substrate. In order to make the analysis feasible,
the data was reduced by mass‐binning prior to analysis. In
recent work, Keenan et al. (2015) proposed a framework for
application of MCR‐ALS to SIMS data. It allows the integration
of preprocessing steps such as scaling directly into the MCR‐
ALS algorithm, while also incorporating MAF‐like error
estimation into the analysis. It also allows, for example,
constraints on the angle between components, giving preference
to components that are more orthogonal to each other.
Aram et al. (2015) developed an efficient approach to MCR‐
ALS that incorporates spatial correlation directly into the
analysis, and they demonstrate this in SIMS data of a metabolite
mixture. The algorithm uses 2D Gaussian basis functions to
incorporate this information into the modeling task, and it
employs the Shannon sampling theorem to determine the width
of the basis functions. For high‐resolution images, the speed of
the calculation can be increased at the cost of accuracy by
choosing a larger width for the basis functions.

With regard to non‐SIMS imaging applications, Jaumot
et al. (2015) applied MCR‐ALS to a nanostructure‐initiator
mass spectrometry (NIMS) microbial dataset by Louie et al.
(2013), results of which are shown in Figure 6. They also
applied MCR‐ALS to a mouse lung MALDI Orbitrap IMS
dataset by Marko‐Varga et al. (2011), available from the
openMSI platform (Rübel et al., 2013). The data were
baseline corrected and TIC‐normalized. The resulting com-
ponents were straightforward to interpret, showing good
spatial contrast. The authors reported that the number of
components was difficult to estimate, and for this reason the
analysis was repeated multiple times using different compo-
nent numbers. Rao et al. (2012) have used MCR in the
analysis of DESI data of intact proteins on biomaterial
surfaces and in rat brain tissue, as well as on data from in‐situ
surface tryptic digested proteins on a biomaterial surface
(Rao et al. 2013). MCR showed promising results for
unraveling complex intact protein and protein digestion
spectra. An example of MCR applied to DESI IMS is shown
in Figure 7.

2. Non‐negative Matrix Factorization and Positive
Matrix Factorization

In parallel with the development of MCR‐ALS, Paatero and
Tapper (1994) developed positive matrix factorization (PMF) as
a method to analyze environmental data (e.g., air pollution; with
analysis aimed at assigning contributions of different gases).
PMF was later applied for curve resolution (Xie, Hopke, &
Paatero, 1998) in NMR spectra. One of the differences with

MCR‐ALS is that PMF relies on maximum likelihood to obtain
its component solutions (Ruckebusch & Blanchet, 2013). Lee
and Seung (1999) popularized the technique as NMF, and
focused on its use toward parts‐based learning. This was
illustrated in facial recognition, where NMF decomposed facial
images as summations of different noses, eyes, mouths, and so
forth, while PCA decomposed facial images as different
“eigenfaces” and required summation of eigenfaces to construct
the original face. PCA resulted in a decomposition that was
generally less intuitive and harder to interpret than the parts‐
based approach provided by the NMF. Furthermore, the results
of the NMF algorithm tended to be sparser than those obtained
through PCA, aiding in their interpretability.

PMF and NMF differ primarily in the objective function and
update rules employed by the algorithm. NMF uses a relatively
straightforward multiplicative update rule (Lee & Seung, 1999;
Gendrin et al., 2008) that is guaranteed to converge to a local
maximum, although this can be slow (Lee & Seung, 1999). An
interesting aspect of this rule is that, with positive initialization,
and SC (which contain the pseudospectra and spatial expressions,
similar to (4)) remain positive in subsequent iterations, and thus
require no additional constraints. PMF, on the other hand, uses an
alternating least squares approach with a squared error objective
function (Paatero and Tapper, 1994; Gendrin et al., 2008). It
gives variables with a high precision (low standard deviation) a
higher impact in the error function, ensuring robustness to noise.
The optimization task is solved using a conjugate gradient
algorithm, iteratively applying non‐negativity constraints during
each optimization step.

NMF has been used in MALDI IMS on multiple
occasions. In the comparison between PCA, ICA, and NMF
by Siy et al. (2008), NMF showed similar results to ICA. It
exhibited crisp spatial separation with low noise in the score
images, but with the added advantage that components were
easy to interpret due to non‐negativity. Similar to ICA, NMF
directed noise into separate components. In our own work, we
have compared the results of PCA and NMF on a synthetic
dataset with known composition (Van de Plas, 2010). This
experiment showed the potential of NMF to extract the
components of the original signal in an easy‐to‐interpret way,
particularly when compared with the linear combinations of
positive and negative peaks and spatial expressions provided
by PCA. Additionally, we demonstrated the use of NMF for the
analysis of MALDI IMS data acquired from a sagittal section
of the mouse brain. It showed good retrieval of anatomically
relevant regions in the brain, where each region had its own
pseudospectrum with region‐specific peaks. Reindl et al. (2011)
used NMF in the analysis of 3D NIMS data of a mouse
mammary tumor, where 30 tissue slices were spatially aligned
using correlation‐based registration, resulting in a 4D data
array (with x, y, z, and m z/ dimensions). Figure 8 shows the
decomposition of this dataset. In order to limit the computa-
tional load, the 200 most abundant ions were selected for
further analysis. The 4D array was unfolded to a 2D matrix, on
which NMF analysis was performed. The resulting score
images were then reconstructed back to 3D images, resulting in
components that are clearly localized in specific 3D regions in
the tumor. In the previously mentioned study by Gut et al.
(2015), which compares different multivariate analysis techni-
ques on MALDI IMS data of pharmaceutical tablets, NMF and
MCR‐ALS showed very comparable results and they were best
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suited to distinguish semiquantitative information in a
relatively heterogeneous tablet. For the NMF and MCR‐ALS
analysis, data were scaled using standard deviation. In this
study, ICA was the best method to extract the most appropriate
contributions of chemical compounds. Xiong et al. (2012b)
have used NMF to retrieve lipid profiles distinguishing

between tumorous and normal human bladder tissue in DESI
imaging data. In recent work by Paine et al. (2016), NMF
allowed the identification of metabolites upregulated in
tumorous tissue versus healthy tissue in a mouse model of
early‐stage ovarian cancer, measured using DESI. In a different
DESI IMS application, Tata et al. (2016) have used NMF and
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FIGURE 6. Example of MCR‐ALS applied in NIMS data. Original caption: MCR‐ALS results of the microbe
dataset. Distribution maps after refolding and MS spectra of all resolved components. Source: Jaumot & Tauler
(2015), Figure 2. Adapted with permission of the Royal Society of Chemistry. MCR‐ALS, multivariate curve
resolution by alternating least squares; NIMS, nanostructure‐initiator mass spectrometry. [Color figure can be
viewed at wileyonlinelibrary.com]
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PCA to identify regions of necrosis in breast cancer.
Boskamp et al. (2017) have used NMF to extract characteristic
spectral patterns in formalin‐fixed paraffin‐embedded tissue
samples as part of a classification study in lung and pancreatic
cancer. Jones et al. (2011) have used both NMF and pLSA in
their workflow aggregating results of six different statistical
techniques for the analysis of intratumor heterogeneity. In this
study, out of all methods applied, NMF and pLSA provided the
best description of the heterogeneity, leading to comparable
results in the contrast of score images as well as in the retrieval
of spectra associated with the tumoral areas. In a later study,

Jones et al. (2013) successfully applied NMF to differentiate
between microscopically identical and highly heterogeneous
tumors. Given the slower calculation speed of pLSA and NMF
compared to standard PCA, Jones et al. demonstrated the
implementation of these techniques on a GPU. This provided
up to a 10‐fold increase in calculation speed over regular CPU
implementations using commercially available hardware
(Jones et al., 2012b). One of the limiting factors of this
approach is that the full dataset needs to fit in GPU memory.
This can be a problem for large IMS datasets, but dimension-
ality reduction can offer a solution there.
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FIGURE 7. Example of MCR applied in DESI data. Original caption: Progressive MCR analysis of rat brain
slice. (a) MCR analysis of the entire image with 8 components. MCR components 2, 3, 5, 7, and 8 show the
presence of distinct brain structures. (b) Optical image of original brain slice showing the location of the
substantia nigra. (c) MCR analysis of the substantia nigra part of the image with 6 components. Component 5
picks out the brain region clearly. (d) Plot of the loadings scores for component 5 from the MCR analysis of the
image for the substantia nigra region. The 11 numbers refer to tentatively identified peaks, which are presented
in table 1. Source: Rao et al. (2012), Figure 7. Reproduced with permission of the Royal Society of Chemistry.
DESI, desorption electrospray ionization; MCR, multivariate curve resolution. [Color figure can be viewed at
wileyonlinelibrary.com]
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In SIMS imaging approaches, NMF has been applied to
identify biochemically distinct signatures of spherular structures
in subretinal pigment epithelial deposits (Thompson et al.,
2015). As mentioned in Section II.B, NMF has also recently
been used in the analysis of high‐spatial resolution 3D TOF‐
SIMS data, where a quasirandom sampling scheme was used to
compute NMF components (Trindade et al., 2017). This
decomposition is shown in Figure 9.

Since its inception, a wide variety of new approaches and
algorithms with different objective functions and update rules have
been developed to perform NMF (Berry et al., 2007; Cichocki et al.,
2009). The newer NMF algorithms often have faster convergence
speeds than the original algorithm proposed by Lee & Seung (1999).
Furthermore, many of these algorithms are ALS‐based (e.g., the
standard NMF algorithm in MATLAB 2016a). Similar to MCR,
additional application‐specific constraints have been introduced into
NMF, including sparseness (Hoyer, 2004), orthogonality (Ding et al.,
2006), and smoothness (Zhe et al., 2006). Conversely, the
introduction of weighted alternating least squares to MCR (MCR‐
WALS) (Wentzell et al., 2006), which uses a maximum likelihood
total least squares approach (Van Huffel & Vandewalle, 1991)

instead of standard least squares, allows measurement error
information to be incorporated into the modeling process, thus
improving MCR’s ability to operate for applications with high noise.
All these improvements drive NMF and MCR to show increasingly
similar characteristics. Albuquerque & Poppi, 2015) have compared
NMF‐ALS, MCR‐ALS, and MCR‐WALS in surface‐enhanced
Raman imaging spectroscopy data. In low‐noise data, NMF‐ALS
produced slightly better results than MCR‐ALS, and superior results
to MCR‐WALS, whereas in data with high heteroscedastic noise
MCR‐WALS outperformed the other methods. For a comparison of
PCA, PMF, MCR‐ALS, and MCR‐WALS, albeit in nonimaging
applications, we refer to Tauler et al. (2009).

