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Abstract

Missing data arise frequently in clinical and epidemiological fields, in particular in longitudinal 

studies. This paper describes the core features of an R package wgeesel, which implements 

marginal model fitting (i.e., weighted generalized estimating equations, WGEE; doubly robust 

GEE) for longitudinal data with dropouts under the assumption of missing at random. More 

importantly, this package comprehensively provide existing information criteria for WGEE model 

selection on marginal mean or correlation structures. Also, it can serve as a valuable tool for 

simulating longitudinal data with missing outcomes. Lastly, a real data example and simulations 

are presented to illustrate and validate our package.
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1. Introduction

Longitudinal data are common in clinical trials or observational studies. There exist two 

major approaches for analysis, generalized estimating equations (GEE) and mixed-effect 

models, which have different tendencies in model fitting depending on the study objectives. 

In particular, mixed-effect models adopt an individual-level approach by accommodating 

random effects to capture the correlation among the observations within-subject (Crowder 

1995; Wang 2014; Hedeker and Gibbons 2006); GEE is employed for marginal regression 

analysis based on a quasi-likelihood function by providing the population-averaged 

parameter estimates. Due to common research interest in conducting the population-level 

inference such as overall treatment effect, we focus on GEE, which has several defining 
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features such as the relaxation of distribution assumption with only requirement on the 

correct specification of marginal mean and variance as well as the link function connecting 

the covariates of interest and marginal mean, the correlation structure among these 

dependent responses treated as nuisance parameters which if misspecified will not influence 

the asymptotic properties of parameter estimates under mild regularity conditions and so on 

(Liang and Zeger 1986; Wang and Long 2011; Wang 2014; Wang et al. 2016).

Of note is that in longitudinal studies, missing data are frequently encountered. As is well 

known, three types of missing mechanisms have been summarized and studied (Rubin 1976; 

Little and Rubin 2014): if the probability of a missing response does not depend on either 

the observed or unobserved responses conditional on the covariates, the data are said to be 

missing completely at random (MCAR); it is missing at random (MAR) if conditional on the 

observed data and the covariates, the probability of a missing response is independent of the 

unobserved data; also, if the missingness is related to the unobserved responses, the data are 

said to be missing not at random (MNAR). In practice, subjects often drop out of the study 

or are lost to follow-up for some reasons such as drug resistance, and the missing data 

induced by dropouts form a monotone missing pattern which is commonly assumed to be 

MAR (Preisser et al. 2002; Fitzmaurice et al. 2012). To handle missing data, there are two 

widely used techniques, inverse probability weight (IPW) and multiple imputation (MI). In 

some occasions, IPW is preferred by researchers due to several appealing features, for 

instance, less computational burden and flexible implementation in software, easier to be 

understood by clinicians in practice and so on (Rubin 1976; Seaman and White 2011).

GEE can lead to consistent parameter estimates only when the data are MCAR in the 

presence of missing data (Robins et al. 1995; Liang and Zeger 1986). However, when the 

data are MAR or MNAR, the estimates of the regression parameters will be biased (Laird 

1988). Robins et al. (1995) first proposed the weighted GEE (WGEE) method for bias 

correction under the assumption of MAR, and the WGEE is an extension of GEE by 

incorporating an IPW matrix. Preisser et al. (2002) and Fitzmaurice et al. (2012) have shown 

that WGEE can provide valid inference on marginal regression parameters if the mean 

model and the model for the missingness are correctly specified even without the necessity 

for correct specification of the within-subject correlation structure. Of note is that there are 

two types of weights in literature, subject-specific weight (i.e., the same weight assigned to 

all the observations from a subject) and observation-specific weight (i.e., a specific weight 

assigned to each observation). The former one was originally developed due to 

computational convenience, and also Preisser et al. (2002) have shown that observation-level 

WGEE can provide more efficient estimate than the subject-level WGEE; thus observation-

level weights will be applied in our package. Later on, doubly robust GEE was further 

developed under MAR by incorporating the augmented IPW method for efficiency 

improvement. The main advantage of this model is that so-called doubly robust estimators 

are consistent if at least one of the missing model and the outcome model is correctly 

specified (Bang and Robins 2005; Seaman and Copas 2009; Chen and Zhou 2011; Birhanu 

et al. 2011; Padilha and Demarqui 2015), and this approach has been widely adopted for 

clustered randomized trials (CRTs) (Stephens et al. 2012; Prague et al. 2017).
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To appreciate the features of wgeesel, we briefly review GEE implementations in existing 

statistical software R and SAS. The regular GEE with different types of outcomes (Liang 

and Zeger 1986) has been implemented in SAS with the statements of PROC GENMOD and 

PROC GEE (SAS Institute Inc. 2016), and the packages yags, gee, repolr and geepack in R 

(Carey and Ripley 2011; Nooraee et al. 2014; Carey 2015; Parsons 2016; Højsgaard et al. 

2016). However, the software implementation of the WGEE approach accommodating 

missing data under MAR is limited. Recently, SAS (SAS Institute Inc. 2016) launched an 

experiential version of PROC GEE to fit WGEE for longitudinal data with missing dropout 

data. Currently, this release does not include all of the capabilities in the REPEATED 

statement in the GENMOD procedure, and additional features need to be released, such as 

the weights output from WGEE. Also, SAS is a commercial statistical software; thus, the 

source code for WGEE fitting in PROC GEE is inaccessible, which poses restriction for 

researchers on relevant studies if they need to conduct modification on current methods. To 

our best knowledge, there is no reliable and available R package for implementing WGEE. 

