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ABSTRACT For HIV cure strategies like “kick and kill” to succeed, antiretroviral (ARV)
drugs must reach effective concentrations in putative viral reservoirs. We character-
ize penetration of six ARVs in three preclinical animal models and humans. We found
that standard dosing strategies in preclinical species closely mimicked tissue concen-
trations in humans for some, but not all, ARVs. These results have implications for
interpreting HIV treatment, prevention, or cure interventions between preclinical and
clinical models.
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Despite 3 decades of improvements in antiretroviral (ARV) therapy, HIV eradication
remains elusive. It has been postulated that inadequate ARV penetration into

tissues may create pharmacological sanctuaries where HIV continues to replicate (1, 2).
For instance, in lymphoid tissues, Fletcher et al. (1) suggested that ARVs do not achieve
suppressive concentrations. In cerebrospinal fluid, although the ARV efavirenz (EFV)
achieves concentrations at 0.5% of plasma concentrations, this still exceeds the 50%
inhibitory concentration for wild-type HIV (3). Because of these tissue penetration and
activity differences, a comprehensive analysis is warranted. Because some tissues are
impractical to sample from humans, animal models are commonly used in HIV inves-
tigations, with standard ARV dosing strategies selected to match human blood plasma
exposure. Here, we describe the tissue penetration of six ARVs in two humanized
mouse models (hu-HSC [also called RAG-hu in the literature] and bone marrow-liver-
thymus [BLT]), nonhuman primates (NHPs), and HIV� humans. The hu-HSC mice are
engrafted with hu-HSC, whereas BLT mice are engrafted with HSC and thymus (4).

The hu-HSC and BLT mice and NHPs were administered standard ARV doses and
combinations taken from previously published treatment regimens, and this is sum-
marized in Fig. S1 in the supplemental material (5–12). Tissues harvested from HIV�

patients an estimated 8 to 47 h postdose were obtained from the National NeuroAIDS
Tissue Consortium, National Neurological AIDS Bank, and National Research Disease
Interchange. Human female genital tract (FGT) and colorectal concentrations were
obtained from a clinical trial (NCT01330199). Eight tissue types were examined: brain
(median combined concentration of frontal cortex, cerebellum, basal ganglia, and
parietal cortex), lymph node (median combined concentration of axillary, iliac, inguinal,
and mesenteric lymph nodes), spleen, ileum, rectum, testes, and FGT (median com-
bined concentration of cervix and vagina).

Tissue and plasma concentrations were quantified for (i) the administered ARVs
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emtricitabine (FTC), tenofovir (TFV), EFV, raltegravir (RAL), maraviroc (MVC), and atazanavir
(ATV) (5–7, 10); (ii) the two active metabolites tenofovir diphosphate (TFVdp) and emtric-
itabine triphosphate (FTCtp) (13); and (iii) two endogenous nucleotides (dATP and
dCTP). Concentrations were converted from nanogram per milliliter to nanogram per
gram using a tissue density of 1.06 g/ml. Where measurements of ARV concentrations
were below the limit of quantification, we imputed a value of one-half of the lower limit
of quantification. Metabolite-to-endogenous nucleotide ratios (active metabolite/tissue
endogenous nucleotide concentration) for each tissue were analyzed via the Wilcoxon
rank-sum test with the Benjamini Hochberg P value adjustment procedure. Spearman’s
rank correlation coefficients were calculated to illustrate the relationships between
plasma and tissue concentrations. All analyses were performed using R 3.5.3 (Vienna,
Austria).

Comparisons of ARV concentrations across multiple tissues and multiple species are
shown in a rank plot in Fig. 1A, where data are grouped by species/model. Median
tissue concentrations were ranked from lowest to highest. For all species and ARVs,
concentrations were highest in the gastrointestinal tract (GIT; either ileum or rectum).
In tissues where exposure to an ARV could be compared in at least two different

FIG 1 Rank plots of median tissue concentrations (A) and median ratios of tissue-to-plasma concentra-
tions (B). Antiretroviral abbreviations: ATV, atazanavir; EFV, efavirenz; FTC, emtricitabine; MVC, maraviroc;
RAL, raltegravir; TFV, tenofovir. Tissue abbreviations: B, brain; F, female genital tract; I, ileum; L, lymph
node; R, rectum; S, spleen; T, testes. NHP, nonhuman primate. BLT mice were not dosed with EFV due to
toxicity concerns. Testes were only evaluated in NHPs.
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species, the lowest ARV concentrations were observed mostly in hu-HSCs (18 out of 36
paired tissue-ARV measurements). Notable exceptions were found in lymph node,
spleen, and FGT, where the lowest concentrations for the nucleoside reverse transcrip-
tase inhibitors (NRTIs) FTC and TFV were measured in humans. When normalizing to
plasma, the trends seen in each species for the tissue concentration rank plot were seen
in the normalized-concentrations rank plot (Fig. 1B).