There are several aspects to consider when using both NMF
and MCR. Most non‐negativity constrained algorithms require
specification of the number of components prior to starting the
analysis. Also, the components retrieved by NMF and MCR are
not required to be orthogonal, meaning that the resulting
components can be partially overlapping. Furthermore, these
algorithms are iterative and do not have a closed form solution.
This means that, similar to ICA, they have a chance to get stuck in
a local minimum. It is therefore recommended to aggregate results
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FIGURE 8. Example of NMF applied to NIMS data. Original caption: Multivariate analysis of the 3D tumor
model. Non‐negative matrix factorization (NMF) was used to identify regions within the 3D dataset. (a) The 3D
volume defined by component 1/region 1 represents the bulk of the tumor. (b) Component 11/region 2 lies within
the interior of the tumor. (c) A region along the edge of the tumor was identified by component 15/region 3. (c)
The 3D intensity data for each region can be used to create a 3D space‐filling model, where each color
represents a different region within the dataset (region 1: red; region 2: green; region 3: blue). Source:
Reindl et al., 2011, Figure 3. Reproduced with permission of the Royal Society of Chemistry. NIMS,
nanostructure‐initiator mass spectrometry; NMF, nonnegative matrix factorization. [Color figure can be viewed
at wileyonlinelibrary.com]
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over different iterations using random initializations. Additionally,
it is feasible to employ statistical resampling strategies such as
bootstrapping (Van de Plas et al., 2015) to get estimations on the
errors (De Juan & Tauler, 2003) over multiple runs. It is also
possible to guide the method toward a better solution by
initializing the algorithm using prior knowledge (De Juan &
Tauler, 2003) (e.g., estimates of the expected spectra) or
computational methods (e.g., the SIMPLISMA method, which
aims to estimate pure components (Windig & Guilment, 1991;
Wentzell et al., 2006), or PCA combined with Varimax (Lee et al.,
2009)). Donoho & Stodden (2004) have investigated the
conditions under which NMF will give a good decomposition
into parts. While these conditions are difficult to verify in
empirically measured data (where there is no ground truth known),
they have shown that in simulated data and under random
initialization, difficulties arise when overlap exists between the
different parts and common parts are split over different
components. In the context of IMS data, this could mean, for
example, that when several biomolecular ions are simultaneously
present in multiple anatomical structures, these ions could be
incorrectly distributed among the different anatomical structures,
which is not the expected outcome. Boutsidis & Gallopoulos
(2008), however, showed that the original parts can be recovered
by using SVD as initialization for the NMF decomposition.

3. Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (pLSA) is a statistical
analysis tool that was proposed in the context of automated text
analysis (Hofmann, 1999), and was first applied for the analysis
of IMS data by Hanselmann et al. (2008). In text analysis, pLSA
aims to find the underlying, latent “topics” in documents by
analyzing the cooccurrence of words, and it is based on a
statistical mixture model called the aspect model, or aggregate
Markov model.

The model can be written as

∈

= ∑p s c p t p s t p c t( , ) ( ) ( | ) ( | ),
t T

where s is a document, c is a word, t is the latent topic, and T is
the set of all latent topics. In IMS, each spectrum can be
considered a document, each m z/ bin a word, and each pattern
within the tissue (e.g., patches of the same cell type) can be seen
as a latent topic (Hanselmann et al., 2008). The pLSA method
aims to decompose the original data, where each spectrum is
considered a mixture of the different tissue types, into the
underlying latent variables using the iterative expectation
maximization (EM) procedure. The result is a set of probability
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FIGURE 9. Example of NMF applied to SIMS data. Original caption: NMF results with three components for
the fingerprint dataset. Field of view: 1 cm × 1 cm. Source: Trindade et al. (2017), Figure 4. Reproduced with
permission of Elsevier. NMF, nonnegative matrix factorization; SIMS, secondary ion mass spectrometry. [Color
figure can be viewed at wileyonlinelibrary.com]
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distributions throughout the tissue for the latent variables or
classes (similar to the scores of matrix factorization methods)
and the variables that contribute to those classes (similar to the
loadings). Given that the resulting components are probabilities,
the resulting decomposition is non‐negative and easy to
interpret since each peak in the pseudospectrum is directly
related to the amount of contribution it gives to that class.

One of the advantages of pLSA is its sound statistical basis.
Analysis by pLSA results in a generative model, which means
it can be used to generate new spectra on the basis of the learned
underlying model parameters. This aids interpretation of the
model, and allows verification through for example cross‐
validation. It is noteworthy that latent Dirichlet allocation, which
is closely related to pLSA and is discussed below in the context of
clustering (Chernyavsky et al., 2012), improves and generalizes on
the generative model of pLSA. Another important aspect is that it
does not assume Gaussian‐distributed noise and signals. Instead, as
it is based on word‐counts, it assumes Poisson‐distributed data,
which is appropriate for IMS. To deal with Poisson distributions,
pLSA uses the Kullback‐Leibler divergence (cross‐entropy) as a
measure to fit the model. Ding et al. (2008) have previously noted
the parallels between NMF and pLSA, and have shown that NMF
using the Kullback‐Leibler divergence measure and pLSA
optimize the same objective function. Like NMF, pLSA requires
prior selection of the number of components. However,
Hanselmann et al. (2008) proposed the use of the AIC (Akaike,
1973) to select the optimal model from multiple models with
different numbers of components.

Hanselmann et al. (2008) compared PCA, ICA, NN‐
PARAFAC, and pLSA both in simulated IMS data and in
genuine MALDI and SIMS data from breast cancer tumors.
Although PARAFAC was originally developed as a multiway
or tensor decomposition method, it can also be seen as a
constrained two‐way PCA model (Hanselmann et al., 2008).
Two‐way NN‐PARAFAC is akin to standard NMF, and its
solution is generally found using alternating least squares,
assuming Gaussian noise (Hanselmann et al., 2008). As
mentioned in the section on ICA, NN‐PARAFAC and pLSA
were preferred over PCA and ICA due to their interpret-
ability, better component retrieval, and better reconstruction
of the original dataset. Furthermore, the components
retrieved by NN‐PARAFAC and pLSA were sparser than
those obtained with ICA and PCA, further aiding in their
interpretability. In the simulated data, pLSA achieved
retrieval of the original components comparable to NN‐
PARAFAC, but with lower noise in the score images. In the
real dataset, pLSA and NN‐PARAFAC provided comparable
results. However, one of the main advantages of pLSA
components is that they are normalized over all components,
and thus the score images are interpretable as probabilities
for pixels to belong to one category or another. An earlier
application of NN‐PARAFAC for SIMS data can be found in
Broersen et al. (2005), where it is compared with PCA and
PCA + Varimax, with NN‐PARAFAC results deemed
superior over the other techniques.

As mentioned, Jones et al. (2011) have used both NMF and
pLSA in their workflow aggregating results of six different
statistical techniques for the analysis of intratumor heterogeneity.
NMF and pLSA provided the best description of the heterogeneity
out of all tested methods. In follow‐up work, Jones et al. (2012b)
used GPUs to speed up calculation of pLSA.

4. CX/CUR Matrix Decomposition

Yang et al. (2015) introduced the use of CX/CUR matrix
decomposition (Mahoney & Drineas, 2009) for the analysis of
IMS data. Similar to SVD and many other matrix factorization
methods, CX/CUR matrix decompositions aim to find a low‐
rank matrix approximation of the measured data. However,
these methods have the property that they construct this low‐
rank approximation using original rows and columns from the
data matrix as components, rather than using score and loading
vectors, which are linear combinations of the original variables.
In the case of IMS, CX/CUR decomposition will express its
lower‐dimensional representation of the data using a subset of
measured ion images and mass spectra, which makes inter-
pretation more straightforward. While the CX/CUR decom-
position does not strictly impose non‐negativity, the fact that the
measured ion images and spectra it can pull components from
are non‐negative (due to the count‐based nature of mass
spectrometry measurements), makes the resulting decomposi-
tion be non‐negative as well. CX decomposition is used when
only the rows or columns are of interest, whereas CUR
decomposition calculates both the most relevant rows and
columns. Let us take again the original ×m n data matrix D,
where the rows represent the pixels and the columns represent
the spectral (m z/ ) bins. CX factorization then decomposes D
into two matrices C and X , where C is an ×m c matrix that
consists of c columns originally found in of D, and X is a ×c n
matrix such that D CX≈ .

To select the best columns to construct its low‐rank
approximation, the CX/CUR algorithm makes use of the
concept of statistical leverage, that is, the algorithm selects
the columns that exert a disproportionately large influence on
the best low‐rank fit of the data matrix (which can be obtained
using SVD) (Mahoney & Drineas, 2009). Compared to SVD,
the CX/CUR low‐rank approximation is less accurate, but has a
more straightforward interpretation. Furthermore, the algorithm
can be implemented efficiently using greedy search algorithms
and random vector projections, making this approach typically
faster than standard SVD algorithms. Using Apache Spark on a
HPC platform, Gittens et al. (2016) demonstrated the potential
of parallel computing for speeding up the CX decomposition of
a 1TB ion mobility + IMS dataset, achieving decomposition in
1200 sec on 60 nodes (and with NMF and PCA demonstrated on
other large datasets).

Furthermore, CX/CUR matrix decomposition can be
employed as a feature selection method, enabling the selection
of a subset of ion images or mass spectra that best represent the
original data. Yang et al. (2015) show that, using this method, a
full IMS dataset could be reconstructed with a 17% reconstruc-
tion error using only 20 ions or 40 spectra selected by CX/CUR
decomposition. The method can be used as a fast means of
gaining quick insight into an IMS dataset with easy‐to‐interpret
components, while concurrently reducing the dimensionality of
the measurements. Figure 10 shows an example of the CX/CUR
decomposition of IMS data.

By selecting original ion images and mass spectra rather than
disassembling measurements into underlying component images
and pseudospectra, CX/CUR cannot provide the same depth of
insight into underlying trends in the data as other methods such as
NMF and MCR can deliver. For example, the discovery of
cooccurences between ion species is less robust from individually
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measured mass spectra than it is from pseudospectra that form the
consensus across many measurements. Yang et al. (2015) therefore
propose the combined use of NMF and CUR/CX decomposition,
where the leverage scores computed by CX/CUR decompositions
can be used to gauge the informative value of the peaks in NMF
components. It is also worth noting that as CUR decomposition
bases its statistical leverage scores on subspaces obtained by SVD,
its area of applicability will be roughly the same (Mahoney &
Drineas, 2009).

5. Dictionary Learning

Harn et al. (2015) introduced a dictionary learning approach,
called MOLecular Dictionary Learning (MOLDL), for the
analysis of MALDI IMS data. The method considers the
Poisson nature of the data, and also uses prior knowledge on
the IMS measurements to improve component extraction. First,
the method uses prior information on common ion adducts

(in microbial data) to construct a dictionary that contains all
combinations of such common adducts, and this is used as a
basis to decompose the IMS dataset. The MOLDL method
restricts the possible decomposition solutions to viable ion+
adduct combinations, thus grouping together all peaks in the
spectrum that are related to the same molecular species,
substantially reducing spurious solutions. Second, MOLDL
takes spatial information of neighboring pixels into account to
further improve the modeling process. The number of molecular
species in the sample does not need to be specified, as this
number is uncovered automatically through hyper‐parameter
optimization by the algorithm.

MOLDL shows promise for decomposing an IMS dataset
into its constituent molecular species, with demonstrations both
in a synthetic dataset and in MALDI IMS data of microbial
colonies. Due to the fact that the number of possible solutions is
strongly reduced, the risk of local minima is also reduced and
the method is relatively fast. The authors compare the method
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FIGURE 10. Example of CX/CUR decomposition applied to NIMS data. Original caption: Ion‐intensity
visualization of the 20 most important ions selected via deterministic CX decomposition with =k 5 and =c 20
on brain dataset. The distribution of leverage scores is presented in figure 2B [in original paper]. Some of these
ions map to distinct regions in the brain. Particular regions of the cortex, pons, and corpus collosum stand out as
distinct anatomically identifiable regions. Also in the list are likely background ions and contaminants from the
embedding material. Of the 20 ions, little redundancy is present, pointing to the effectiveness of theCX approach
for information prioritization. Source: Reprinted with permission from Yang et al. (2015), Figure 3. Copyright
2015 American Chemical Society. NIMS, nanostructure‐initiator mass spectrometry. [Color figure can be viewed
at wileyonlinelibrary.com]
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with sparse NMF and sparse pLSA, showing better retrieval of
the underlying molecular species by the new MOLDL method.
One caveat expressed by the authors is that the use of a fixed
dictionary can lead to false positives due to real biological but
hereto unknown adducts being discarded.

F. Other Methods

Besides the more generally used factorization methods
described above, several other decomposition techniques
have been applied to IMS data. Gelb et al. (2014) describe a
method aimed at including nonlinear interactions between
components (e.g., due to ion suppression) into the modeling
and decomposition process, by using Taylor series expansion.
The method is demonstrated on a synthetic dataset, and solved
using alternating least squares. Chen et al. (2014) used
(exploratory) factor analysis (FA) in the analysis of a
benchmark dataset of air flow‐assisted ionization imaging
mass spectrometry (AFAI‐IMS), featuring different types of
ink. While FA is related to PCA, it pursues different
optimization goals: FA aims to retrieve factors that account
for common variance in the data, rather than strive for
components explaining maximal variance as is the case in
PCA (Suhr, 2005). The authors state that in their benchmark
dataset, FA allowed better quantification of the different ink
components than PCA. Finally, Signoretto et al. (2011) have
demonstrated the potential of using tensor decomposition
techniques to infer missing values in IMS data.

III. CLUSTERING

This section provides an overview of clustering techniques, a
second widely‐used class of algorithms for exploratory IMS
analysis. By grouping or clustering together pixels with similar
mass spectral profiles and thus similar chemical content, and by
labeling each pixel with the color assigned to its cluster,
clustering techniques can use a single false color image to
provide a low‐dimensional overview of the high‐dimensional
molecular content of an IMS dataset. In IMS, this process is
usually referred to as (spatial) segmentation, since clustering on
the basis of the spectral domain corresponds to segmentation
along the image domain. The use of spatial segmentation is of
particular interest in pathology‐directed and clinical applica-
tions, where it fits into an area that is sometimes referred to as
digital staining. In line with classical pathology, its goal is to
delineate medically‐relevant subregions within a tissue sample
under study. Alternatively, some applications in IMS have used
clustering techniques along the spatial domain, and segment
along the spectral domain (spectral segmentation), grouping
together ion images with a similar spatial expression. However,
most IMS clustering studies focus on spatial segmentation.
Unless specified otherwise, our description will therefore
default to clustering as grouping together pixels on the basis
of their spectral content, rather than grouping together m z/ bins
on the basis of their spatial distribution.

Where factorization methods had a strong representation in
SIMS‐based IMS, clustering techniques seem to have been
predominantly applied in MALDI and DESI IMS, and to a
lesser extent in SIMS.

A. Intermezzo: Distance Metric and Curse of
Dimensionality

Since clustering aims to group together measurements that
report similar content, it is important to define what “similar”
means exactly. In most clustering algorithms this is accom-
plished by defining a distance or similarity metric, an expression
which grades similarity between measurements in terms of a
numerical value (Rokach & Maimon, 2005). These metrics can
be customized for the particular data or analysis task at hand. In
an IMS context, a distance metric will usually report a distance
in molecular content between pixels, with lower values
reporting lower distance between the pixels’ mass spectra, or
higher similarity. Similarity metrics can be seen as the opposite
of distance metrics. A wide variety of distance and similarity
metrics have been used in clustering algorithms in the past,
including the Euclidean distance, Manhattan distance, Min-
kowski distance, Pearson correlation coefficient, and cosine
similarity, to name a few. Each of these measures has its own
advantages and disadvantages, and choosing the right one
depends on both the data under study and the target application.
We will focus on the Euclidean distance, as it is one of the most
commonly used metrics in IMS, and clustering in general
(Rokach & Maimon, 2005). The Euclidean distance is given by
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where p1 and p2 are the mass spectral vectors from two pixels,
and i represents the i‐th mass bin of a spectrum. While this is an
effective distance measure in low‐dimensional data, in the case
of high‐dimensional data (e.g., IMS datasets) the Euclidean
distance measure will not perform optimally. Let us assume for
a moment that we have two mass spectra with 100,000 m z/ bins.
Even if we have large intensity changes in 100 m z/ bins in one
spectrum compared to the other, which can signify an important
biological change, this will have only a very minimal effect on
the total Euclidean distance. Instead, the accumulated noise
over the 99,900 other m z/ bins will potentially have a much
greater effect on the distance. More formally, the variance in the
distance between pairs of points goes toward zero as the
dimensionality of the dataset increases. This is a consequence of
the “curse of dimensionality” as coined by Bellman (Bellman,
1956; Palmer et al., 2013), which greatly impacts data mining in
high‐dimensional data. For this reason, dimensionality reduc-
tion techniques, such as those highlighted in the intermezzo on
dimensionality reduction, are often applied to IMS data prior to
performing clustering analysis. However, as we will see below,
there are also clustering methods that have been designed to
natively handle such high dimensionality.

B. Hierarchical Clustering

1. Principle

One of the first clustering methods applied to MALDI IMS data
was HC (Johnson, 1967;McCombie et al., 2005; Deininger et al.,
2008), a clustering algorithm that is widely used in many fields
(Jain, Murty, & Flynn, 1999). The result of HC is a hierarchical
tree or dendrogram, where each of the leaves of the tree
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represents a pixel. The tree represents a multilevel hierarchy,
where separate clusters on one level are joined together into a
more general cluster on the next level. There are two general
strategies to construct the dendrogram, namely agglomerative
construction and divisive construction. In the agglomerative
strategy (a bottom‐up approach), each pixel is assigned its own
cluster at initiation. In single linkage clustering, which is one of
the ways in which agglomerative HC can be accomplished, the
algorithm at each step combines the two clusters whose closest
members have the smallest distance between them. It continues
this process until the full tree is created and all pixels are
together in one single cluster. In the divisive strategy (a top‐
down approach), all pixels start within a single large cluster, and
at each step the cluster is split into two subclusters, until each
pixel has its own one‐pixel cluster.

Once the tree is complete, the data can be queried for
a particular cluster set by cutting the dendrogram at a user‐
specified number of desired clusters. Alternatively, the
dendrogram can be cut by specifying a maximum (or minimum)
distance for the clusters to be apart. In that case, the number
of clusters will depend on the cluster density and the specific
cut‐off distance selected.

2. Application to IMS

An early application of HC on MALDI IMS data can be found in
Schwartz et al. (2004). Clustering was performed using the mean
spectrum of all spectra collected per tissue sample, effectively
clustering the data on a per‐tissue basis. McCombie et al. (2005)
applied HC for the spatial segmentation of MALDI IMS data
acquired from brain tissue of an Alzheimer’s disease mouse
model. PCA was used to reduce the dimensionality of the data,
primarily to decrease the influence of noise on the clustering
process. When using 200 PCs, the HC led to most pixels being
members of one large cluster, with all remaining pixels being part
of their own single‐pixel clusters, thus resulting in an unsuccessful
clustering. The selection of the cut‐off distance is not discussed in
detail. When selecting the top five PCs though, the data could be
successfully divided into five clusters with multipixel populations
for each individual cluster. The authors use PCA/Discriminant
Analysis (PCA/DA), a supervised statistical analysis technique, to
extract differential signatures between the clusters. This allowed
the retrieval of amyloid‐rich regions in the cortex, which were
separated by one of the clusters. The authors rightfully comment
on the subjectivity of manually preselecting a number of PCs to
achieve more telling clusters. An inappropriate choice could lead
to incomplete clustering as well as a discarding of useful data
features.

Deininger et al. (2010, 2008) have used HC and PCA in the
analysis of MALDI IMS of gastric cancer tissue sections. Figure
11 shows an example from the paper. The HC is performed
using the Euclidean distance metric on PCA‐reduced data (70%
explained variance), and utilizes the Ward linkage method to
construct the dendrogram. This linkage method aims to
minimize the “within cluster” variance. Overall, HC analysis
shows good overlap with histology, separating tumorous and
nontumorous tissue into separate clusters at the higher levels.
The authors demonstrate how the constructed HC dendrogram
allows for guided exploration of IMS data at the pixel level, by
manually selecting the depth to which branches of the tree are
expanded. This provides an easy way to explore areas of interest

in the tissue to greater depth, for example identifying tumor
subareas inside a solid tumor. It should be noted that these IMS‐
based subareas do not always correspond to histologically
distinct areas. This illustrates that segmentation on the basis of
chemical content (through IMS) can potentially reveal tissue
delineation not necessarily apparent from microscopy. It hints at
substantial potential for IMS to detect phenotypic differences
that currently (with non‐IMS modalities) might go undetected.
One consideration, though, is that while such manual explora-
tion can be beneficial in the exploration of the IMS data, there is
a risk that it takes away part of the objectivity of the analysis,
and may lead to confirmation bias. It is therefore preferential to
have statistical measures in place to support the obtained final
clustering.