Correlation plots of ARV concentrations in tissue versus plasma were used to
evaluate the proclivity of ARVs to penetrate into tissues and are shown in Fig. 2, and
individual Spearman’s rank correlation coefficients are shown in Table 1. These plots
and coefficients illustrate two things. First, generally, as plasma concentrations in-
creased, the tissue concentrations increased. Across most species, the plots suggested
that increasing the NRTI dose would result in increased tissue penetration in lymph
node and spleen. This was confirmed numerically by the correlation coefficients.
Second, less-clear trends were seen in ATV correlation plots, which indicated insignif-
icant correlations (increased plasma concentrations did not correlate with increased
tissue concentrations) consistently for NHPs and RAL correlation plots, which were
inconsistent among species but were generally negative in NHPs and hu-HSC mice.

Because the efficacy of the active NRTI metabolite competes with the endogenous
nucleotide it replaces during the reverse transcription process (14), we calculated the
ratios of intracellular active metabolite to endogenous nucleotide concentrations
against 90% effective concentration cutoffs derived from CD4� T cells by Cottrell et al.
(13). As seen in Fig. 3, FTCtp/dCTP ratios in mouse models in the lymphoid organs were

FIG 2 Correlation plots of tissue versus plasma concentrations across all tissues for the six antiretrovirals. Antiretroviral abbreviations: ATV,
atazanavir; EFV, efavirenz; FTC, emtricitabine; MVC, maraviroc; RAL, raltegravir; TFV, tenofovir. FGT, female genital tract; NHP, nonhuman
primate. BLT mice were not dosed with EFV due to toxicity concerns. Testes were only evaluated in NHPs.
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not significantly different from those in humans. TFVdp/dATP ratios were similar in
mouse models and humans except for spleen and FGT. Ratios in NHPs were similar to,
or higher than, those in humans. In lymph node, spleen, and FGT, TFVdp/dATP ratios
were significantly higher (up to 161-fold) in NHPs than in humans, despite similar
plasma concentrations between the two species; in the rectum, 1.9- to 105-fold-higher
ratios were noted in NHPs than in humans for both NRTIs.

To our knowledge, this is the first analysis of ARV tissue penetration across multiple
HIV putative reservoirs in multiple species using standard dosing strategies (8, 10, 12).
Based on the correlation plots and coefficient values, we found that current ARV doses
in NHPs mimic human plasma and tissue exposure, whereas mice generally have lower
and more inconsistent penetration across tissues. This suggests similar tissue penetra-
tion processes for most ARVs between NHPs and humans. Our results have several
important implications. First, we have shown significant heterogeneity in ARV pene-

TABLE 1 Correlation coefficients of plasma and tissue concentrations for 6 antiretrovirals

Tissuea

Antiretrovirals and correlation coefficientsb

FTC TFV EFV ATV RAL MVC

Brain
hu-HSC �0.3 0.2 0.5 0.1 �0.1 0.5
BLT 0.3 0.3 — 0.6c 0.4 0.5
NHP 0.7c 0.7c 0.98c 0.1 0.2 0.3
Human 0.9 0.8 0.8 N1 N1 —

Lymph node
hu-HSC �0.5 0.3 BLQ BLQ BLQ BLQ
BLT 0.2 0.7c — BLQ BLQ BLQ
NHP 0.9c 0.6c 0.8c 0.5 0.3 0.7
Human 0.9c 0.5 0.03 1.0 N1 —

Spleen
hu-HSC 0.5 0.4 0.4 0.7c 0.4 0.5
BLT 0.6 0.6 — 0.3 0.06 0.9c

NHP 0.8c 0.6c 0.9c 0.7 �0.2 0.8c

Human 0.91c 0.6 �1.0 1.0 N1 —

Ileum
hu-HSC N1 0.5c N1 0.4 1.0 BLQ
BLT N1 0.1 — 0.7 0.1 0.1
NHP 0.2 0.5c 0.8c �0.4 �0.1 �0.1
Human 1.0 0.2 N1 N1 N1 N1

Rectum
hu-HSC N1 0.4 �1.0 �0.5 �0.5 BLQ
BLT �0.1 0.1 — �0.1 0.2 �0.3
NHP �0.1 0.2 0.6 0.2 0.4 0.8c

Human 0.8 �0.4 N1 N1 N1 N1

Testes
hu-HSC — — — — — —
BLT — — — — — —
NHP 0.6c 0.1 0.7 0.3 0.1 0.1
Human — — — — — —