Bonnel et al. (2011) use the guided HC approach proposed
by Deininger et al. in the analysis of MALDI IMS data of rat
brain and FFPE prostate cancer tissue, with trypsin spotted onto
the tissue for tryptic digestion of proteins. Data was compared
between digested and undigested tissue, as well as between
using bottom‐up and in‐source decay strategies for in‐tissue
protein identification. After HC, PCA was applied on the
clusters of interest, and PC loadings were used to discover
discriminating ions between the clusters. El Ayed et al. (2010)
used HC with PCA‐based dimensionality reduction for analysis
and biomarker discovery in MALDI IMS data of ovarian
cancers.

Brulet et al. (2010) employed HC on cluster TOF‐SIMS
imaging data, in a study aimed at mapping lipids in colonic
mucosa of a cystic fibrosis knockout (KO) mouse model versus
wild type (WT). HC was applied on a preselected list of ions
generated using a genetic algorithm, and HC analysis allowed
clean separation of the KO and WT tissues in two different
clusters. Furthermore, k‐means clustering was used on a selected
list of peaks, and allowed spatial segmentation of the tissues into
regions that showed good agreement with histochemical structure.

Abbassi‐Ghadi et al. (2015) have used HC in a study on the
reproducibility of DESI‐MS imaging, applied to esophageal
cancer. The tumor was divided into four distinct regions. Four
replicates were sectioned for each region, resulting in a total of
16 separate tissue sections. HC was then performed on the mean
spectra of each of the four replicates for each quadrant of the
tumor, and successfully clustered all replicates into the same
cluster.

C. k‐Means Clustering

1. Principle

The k‐means clustering method (Macqueen, 1967; Lloyd, 1982)
is one of the most widely used clustering algorithms in data
analysis (Rokach & Maimon, 2005), primarily due to its speed
and simplicity. In k‐means clustering, the user selects the
desired number of clusters, k , prior to starting the analysis. The
algorithm is then initialized by selecting k points, in the IMS
context these are pixels, which are assigned as the initial cluster
centers or centroids. This can be done through random
assignment, but is now generally performed using the
k‐means++ algorithm (Arthur & Vassilvitskii, 2007), which
randomly chooses an initial data point as the first cluster center
and then tries to find other points that are “maximally spread
out” in the data space. This spreading of the initial clusters has
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been shown to improve convergence and clustering results. The
algorithm then iteratively applies the following steps:

• Calculate the distance of each pixel in the dataset to each of
the cluster centers.

• Assign each pixel membership to the cluster whose centroid
lies closest.

• Calculate the new cluster centroids by taking the mean
spectrum (over all mass bins) of all pixels belonging to the
cluster.

• Repeat until the algorithm converges, and pixels no longer
change cluster membership.

The k‐means algorithm does not have a unique solution,
and the random initialization can influence the clustering
results. This can lead to different results each time it is run,
and runs the risk that the algorithm can get stuck in a local
minimum. For this reason, it is generally recommended to re‐
run the algorithm several times and take the consensus over
multiple runs. Initialization using prior information, rather than

using random values, can also improve clustering results.
Similar to the task of determining the number of components in
factorization methods, determining the optimal number of
clusters can be difficult without prior knowledge. Therefore, it
is not uncommon for the clustering process to be performed
multiple times with different cluster numbers, enabling selec-
tion of a segmentation that is optimal in some sense.

2. Application to IMS

Early applications of k‐means clustering in MALDI IMS data
can be found in McCombie et al. (2005) and Muir et al. (2007),
both of which applied k‐means clustering to IMS data acquired
from mouse brain tissue. Similar to its use in HC, both studies
used PCA as a preprocessing method to reduce the dimension-
ality of the dataset and to remove noisy components in order
to achieve a more consistent, smoother spatial segmentation of
the data. Jones et al. (2011) used k‐means, directly applied to
peak‐picked MALDI IMS data, as one of the techniques in their
corroboration analysis. Xiong et al. (2012c) demonstrated the
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FIGURE 11. Example of PCA and HC in MALDI IMS data. Original caption: PCA and hierarchical clustering
for a gastric cancer section. (a) H&E‐stained tissue section after MALDI imaging measurement. (b) Scores of the
first principal component show the hot colors in the tumor area. (c) Hierarchical clustering: Top dendrogram
nodes differentiate tumor (green and magenta) versus nontumor (blue, squamous epithelium in red). (d) The
dendrogram can be expanded down the tumor node to evaluate the molecular differentiation inside the tumor. This
can also be directly correlated with the histology. This workflow enables the fast and concise selection of mass
spectra representative for specific tissue states. Scale bar: 2 mm. Source: Deininger et al., 2010, Figure 22.2.
Reproduced with permission from Springer. IMS, imaging mass spectrometry; MALDI, matrix‐assisted laser
desorption/ionization; PCA, principal component analysis. [Color figure can be viewed at wileyonlinelibrary.com]
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applicability of k‐means clustering to peak‐picked 3D DESI‐
MS imaging data, after the data acquired in the different tissue
sections were spatially registered using a self‐organizing
feature map artificial neural network. This approach allowed
the retrieval of biologically relevant volumes from IMS data
acquired from a full mouse brain. Brulet et al. (2010) have used
k‐means on cluster TOF‐SIMS imaging data. Palmer et al.
(2015) successfully used k‐means in the clustering of data after
dimensionality reduction and by using less than one percent of
the original data (see also Figure 4). Van de Plas et al. (2008,
2010) used k‐means clustering to successfully cluster IMS data
after dimensionality reduction using DWT.

In most IMS applications, clustering has been used to
perform a spatial segmentation of the tissue, that is, to group
individual pixels together into clusters. However, there are
several studies that have taken a different approach by
performing the clustering analysis on the ion images and
segmenting the m z/ bins instead. In this approach, ion images
that exhibit a similar spatial expression can be grouped together.
Visualization of the cluster centers no longer yields a mean
mass spectrum then, but rather a mean ion image per cluster,

which allows for straightforward insight into the content of the
IMS dataset. Konicek et al. (2012) have used this approach in
the analysis of SIMS imaging data of laser‐printed inks. The
similarity of different ion images was determined using a
correlation‐based distance measure, enabling subclassification
and identification of different ink patterns. A similar approach
was taken by Alexandrov et al. (2013b), who applied a
probabilistic clustering algorithm (a Gaussian mixture model,
optimized using EM) to group together ion images in MALDI
IMS data, which showed good retrieval of primary trends. An
example is shown in Figure 12.

The k‐means clustering method, and more recently its
variant bisecting k‐means, have been used in many of the
clustering approaches that incorporate spatial information into
the segmentation process (see also Section III.E).

3. Bisecting k‐means
Bisecting k‐means (Steinbach, Karypis, & Kumar, 2000) can be
considered a hybrid between agglomerative HC and k‐means
clustering. In this algorithm, all measurements in the dataset start
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FIGURE 12. Example of clustering of ion images. Original caption: Results of the analysis of a MALDI
imaging mass spectrometry dataset of a rat brain coronal section, following the proposed approach based on
clustering m z/ images into 10 clusters according to their spatial similarity. (a) Cluster‐average images represent
detected spatial patterns. (b) Data‐set‐average spectrum with assignments of m z/ values to the clusters; for
detailed cluster assignments of all m z/ values, see Table S2 [in original paper] of the Supporting Information. (c)
Visualization of m z/ images in the space of their two first principal components; one dot represents an m z/
image, and dots are colored according to their cluster assignments. (d) Intracluster variances, where the
numbers on the top of bars represent the cluster sizes. (e) Optical image of the section with anatomical
annotation provided. Plots A‐B show the variety of the spatial patterns among m z/ images and help understand
how each m z/ image looks. Plots c and d help evaluate the clustering. For results for 5, 15, and 20 clusters, see
Figures S3, S4, and S5 [in original paper] of the Supporting Information. Source: Reprinted with permission
from Alexandrov et al., 2013b, Figure 1. Copyright 2013 American Chemical Society. MALDI, matrix‐assisted
laser desorption/ionization. [Color figure can be viewed at wileyonlinelibrary.com]
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as members of one large cluster. This cluster is subsequently
divided into two subclusters using regular k‐means clustering. At
each subsequent step, a subcluster is selected and again bisected
or divided into two subclusters using 2‐class k‐means clustering.
The process is repeated until the desired number of clusters is
reached. In theory, the subcluster to select next should be the one
that results in the highest overall intra‐cluster similarity. However,
Steinbach et al. (2000) found little difference between methods to
select clusters on the basis of similarity, and therefore chose to
select the largest remaining cluster in each consecutive step.
Trede et al. (2012a) applied bisecting k‐means in the same way as
regular HC, repeating the clustering until each cluster has only
one sample in it, creating a full hierarchical tree. Bisecting k‐
means has been shown to produce better results in document
clustering than regular k‐means, and tends to give comparable or
better results than agglomerative HC, while having a better run‐
time complexity: O n( ) vs. O n( )2 (Steinbach, Karypis, & Kumar,
2000). A substantial advantage of bisecting k‐means clustering
over regular k‐means clustering is that the clustering process does
not need to be re‐run if more (or fewer) clusters are desired.

D. High Dimensional Data Clustering

1. Principle

High dimensional data clustering (HDDC) is a clustering technique
that was developed by Bouveyron et al. (2007) and that aims to
improve on the issues related to using Gaussian mixture model
(GMM)‐based clustering on high‐dimensional data. Many popular
clustering algorithms, including k‐means, assume an underlying
Gaussian mixture model (McLachlan & Peel, 2004; Bou-
veyron et al., 2007). These GMM‐based methods aim to model
the observed data as generated from a mixture of a finite number of
Gaussian distributions with unknown parameters, which are often
estimated using the EM algorithm (Dempster, Laird, & Rubin,
1977). GMM clustering can be considered a generalization of k‐
means clustering that incorporates information about the variance
and covariance of the data into the clustering process (Press et al.,
2007). While k‐means implicitly assumes clusters to have the same
variance in each dimension, and consequently expects spherical
clusters, GMM clustering allows for the modeling of elliptical‐
shaped clusters by taking variance and covariance into account.
However, GMMs generally do not scale well when the number of
data points is small compared with the number of parameters that
need to be estimated, again due to the curse of dimensionality
(Bellman, 1956). In order to handle this problem, Bouveyron et al.
(2007) assume that the data lies in a subspace that is lower‐
dimensional than that of the original data space, and that each class
is located around its own class‐specific subspace, a concept that is
explored in greater depth in Section IV. These assumptions lead to
an adapted version of the GMM, that has a lower number of
parameters to be estimated, which, in turn, avoids overfitting of the
model. The number of classes in HDDC is automatically estimated
using the BIC (Schwarz, 1978), whereas the dimensionality of
each class‐specific subspace is estimated using the scree‐test of
Cattell (Cattell, 1966) and the parameters of their Gaussian
mixtures are estimated using the EM algorithm. In their work,
HDDC is shown to outperform standard GMM in clustering of
several datasets, and it performs well on a remote sensing
hyperspectral imaging dataset consisting of 256 spectral channels.

2. Application to IMS

HDDC was used in spatially‐aware clustering of MALDI IMS
data (Alexandrov et al., 2010), obtained from rat brain and
human neuroendocrine tumor tissue, and it provided improved
results over k‐means clustering. In their follow‐up work,
Alexandrov & Kobarg (2011) noted that while k‐means
clustering results underperform those obtained by HDDC, the
calculation time of HDDC is substantially longer than that of
k‐means, which may be prohibitive in some applications. In
later work, Alexandrov et al. (2013a) saw minimal differences
in clustering results between HDDC and k‐means, which was
attributed to improved preprocessing and alignment prior to
clustering. It is worth noting that these analyses were performed
on peak‐picked data, and thus the dimensionality of the data had
been greatly reduced prior to analysis. The difference between
HDDC and k‐means on full size full profile IMS data are
expected to be larger. Furthermore, although in the preceding
work HDDC is used for hard segmentation, HDDC and GMMs
natively allow for soft‐segmentation, a topic discussed in
Section III.F.

E. Incorporation of Spatial Information

The application of dimensionality reduction prior to performing
clustering can remove noise variation from the data and thus
improve the smoothness of a spatial segmentation result.
However, in many cases a substantial amount of nonbiological
inter‐pixel variation will remain, resulting in spatially discon-
tinuous segmentation maps. To address this issue, several
approaches have been proposed to smooth spatial segmentation
maps. Many of these methods exploit the spatial or neighbor-
hood information available between pixels, also in IMS data.

One approach is to reduce inter‐pixel variation in IMS
data prior to applying the clustering algorithm. McDonnell et al.
(2008) demonstrated the use of a basic near‐neighborhood
smoothing algorithm on individual ion images, to reduce pixel‐
to‐pixel variation in the context of correlation of ion images.
While useful for enhancing interpretability of images, a spatial
filter such as the median or convolution filter holds the risk
of smoothing out the edges between regions and eroding fine
structure in the images, which can be an important loss in the
context of clustering. Alexandrov et al. (2010) proposed the
application of an adaptive, edge‐preserving denoising algo-
rithm. It employs the total variation‐minimizing Chambolle
algorithm (Chambolle, 2004), which takes information of
neighboring pixels into account and adapts the smoothing to
local noise levels, prior to performing HDDC. As shown in
Figure 13, the clustering results obtained this way are more
spatially homogeneous than those obtained without denoising,
and showed consistency with anatomical areas in the tissue.
More recently, this strategy was used for data mining of 3D
IMS datasets (Trede et al., 2012b; Thiele et al., 2014), where
edge‐preserving denoising was applied in three dimensions.
The more memory‐efficient bisecting k‐means algorithm was
used instead of HDDC in order to cope with the large amounts
of data in a 3D IMS dataset. This workflow has also been
successfully applied in the clustering of confocal Raman micro‐
spectroscopic imaging data (Alexandrov & Lasch, 2013).

Winderbaum et al. (2015) developed a smoothing algo-
rithm that aims to remove spatially dispersed pixels, while
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smoothing over pixels that show ample regional abundance. The
algorithm iterates, using the proportion of neighborhood pixels
that exhibit a certain ion to discriminate between noisy pixels
and true signal. The resulting smoothed data was used as input
for k‐means clustering. Afterward the cluster results were
analyzed using a difference in proportions of occurrence
(DIPPS) approach, which aims to find the best discriminating
m z/ bins in the dataset by ranking them for specificity and
sensitivity in predicting pixel membership to a cluster.

In other work, Alexandrov et al. (2011) proposed a
spatially aware clustering approach, which incorporates spatial
information directly into the clustering process rather than
through a prefiltering step. The spectral similarity of pixels is
combined with their spatial proximity in the tissue (through
the use of Gaussian weights) into the distance measure, and
clustering is performed on this combined distance matrix.

Alexandrov et al. attempted to assess clustering results
using the silhouette criterion (Rousseeuw, 1987). However, no

correspondence could be found between the criterion and the
visual quality of the maps. The structure‐adaptive version of this
algorithm allows the introduction of an additional factor that
takes edge‐preservation into account. Furthermore, the FastMap
(Faloutsos & Lin, 1995) transformation is introduced for
dimensionality reduction, and makes the calculation of the
distances between pixels more efficient. The k‐means method,
and later bisecting k‐means (Trede et al., 2012b; Klein et al.,
2014; Thiele et al., 2014; Krasny et al., 2015), have been used to
cluster the data after the dimensionality reduction step. When
comparing the newly developed methods to HC combined
with PCA, the spatially aware clustering approaches produced
smoother, more homogeneous segmentation maps. The spatially
aware approaches offered comparable results to the previously
used combined edge‐preserving denoising HDDC approach, but
with greater speed and memory efficiency.

Hanselmann et al. (2009a) used a posthoc approach to
achieve smoother segmentation maps, by applying a median or
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FIGURE 13. Example of incorporation of spatial information in clustering of MALDI data. Original caption:
The human neuroendocrine tumor dataset. (a) 3D‐structure of the tissue used for MALDI‐imaging measurement
and optical image of the H&E stained section with main functional structures. (b) Segmentation map, strong
denoising, 10 clusters. (c) The matrix showing distances between clusters for panel B. (d) Segmentation map,
weak denoising, 10 clusters. Source: Reprinted with permission from Alexandrov et al., 2010, Figure 10.
Copyright 2010 American Chemical Society. MALDI, matrix‐assisted laser desorption/ionization. [Color figure
can be viewed at wileyonlinelibrary.com]
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Markov Random Field (MRF) filter on class‐probability maps
generated by a (supervised) random forest‐based classifier. In
other work, Hanselmann et al. (2009b) introduced spatial
information (also posthoc) into the segmentation of such
probability maps using a custom developed multivariate
watershed segmentation approach. Chernyavsky et al. (2012)
applied posthoc smoothing to the results of latent
Dirichlet allocation‐based clustering. It should be noted though
that this smoothing is performed on soft segmentation probability
maps (discussed below) rather than on hard clustering results.
Overall, performing smoothing after clustering does hold the risk
of information loss, and integrating spatial information at an
earlier level into the analysis is probably preferable. In a different
application, Trede et al. (Alexandrov et al., 2011; Trede et al.,
2012c) used a topology‐preserving method to increase the spatial
resolution of segmentation maps posthoc, creating a super‐
resolution map with a spatial resolution finer than that of the
original image.

While the integration of spatial information can be valuable
for improving the signal‐to‐noise ratio, for removing spurious
signals, and for smoothing segmentation results to aid visual
interpretation, it must be noted that these methods should be
applied with caution. Similar to what was mentioned in Section
II.D regarding MAF, these techniques can have adverse effects
in datasets where spatial resolution is critical to understanding
the underlying biology (or sample content), particularly when
the tissue features of interest are only sparsely sampled by the
given IMS pixel size. A spatial model that assumes that signals
in isolated pixels or small regions are likely due to noise, can
potentially filter out small but genuine tissue signals, an aspect
mentioned for example in Bruand et al. (2011a). It is therefore
important to always consider the underlying assumptions of the
model, and consider whether these assumptions are valid for the
application at hand.

F. Soft Segmentation Techniques

Much of the work in clustering and digital staining of IMS data
uses “hard segmentation,” which means that pixels can only be
appointed membership to a single cluster. While hard
segmentation can offer valuable and immediate insight into
the content of an IMS dataset, there are some caveats to
consider. Clustering algorithms such as standard k‐means will
in general appoint each pixel to one of k clusters, namely the
cluster that has a mean spectrum closest to the spectrum of that
pixel. This assignment is done regardless of whether that pixel
is a genuinely good match to the cluster mean, or whether that
cluster mean is just the best out of a set of not‐so‐good matches.
It also means that the pixel does not necessarily resemble the
rest of the pixels assigned to that cluster. Besides the fact that
cluster quality is often hard to verify in general (also in IMS),
the hard assignment of a pixel to one and not several clusters
hides a lot of the nuance of how well a pixel fits into its assigned
cluster. It is therefore possible that a clustering run groups a set
of pixels together because they are loosely similar to each
other according to the distance measure, while in reality they
are representative of very different tissue classes. That type of
situation will be difficult to spot in hard segmentation results.

Another issue poses itself when a pixel exhibits a chemical
expression that is a mix of (the means of) two clusters, for
example, because the pixel is located at the boundary between

two regions. A hard segmentation approach will appoint the
pixel to either one region or the other, effectively ignoring the
(partial) membership to the region that was not assigned. This
becomes especially important in the context of digital staining
and border delineation of cancerous tissue, that is, for pixels that
lie on the border between different areas of a tumor, or between
healthy and diseased tissue.

One way to partly alleviate these problems is to use soft
segmentation rather than hard segmentation when performing
clustering analysis. In soft segmentation, a pixel can be a
member of multiple clusters, rather than being exclusive to a
single cluster. This can provide a more nuanced and informed
view on the data. However, it has the disadvantage that
interpretation becomes harder, as this information can generally
no longer be summarized in a single segmentation image.
Instead, a pixel‐wise degree of membership or probability map
to a particular cluster can be shown as an image.