FGT
hu-HSC 0.7c 0.5 0.6 0.7c 0.5 0.8c

BLT 0.3 �0.04 — 0.4 0.3 0.2
NHP 0.1 0.6 1.0 �0.5 �1.0 0.5
Human — — — — — —

aBLT mice were not dosed with EFV due to toxicity concerns. Testes were only evaluated in NHPs. FGT,
female genital tract.

bATV, atazanavir; EFV, efavirenz; FTC, emtricitabine; MVC, maraviroc; RAL, raltegravir; TFV, tenofovir; —,
tissues not evaluated; N1, correlation coefficient not evaluable due to only one pair of plasma and tissue
concentrations; BLQ, below the limit of quantification.

cP � 0.05 via Spearman’s rank correlation.
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tration between tissues (e.g., concentrations across species in lymph nodes were 7-fold
lower than in the rectum), underscoring crucial pharmacological differences between
tissues. Second, we noted heterogeneity between species (e.g., TFVdp concentrations
were higher in NHP FGT and mouse and NHP rectums than in the respective human
tissues, despite TFV concentrations in NHPs being �2-fold higher than in mouse
models) with standard dosing protocols. This suggests that TFV concentrations may
overpredict efficacy in mice and NHPs versus humans. Third, we noted that inconsistent
relationships between plasma and tissue concentrations exist with RAL, whereas a
positive linear relationship exists for NRTIs in the secondary lymphoid organs, which
underlines not only the heterogeneity of ARV penetration among tissues but also the
importance of the secondary lymphoid organs as reservoirs (15, 16). Fourth, we noted
that NHPs achieve higher metabolite/nucleotide ratios than mouse models and hu-
mans in the secondary lymphoid organs and in the FGT, and the ratios for NHPs are
higher than those seen in humans in the GIT. Taken together, we discovered important
differences that should be considered when translating from preclinical species to
humans.

Biochemical and physiological differences related to absorption and elimination

FIG 3 Metabolite-to-endogenous nucleotide ratio boxplots across eight tissues for FTCtp (A) and TFVdp
(B). Dotted lines represent literature-derived 90% effective concentrations. NHP, nonhuman primate; BLQ,
below limit of quantification; N/A, not applicable; FGT, female genital tract; FTCtp, emtricitabine
triphosphate; TFVdp, tenofovir diphosphate. Testes were only evaluated in NHPs. *, P � 0.05 via Wilcoxon
rank-sum test with Benjamini Hochberg P value adjustment procedure.
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between preclinical models and humans can result in additional variability in plasma
concentrations and, consequently, tissue concentrations (17, 18). Figures 2 and 3
represent tissue concentrations normalized to accompanying plasma concentrations,
thereby providing a visualization of penetration into respective tissues by species at
one point in time.

The current analysis has several limitations. Liquid chromatography-tandem mass
spectrometry analysis of tissue homogenates provides an average concentration within
tissues. We previously reported that spatial information can be gleaned from infrared
matrix-assisted laser desorption electrospray ionization imaging analyses of sanctuary
site tissue slices (6, 19–21). This work is ongoing. This analysis also focused on total-drug
concentrations rather than protein-unbound concentrations, although NRTIs demon-
strate low protein binding potential. Because the unbound ARV concentrations are
responsible for pharmacological effects, it is important to compare these differences in
the future. As of this writing, the tissue protein binding potential for EFV, RAL, MVC, and
ATV has been measured in the brain of NHPs (6), suggesting lower protein binding in
tissues than in plasma in all species.

Because ARVs are substrates for drug transporters, particularly the solute carrier
and ATP-binding cassette transporter superfamilies, their tissue concentrations may
be modulated by transporter activity (22). Although the current analysis did not
examine the influence of drug transporters, our group has found that transporter
RNA or protein tissue concentrations alone do not accurately correlate with ARV
concentrations in gut-associated lymphoid tissue (5) and lymph node (7). Physico-
chemical properties of ARVs, such as lipophilicity and pH trapping, may contribute
to tissue drug concentration. For instance, EFV has a log P value of 4.6, which is
favorable for tissue distribution (23). Log P, pKa, and percent protein binding values
and drug transporter affinities of the analyzed ARVs are displayed in Table S1 in the
supplemental material.

In conclusion, drug concentrations in different tissues vary among different species.
Whereas data in NHPs agree with some data in humans, humanized mouse models are
in concordance with other data in humans, depending on the tissues and individual
drugs evaluated. These results suggest that drug exposure in tissues should be eval-
uated in preclinical models when considering scaling interventions to humans and that
increased plasma concentrations do not always translate to tissue penetration, an
important finding in view of proposed intensification strategies.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
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