1. Fuzzy c‐means clustering
A straightforward means of performing soft segmentation is
through the fuzzy c‐means clustering (FCM) algorithm. It is
similar in its operation to regular k‐means clustering, except
that it allows for membership of the data points to multiple
clusters. The degree of membership of a data point to a cluster is
inversely related to its distance to the various cluster means,
with membership summing up to one over all clusters. The
degree of “fuzziness,” that is, the degree to which multi-
membership is allowed, is a hyper‐parameter of the algorithm
that needs to be set. Similar to k‐means, the initialization of the
algorithm is random, and thus it is preferable to perform
multiple iterations of the clustering process. An early applica-
tion of FCM in 3D SIMS imaging data can be found in
Wolkenstein et al. (1999) where wavelet denoising was used to
smoothen ion images prior to segmentation. Segmentation was
performed on data of individual ion species rather than the full
IMS data, with the aim of performing 3D segmentation. In
Jones et al. (2011), FCM demonstrated good assessment of
tumor heterogeneity in myxofibrosarcoma, providing results
comparable with pLSA and NMF. Figure 14 shows an example.

2. AMASS

Bruand et al. (2011a) developed the AMASS algorithm, which
allows for soft‐segmentation of an IMS dataset. While this
algorithm was developed for semisupervised segmentation,
based on an initial segmentation seed provided by user input
(AMASS stands for algorithm for MSI analysis by semisuper-
vised segmentation), it also provides good segmentation results
when used in an unsupervised way, through random initializa-
tion. AMASS uses a probability‐based approach to clustering.
After random initialization, the algorithm first ranks the
importance of each m z/ value in discriminating between
clusters using the Mann‐Whitney‐Wilcoxon ρ‐statistic Wind-
erbaum et al. (2015) use a similar approach). Since this is a
rank‐based statistic, it prevents single m z/ bins from having too
much influence on the clustering process. The resulting
weighted intensity scores are then used to calculate the log‐
odds scores for each individual pixel to belong to each of the
clusters. In the next iteration, the algorithm looks for pixels with
similar scores against all clusters, and attempts to define new
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clusters based on these similarities, repeating the process until
convergence. Pixels are not required to belong to any of the
clusters, if no proper match is found. The final clustering results
can be used as soft segmentation maps, where the log‐odds
scores show the probability of a pixel belonging to each of the
clusters. Furthermore, the log‐odds scores can be used in a
further HC step if hard segmentation is desired. An example of
the AMASS algorithm is shown in Figure 15.

3. Latent Dirichlet Allocation

Chernyavsky et al. (2012) used latent Dirichlet allocation in the
soft segmentation of MALDI IMS data. Latent Dirichlet allocation
is a generative statistical model that was developed in the context
of natural language text processing, and is closely related to the
pLSA method used for factorization by Hanselmann et al. (2008)
(discussed above). Latent Dirichlet allocation can be seen as a
generalization of pLSA that provides a more advanced generative
model, as it allows modeling of topic distributions per document
through Dirichlet priors (Blei, Ng, & Jordan, 2003). In the context
of clustering IMS data, the latent Dirichlet allocation model gives
the distribution of each tissue type (topic, cluster) per pixel
(document), and can thus assign probabilities for each pixel to
belong to a cluster. Furthermore, the model provides a mass
distribution for each topic, which is equivalent to the cluster
mean in other methods. Chernyavsky et al. note that latent
Dirichlet allocation has reduced memory requirements over HC,
and reduced complexity compared to HDDC. They also note that
the method incorporates more information into the clustering
process than most other clustering methods that incorporate
only distance. Chernyavsky et al. (2012) use the method in the
segmentation of MALDI IMS data acquired from mouse brain
tissue, demonstrating the combination of multiple probability
maps. Furthermore, the method is combined with posthoc
smoothing (using a Markov Random Field filter on the probability
maps) to generate smooth segmentation maps, similar to
Hanselmann et al. (2009a). Willse et al. (2002) have proposed
the use of Poisson and multinomial mixture models for the
segmentation of SIMS imaging data, where model parameters are
estimated using an EM approach, and each pixel is assigned a
probability of belonging to each of k mixture classes.

4. Spatial Shrunken Centroids

Bemis et al. (2016) developed the spatial shrunken centroids
framework, a statistical model‐based framework for classifica-
tion and segmentation of IMS data (incorporated into the
Cardinal R package by the same authors). The spatial shrunken
centroid framework combines the concept of nearest shrunken
centroid classification (proposed by Tibshirani et al. (2002,
2003) for the classification of gene expression microarray data)
with that of spatially aware clustering by Alexandrov et al.
(Alexandrov et al., 2010; Alexandrov & Kobarg, 2011). The
nearest shrunken centroid method builds on standard nearest
centroid classification by adding feature selection directly into
the classification step. Standard nearest centroid classification is
the classification step that occurs in each iteration of the k‐
means clustering algorithm, whereby a pixel is compared to the
centroid of each class by calculating the distance between the
pixel and the cluster centroid. The pixel is then assigned to, or
classified into, the cluster whose centroid lies closest. In
standard nearest centroid classification, all features, that is, the
full (or peak‐picked) spectrum is used to calculate this distance,
whereas the nearest shrunken centroid method aims to use only
those features for classification that are relevant to the cluster
class. This feature selection process is achieved through a
combination of within‐class feature normalization, t‐statistics,
and soft‐thresholding. This makes the centroids easy to
interpret, and gives direct insight into which spectral features
are truly relevant for the cluster, while removing noisy features
that do not contribute to the clustering process. We refer to
Tibshirani et al. (2003) and Bemis et al. (2016) for details.

Bemis et al. (2016) have applied the spatial shrunken
centroids framework to several datasets, including a DESI IMS
dataset obtained from a pig fetus cross‐section and MALDI IMS
and DESI IMS datasets from rat brain sections. In the pig fetus
dataset, the spatial shrunken centroids method showed spatially
smooth clustering results, with little noise and clean edges between
segments. An example is shown in Figure 16. The result of the
segmentation process is a probability per pixel of membership to
each cluster, where the number of clusters is determined in a data‐
driven way by observing the interactions between the segmentation
results and the shrinkage factor. The method robustly retrieves the
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FIGURE 14. Example of fuzzy clustering. Original caption: Identification of intratumor heterogeneity in
imaging MS datasets by unsupervised multivariate analysis. Target images were created that contain the
unrefined heterogeneity in an imaging MS dataset of intermediate grade myxofibrosarcoma. The outputs of
principal component analysis, non‐negative matrix factorization, maximum autocorrelation factor analysis, fuzzy
c‐means, and probabilistic latent semantic analysis were then examined to identify the components that
contained the heterogeneity of the target images. The digit contained in the upper right corner of the component
mass spectra indicates which component was used. Most data analysis techniques could reproduce the target
images. When the component images reproduced the target images it can be seen that the component mass
spectra contain the same peptide and protein ions. Note: PCA and MAF can have negative values, consequently
the background surrounding the tissue (defined as zero intensity) can change color. y axis labels, a.u., arbitrary
units. Source: Adapted from Jones et al., 2011, Figure 7, under CC‐BY License. MS, mass spectrometry. [Color
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 15. Example of AMASS. Original caption: (a) List of queries and their associated results. Shown on
each row are the original query, the corresponding weighted intensities image, the smoothed weighted intensities
image, and the log‐odds scores image. Querying with specific image segments results in the recruitment of other
spots with similar molecular signatures. For example, querying with one ganglion or a few pores recruits the
whole CNS or the rest of the pores, respectively. (b) Detailed images for 3 different queries. We can see that
while smoothing helps in cleaning noise on larger queries such as the ventral query, it also can cause the loss of
some MALDI spots in the case of smaller regions, such as the pores. Source: Reprinted with permission from
Bruand et al., 2011a, Figure 2. Copyright 2011 American Chemical Society. AMASS, algorithm for MSI
analysis by semisupervised segmentation. [Color figure can be viewed at wileyonlinelibrary.com]
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same clusters with different types of spatial smoothing incorpo-
rated into the analysis, outperforming regular k‐means clustering.
The shrunken centroids also allow for easy selection of important
and representative ion images for each cluster. Patterson et al.
(2016) have used the spatially‐aware shrunken centroids method in
the analysis of 3D MALDI IMS data of atherosclerotic plaque
collected in human and mouse tissue.

G. Correlation Analysis

A spatial segmentation of an IMS dataset will divide the tissue or
sample into spatial regions with similar chemical content. It is
generally possible to examine the mean chemical content of
a cluster by, for example, taking the mean or median mass spectrum
over all pixels in that cluster (i.e., the cluster centroid). However, the

segmentation usually does not provide direct information on which
ions are specifically or differentially expressed in the spatial region
highlighted by that cluster. To retrieve such information, the area
defined by the cluster can be used as a mask to perform a query for
ion images that have a spatially similar or correlating expression.
Although in many cases these techniques can be considered
supervised (in that a user provides the target distribution to correlate
ion images to), their relationship to clustering of spatial distributions
merits a quick overview.

Van de Plas et al. (2007c) developed a non‐negative least
squares approach that allowed filtering and retrieval of ion
images on the basis of their spatial similarity to a (binary)
spatial query image (e.g., a user‐drawn or clustering‐provided
ROI). This approach allowed for fast retrieval of relevant ion
images, and included more advanced filter criteria such as
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FIGURE 16. Example of spatial shrunken centroids clustering. Original caption: Pig fetus cross‐section:
segmentation comparison. (a) k‐means clustering applied to the peak‐picked spectra. (b) k‐means clustering
applied to the first five principal components of the peak‐picked spectra. (c) Spatially aware (SA) clustering. (d)
Spatially aware structurally adaptive (SASA) clustering. (e) Spatial shrunken centroids with SA distance. (f)
Spatial shrunken centroids with SASA distance. Source: Reproduced from Bemis et al., 2016, Figure 3, under
CC‐BY License. [Color figure can be viewed at wileyonlinelibrary.com]
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“don’t care pixels.” Alexandrov et al., 2010) used binary masks
defined through clustering to find correlating ion images in a
full IMS dataset. Suits et al. (Suits et al., 2013; Fehniger et al.,
2014) developed and demonstrated an efficient approach, using
(spatial) correlation, to find ion images that have a similar
spatial expression to a target ion image or mask image.
McDonnell et al. (2008) investigated colocalization between ion
images on the basis of (spatial) correlation. Kaddi et al. (2013)
used a hypergeometric similarity measure to retrieve ion images
similar to a query ion image, while Bruand et al. (2011a, 2011b)
showed the use of clustering results and ROIs to find molecular
signatures and ions of interest, using rank‐based statistics.

In related research, Verbeeck et al. (2014a) demonstrated
the use of masks (defined through linking IMS data to an
anatomical atlas) to retrieve ions specific to a particular
anatomical structure. Similar atlas‐based approaches can be
found in Abdelmoula et al. (2014a) and Carreira et al. (2015).
Besides providing a more in‐depth analysis of clustering
results, spatial correlation querying can also be used to get
deeper insights into the results of matrix decompositions. The
peaks provided by the pseudospectra in a matrix decomposi-
tion are not always directly interpretable. By using the spatial
expression image of a factorization component as the input to
a spatial query, or by creating a binary mask on the basis of a
component image using thresholds, it becomes possible to
quickly retrieve ion images related to a particular component
in the IMS data.

IV. MANIFOLD LEARNING

Techniques such as PCA, ICA, and NMF are often used to
project high‐dimensional IMS data to a lower‐dimensional
space. Representing a dataset using a reduced number of
variables, while minimizing information loss, tends to reveal
underlying structure and trends in the data. While factorization
techniques are often useful for this purpose, their linear nature

makes them less‐suited if nonlinear structure is present in the
data. In that case, to enable integration of nonlinearities into the
dimensionality reduction, (nonlinear) manifold learning techni-
ques (Cayton, 2005; Tenenbaum, De Silva, & Langford, 2000;
Roweis & Saul, 2000) can be employed.

The idea behind manifold learning is that the dimension-
ality of the data are only artificially high, and that the data
points in reality lie on a lower‐dimensional manifold that is
embedded in the high‐dimensional feature space (Cayton,
2005). A manifold is defined as a topological space, which is
locally Euclidean. One well‐known example of a manifold is a
surface, which is a two‐dimensional manifold. The goal of
nonlinear manifold learning is to uncover this underlying
manifold structure from the data, and in that sense it can be
viewed as a nonlinear partner to the previously discussed linear
factorization methods. If the data populates a linear subspace
(e.g., a flat plane rather than a curved surface), linear techniques
such as PCA can reveal that subspace exactly. If it populates a
nonlinear subspace, manifold learning will be more naturally
suited to capture that subspace efficiently. An example of this is
shown in Figure 17. Nonlinear dimensionality reduction
techniques have been shown especially useful for visualization
of high‐dimensional data. Easy visualization and human
interpretation are largely limited to 3D or 4D representations.
Higher‐dimensional visualizations quickly become over-
whelming (de Oliveira & Levkowitz, 2003). Since manifold
learning is often able to pack more data variation into a lower‐
dimensional representation than a linear technique, it is often
better suited to provide a visual representation of data without
leading to overly complex plots.

In the case of IMS data, linear techniques generally require
more dimensions to graphically represent the bulk of the
information than manifold learning techniques, which tend to
provide a richer and more concise representation of the high‐
dimensional measurements.

Furthermore, where most linear techniques (such as
PCA) focus on keeping dissimilar points far apart in the
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FIGURE 17. Example of nonlinear dimensionality reduction. Original caption: The problem of nonlinear
dimensionality reduction, as illustrated for three‐dimensional data (b) sampled from a two‐dimensional manifold
(a). An unsupervised learning algorithm must discover the global internal coordinates of the manifold without
signals that explicitly indicate how the data should be embedded in two dimensions. The color coding illustrates
the neighborhood preserving mapping discovered by LLE; black outlines in (b) and (c) show the neighborhood of
a single point. Unlike LLE, projections of the data by principal component analysis (PCA) or classical MDS map
faraway data points to nearby points in the plane, failing to identify the underlying structure of the manifold.
Note that mixture models for local dimensionality reduction, which cluster the data and perform PCA within
each cluster, do not address the problem considered here: namely, how to map high‐dimensional data into a
single global coordinate system of lower dimensionality. Source: Roweis and Saul, 2000, Figure 1. Reprinted
with permission from AAAS. [Color figure can be viewed at wileyonlinelibrary.com]
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low‐dimensional representation, manifold learning techniques
such as t‐distributed stochastic neighborhood embedding (t‐
SNE) focus on representing similar data points close together in
the target space. This is sometimes more informative (van der
Maaten & Hinton, 2008) and leads to clustering of similar
points regardless of whether their relationship is linear.
Manifold learning techniques have been used for dimensionality
reduction in applications where nonlinearities play a substantial
role, such as the classification of written data (van der Maaten &
Hinton, 2008; Roweis & Saul, 2000), facial recognition
(Tenenbaum, De Silva, & Langford, 2000; Roweis & Saul,
2000), and recognition of objects photographed from different
angles (Tenenbaum, De Silva, & Langford, 2000). A disadvan-
tage of manifold learning techniques, compared to linear
factorization, is that it is often difficult to explicitly determine
the new dimensions or variables that constitute the projections,
whereas in linear factorization methods these arise naturally as
products of the decomposition.

A. t‐Distributed Stochastic Neighborhood
Embedding

1. Principle

While a host of manifold learning techniques exist (Cayton,
2005), t‐SNE, a technique introduced by van der Maaten and
Hinton, 2008), has seen particular application to MALDI IMS
data. The t‐SNE algorithm has two steps. First, it converts the
Euclidean distances between pairs of data points in the high‐
dimensional space into conditional probabilities, where similar
points have a high probability of being picked as neighbor and
dissimilar points have a very low probability of being picked as
neighbor. In the second step, the algorithm takes this probability
distribution in the high‐dimensional space and arranges the
points in the low‐dimensional space such that their arrangement
results in a probability distribution that matches that of the
points in the high‐dimensional space as closely as possible. This
is achieved by minimizing the Kullback‐Leibler divergence (a
statistical measure for comparing probability distributions)
between the high and low‐dimensional probability distributions.

2. Application to IMS

In IMS research, t‐SNE was first applied by Fonville et al.
(2013) to devise a novel, intuitive visualization technique for
MALDI IMS data, and hyperspectral data in general. The goal
of this visualization technique is to represent as much
information from the data as possible in a single overview
image, similar to what standard (hard) segmentation maps aim
to do. Rather than clustering the data, however, Fonville et al.
combined t‐SNE dimensionality reduction with a color‐coding
scheme. The color scheme encodes the distances (in the
dimensionality‐reduced IMS data) between pixels. In this
way, the method allows for visualization of the continuum of
slightly differing molecular profiles between pixels. Figure 18
shows an example of this. In other work, the same group
investigated color coding schemes more deeply, and addressed
their impact on human perception (Race & Bunch, 2015).
Fonville et al. compared the performance of t‐SNE to that of
PCA and nonlinear dimensionality reduction techniques such as
self‐organizing maps (discussed below), Isomap, Sammon’s

mapping, and kernel PCA. Out of these methods, t‐SNE came
forward as best‐suited for the color‐coding approach. The t‐SNE
algorithm did incur a significant computational burden with
relatively long processing times. However, optimization of the
t‐SNE algorithm is ongoing (van der Maaten, 2014) and this is
expected to improve in the future. Abdelmoula et al. (2014b)
have used this visualization in the generic spatial registration of
IMS data to histological images. This same workflow was used
for the registration of SIMS imaging data to histology
in Škrášková et al. (2015). Furthermore, Abdelmoula et al.
(2016) used t‐SNE, combined with bisecting k‐means, to study
tumor heterogeneity and subpopulations in gastric and breast
cancer. They used this setup to determine the number of
subpopulations and assess their clinical significance. Abdel-
moula et al. (2018) have also used hierarchical stochastic
neighbor embedding (HSNE) in the clustering of 3D MALDI
IMS data. HSNE is a scalable version of the t‐SNE that is better
suited to deal with large datasets than standard t‐SNE, and, as its
name suggests, operates in a hierarchical manner, first
calculating a coarse representation, after which finer representa-
tions can be calculated for ROIs. Meanwhile, Inglese et al.
(2017) used parametric t‐SNE in the analysis of 3D DESI IMS
data from a human colorectal adenocarcinoma biopsy. In
parametric t‐SNE, the nonlinear mapping between the original
pixel data and the low‐dimensional space is parameterized by
means of a (deep) autoencoder neural network. Deep neural
networks (Bengio, 2009) are multilayered artificial neural
networks (see also Section IV.B) that have shown to be very
powerful in a wide number of applications, including
biomedical imaging (Shen, Wu, & Suk, 2017), due to their
ability to model complex nonlinear relationships. The use of
parametric t‐SNE has two important advantages over standard t‐
SNE, namely that (i) new samples can easily be projected to an
existing t‐SNE mapping, and (ii) the t‐SNE modeling results are
more consistent across different runs. After mapping the pixel
data to the low‐dimensional space, Inglese et al. used the
OPTICS (Ankerst et al., 1999) density‐based clustering
algorithm to segment each of the individual (2D) tissue slices
in the 3D dataset. This workflow allowed the group to identify
clusters in the tissue that were not visible using linear
dimensionality reduction methods, and which could be linked
to high expressions of key metabolites in colon cancer. Related
to this methodology, Thomas et al. (2016) used a neural
network autoencoder approach in the dimensionality reduction
of MALDI IMS data of transversal sections of mouse brain. In
recent work, Smets et al. (2019) have applied Uniform Manifold
Approximation and Projection (UMAP), a novel manifold
learning method, which is highly suited for the analysis of large
and high‐dimensional datasets. Compared to t‐SNE, UMAP
showed embedding results of at least the same quality, while
greatly reducing runtime and providing improved scalability.

B. Self‐organizing Maps

1. Principle

Self‐organizing maps (SOMs), also called Kohonen (neural)
networks (Kohonen, 1998), are a second manifold learning
technique that has been applied on multiple occasions in IMS
studies. Kohonen developed the SOM as a tool to visualize and
analyze high‐dimensional data. A SOM is a type of artificial
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neural network that aims to organize information spatially,
namely by mapping similar concepts to adjacent areas in the
neural network. This was inspired by how some types of
information are believed to be stored in the human brain. For
example, pitches of tones are thought to be mapped to spatial

distance in the auditory cortex, while the somatotopic map is
thought to map skin surface to spatial locations in the cortex. A
SOM consists of a single layer neural network, where the neurons
are arranged in an n‐dimensional (usually two‐dimensional)
rectangular or hexagonal grid. Each neuron is connected to its
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FIGURE 18. Example of t‐SNE applied to MALDI IMS data. Original caption: RGB color‐coding of
hyperspectral modeling results. (a) Schematic of the anatomy for the rat brain that was subjected to MALDI MSI
after formalin fixation; scale bar= 2mm. CB, cerebellum; CC, corpus callosum; CTX, cerebral cortex; DCN, deep
cerebellar nuclei; F, fornix; HP, hippocampus; HY, hypothalamus; M, medulla; MD, midbrain; OC, optic chiasm;
P, pons; PG, pituitary gland; S, septum; TH, thalamus; 3V, third ventricle; 4V, fourth ventricle. (b) Three randomly
chosen single m/z images (m/z791.4, 839.6, and 865.6). (c) An overlay of the three images in b is shown, through
combining the individual red, green, and blue intensities for each pixel as additive colors (white pixels consist of
high levels of red, green, and blue). (d) PCA space: the location of a pixel (each pixel is represented by a dot) on
principal component 1 (PC 1), PC 2 and PC 3 determines the intensity for red, green and blue (RGB), respectively.
(e) The pixels contained in the box in the PCA scores plot in d are shown in color. (f) The image after color‐coding
the pixels with the RGB‐scheme shown in d. (g) SOM space: a unique color for each SOM unit is assigned with red,
green, and blue representing the location along the three dimensions of the 3D SOM map (20 × 10× 5). (h) The
pixels that were mapped in the square 3× 3× 1 section of the SOMmap highlighted in g can be seen in the original
image with the same color‐coding. (i) The complete image with SOM‐based RGB color‐coding. (j) t‐SNE space: the
scatter plot of pixels in the t‐SNE model shows clear clustering patterns, and pixels are RGB color‐coded based on
their positions on the three axes. (k) The cluster selected with the box in j is shown as colored pixels in the image.
(l) The image after color‐coding the pixels with RGB values determined by the t‐SNE manifold learning method.
Source: Reprinted with permission from Fonville et al., 2013, Figure 2. Copyright 2013 American Chemical
Society. IMS, imaging mass spectrometry; MALDI, matrix‐assisted laser desorption/ionization; t‐SNE, t‐
distributed stochastic neighborhood embedding. [Color figure can be viewed at wileyonlinelibrary.com]
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neighboring neurons, thus representing an n‐dimensional topo-
logical map. When employing SOMs for the clustering of pixels
in IMS data, the goal is to map the high‐dimensional IMS data to
this low‐dimensional grid, while keeping similar pixels together
on the topological map. Pixels that are similar in chemical
content and thus close together in the high‐dimensional space,
remain close together in the low‐dimensional space. Once
mapped, each grid point or neuron represents a prototype object,
that is characteristic for the pixels closest to it, similar to the
mean value of the clusters in k‐means clustering.

2. Application to IMS

Wolkenstein et al. (1997) applied SOMs for the spatial
segmentation of solder alloys, allowing for classification of the
different chemical phases in the specimens. The network showed
good classification of the phases compared to manual annotation.
The size of the SOM was tuned through component selection in
PCA or through a secondary clustering step of the SOM neurons.

Franceschi & Wehrens (2014) have used SOMs in the
analysis of metabolite‐focused MALDI IMS data collected
from slices of apple. In a first application, SOMs were used to
perform spatial, pixel‐wise segmentation of the data. A SOM of
size ×6 7 and the Euclidean distance measure were used to
perform the analysis. Each of the 42 gridpoints represents a
spatial distribution in the original tissue section, along with
a prototype spectral signature. Figure 19 shows the SOM in
question. Due to the relatively large number of clusters, HC
was performed on the cluster prototypes to further reduce the
number of clusters to nine. These clusters were visualized in the
tissue, giving areas that overlap with biologically relevant
regions. In a second application, the SOMs were used to
perform clustering on the ion images, similar to Konicek et al.
(2012) and Alexandrov et al. (2013b). This approach resulted in
a map where each neuron represents a prototype ion image for
all the ion images associated with it. One advantage of SOMs is
that it is straightforward to read from the resulting map (on the
basis of proximity) which prototype ion images have a similar
spatial distribution. The clustering allowed for a quick over-
view of the contents of the IMS dataset, and enabled
highlighting of colocalized metabolites in the sample.
Xiong et al. (2012a) have used self‐organizing maps in the
segmentation of DESI imaging data, with the goal of
identifying tumorous and nontumorous regions in human
bladder tissue. Learning vector quantization, a supervised
classification algorithm related to SOMs, was used to build a
model for classifying new tissues on the basis of a training
segmentation. Wijetunge et al. (2014) have applied Growing
self‐organizing maps (GSOMs), a variant of SOMs that does
not require the map size to be defined a priori. The map can
start with a specified minimum number of nodes, and adds new
nodes when necessary, side‐stepping one of the main
challenges of classic SOMs. Similar to Franceschi & Wehrens
(2014), the GSOM was applied to cluster similar ion images
together, grouping the original 250 (peak‐picked) ion images
into 62 relevant clusters. Furthermore, through color‐coding the
applied GSOM algorithm allowed for easy discovery of highly
similar grid points. Xiong et al. (2012c) have used SOMs for
the spatial registration of IMS data collected in different tissue
sections in order to construct a 3D IMS dataset.

V. SOFTWARE PACKAGES AND DATA ANALYSIS
TOOLS

This final section enumerates several free software packages
that allow the reader to get started with the computational
analysis of IMS data. Many of these packages implement
several of the techniques and algorithms that have been
discussed in this review.

• Datacube Explorer enables fast and easy visualization and basic
analysis of large IMS datasets, without requiring programming
by the user (Smith et al., 2012; Klinkert et al., 2014).

• BioMap is a biomedical image analysis software package by
Rausch and Stoeckli, available at http://ms‐imaging.org/wp/
biomap/.

• Cardinal is an extensive R‐based statistical analysis package
for IMS data (Bemis et al., 2015).
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FIGURE 19. Example of a SOM in MALDI IMS. Original caption: Results of
the SOMmapping of the apple dataset. ×6 7The lattice is the 2D representation
of the SOM. Each plus is a pixel. The nine different colors highlight the result of
the hierarchical clustering on the codebook vectors. Bottom panel: output of the
segmentation process. The color of each pixel is selected on the base of the SOM
unit it is mapped to. Source: Franceschi and Wehrens (2014), Figure 2,
reproduced with permission from John Wiley & Sons. IMS, imaging mass
spectrometry; MALDI, matrix‐assisted laser desorption/ionization; SOM, self‐
organizing map. [Color figure can be viewed at wileyonlinelibrary.com]
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• msIQuant is a software package for IMS that enables fast
access, visualization, and analysis for large datasets
(Källback et al., 2016).

• MSI.R is a data exploration tool for IMS data, enabling the
use of contour lines to visualize ion intensities (Gamboa‐
Becerra et al., 2015).

• rMSI is an R‐based IMS data handling and analysis tool
(Ràfols et al., 2017), available at https://github.com/
prafols/rMSI.

• MALDIquant is an R‐based package for the analysis of mass
spectrometry data in general, which allows analysis of IMS
data as well (Gibb and Strimmer, 2012).

• OpenMSI is a web‐based visualization, analysis, and manage-
ment platform for IMS data (Rübel et al., 2013;
Fischer et al., 2016).

• MSiReader is an open‐source MATLAB‐based tool for
analysis and visualization of IMS data (Robi-
chaud et al., 2013).

• SpectralAnalysis is an open‐source MATLAB‐based IMS
data analysis toolbox, allowing multivariate analysis of large
IMS datasets (Race et al., 2016).

• BASIS is an open‐source bioinformatics platform for
processing large‐scale mass spectrometry imaging datasets,
developed by Veselkov et al. (2018).

• OmniSpect is an open‐source MATLAB‐based toolbox,
developed for the visualization and analysis of IMS data
(Parry et al., 2013).

• MCR‐ALS GUI is a MATLAB‐based toolbox that provides
MCR‐ALS analysis for various data, and includes a module
for the analysis of spectral imaging data (Jaumot et al., 2005;
Jaumot, de Juan, & Tauler, 2015).

• NESAC/BIO MVA Toolbox is a MATLAB‐based toolbox
developed by Dan Graham for the multivariate analysis of
TOF‐SIMS imaging data, available at http://www.nb.engr.
washington.edu/mvsa/nbtoolbox.

VI. CONCLUSIONS

Unsupervised data analysis methods have become crucial for
extracting valuable insights from the large and high‐dimen-
sional datasets collected through IMS. With advancing instru-
mental capabilities and sample preparation improvements, the
size and dimensionality of IMS measurements is expected to
continue to grow, while the advances in speed of acquisition
will deliver more datasets than ever before. These advance-
ments, together with an increased adoption of IMS in a growing
set of application domains, will require development of even
more capable data exploration methods to navigate the vast
amounts of IMS data that will become available. With this
review, we hope to provide an overview and a stepping stone
for the computational community as well as for the mass
spectrometry community, to help make those advances in
exploratory methods for IMS possible.
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ABBREVIATIONS

AFAI‐IMS airflow assisted ionization imaging mass
spectrometry

ALS alternating least squares
AMASS algorithm for MSI analysis by semisupervised

segmentation
BIC Bayesian information criterion
DA discriminant analysis
DESI desorption electrospray ionization
DIPPS difference in proportions of occurrence
DWT discrete wavelet transform
EM expectation‐maximization
FA factor analysis
FCM fuzzy c‐means clustering
FFPE formalin fixed paraffin embedded
FTICR Fourier transform ion cyclotron resonance
GMM Gaussian mixture model
GPU graphical processing unit
GSOM growing self‐organizing maps
HC hierarchical clustering
HDDC high dimensional data clustering
HPC high performance computing
ICA independent component analysis
IMS imaging mass spectrometry
LAESI laser ablation electrospray ionization
LAICP laser ablation inductively coupled plasma
LDI laser desorption/ionization
MAF maximum autocorrelation factorization
MALDI matrix‐assisted laser desorption/ionization
MCR multivariate curve resolution
MCR‐ALS multivariate curve resolution by alternating

least squares
MCR‐WALS multivariate curve resolution by weighted

alternating least squares
MDL minimum description length
MLPCA maximum likelihood principal component

analysis
MNF minimum noise fraction
MOLDL molecular dictionary learning
MRF Markov random field
MS mass spectrometry
NMF non‐negative matrix factorization
NMR nuclear magnetic resonance
NN‐PARAFAC non‐negativity constrained parallel factor

analysis
O‐PLS orthogonal projection to latent structures
PC principal component
PCA principal component analysis
pLSA probabilistic latent semantic analysis
PMF positive matrix factorization
RAM random‐access memory
REIMS rapid evaporative ionization mass spectrometry
ROI region of interest
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SIMS secondary ion mass spectrometry
SMCR self‐modeling curve resolution
SOM self‐organizing maps
SVD singular value decomposition
t‐SNE t‐distributed stochastic neighborhood embedding
TIC total ion current
TOF time of flight
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