Even though in several R functions for GEE estimation, there exist options in the arguments 

to incorporate the weights for WGEE estimation, for instance, the function geeM in geeM 
(McDaniel et al. 2016) and the function geeglm in geepack, the inference is not reliable 

under most circumstances because the weight arguments do not properly incorporate the 

weights for WGEE. Based on our finding, the estimates are only the same as the WGEE 

estimates from PROC GEE when the “working” correlation structure is independent. To 

illustrate this, we conducted a simulation study. 250 replicates of correlated binary responses 

with a sample size of 100 were generated, where the true regression parameter values were 

β0 = −0.5 and β1 = 0.5, and the true correlation structure is exchangeable with ρ = 0.25 

(refer to Section 4 for more details). For each dataset, we estimated the weights and plugged 

them into geeM and geeglm to obtain the WGEE parameter estimates under the 

exchangeable “working” correlation structure which is true. We found out that the estimates 

of β0 and β1 had biases of −0.096 and 0.086 by geeM, and also −0.087 and 0.070 by geeglm, 

respectively, while the function wgee in our package wgeesel yielded negligible biases of 

−0.01 and 0.03. Also, the estimates of the standard error were not consistent, where the 

estimate of standard error for β1 based on geeM and geeglm was 0.6062 and 0.6379, 

respectively, while it was 0.6226 using both wgee and PROC GEE. More recently, Salazar et 

al. (2016) provided a sample R program to fit WGEE, in which glm was adopted to estimate 

the weights, and geeglm was used for WGEE estimation; however, their estimation approach 

for the weights is problematic. For the data with a monotone missing pattern, that is, MAR, 

they utilized the data at each individual time for weight estimation, and their estimation did 

not condition on the previous visit that was not missing (Robins et al. 1995). We applied 

their R source code on the imps dataset in Section 5 for comparison. For example, for patient 

1 with four visits, the weights based on their code at each visit were 1, 1.0000, 1.14251 and 

1.3287; however, the weights obtained by both wgee in wgeesel and SAS macro provided by 

Shen and Chen (2012) were 1, 1.0031, 1.1130, and 1.2005. Obviously, the last two weights 

calculating by their approach are slightly larger, indicating the inaccuracy of their R program 

which may lead to invalid inference. Therefore, wgeesel provides valid inference on WGEE 

with different types of outcomes and “working” correlation structures. Also, with regard to 

doubly robust GEE model fitting, wgeesel can also be adopted by embedding the existing 
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work such as R packages CRTgeeDR (Prague et al. 2017), which have been popularly 

applied for marginal regression in CRTs with missing data.

Besides marginal model fitting, the major contribution of our package wgeesel is 

comprehensively providing existing information criteria particularly for WGEE in the 

presence of monotone/dropout missingness under MAR. In regression analysis, model 

selection is important to identify the best model with the traditional information criteria, 

such as Akaike information criterion (AIC), Bayesian information criterion (BIC), and 

Mallow’s Cp (Mallows 1973; Akaike 1974; Raftery 1995). However, in longitudinal models 

with GEE/WGEE, these information criteria cannot be directly applicable because these 

models are not likelihood based. Besides, the model selection for longitudinal data analysis 

includes not only the variable selection in the mean model, but also the “working” 

correlation structure selection because of potential efficiency loss due to in-appropriately 

specified correlation structures; and the information criteria could be different for these two 

selection objectives. Pan (2001) proposed a modification of AIC, the quasi-likelihood under 

the independence model criterion (QIC), for regular GEE model selection where the 

likelihood was replaced by quasi-likelihood and a proper adjustment was made for the 

penalty term. QIC can be used for both variable selection and correlation structure selection 

in GEE analysis, which is available in SAS PROC GENMOD and PROC GEE (SAS 

Institute Inc. 2016). Also, R packages yags and MuMIn (Carey and Ripley 2011; Bartoń 

2015) both provide QIC for GEE model selection. On the other hand, Imori (2013) proposed 

modified QIC (MQIC) as an asymptotic unbiased estimator of the risk function based on the 

independent quasi-likelihood. QIC is exactly and asymptotically equivalent to MQIC when 

the “working” correlation matrix is independent and includes the true correlation structure, 

respectively. Rotnitzky and Jewell (1990) proposed the Rotnitzky and Jewell criteria (RJC) 

to examine the adequacy of “working” correlation structure in GEE analysis. The criteria of 

MQIC and RJC are for GEE model selection, but have not been available in any software 

except our package wgeesel. Also, we provide an improved RJC in small sample size by 

utilizing the pooled information from all subjects for variance estimation, which is 

applicable for balanced longitudinal data (Wang and Long 2011). With regard to information 

criteria for WGEE model selection, Shen and Chen (2012) proposed the missing 

longitudinal information criterion (MLIC) for the selection of the mean model based on the 

quadratic loss function and showed it is superior to QIC when the outcome data are subject 

to dropout/monotone missingness and are MAR. In addition, they provided the MLIC for 

correlation (MLICC) for selection of the correlation structure in WGEE. They provided a 

SAS macro to calculate the MLIC and MLICC. However, their program is not user-friendly 

with limited outputs unless users manually modify the source code to obtain more results 

(e.g., weights). Another option is the weighted quasi-likelihood information criterion 

(QICWp) accommodating the weight matrix proposed by Platt et al. (2013), which usually 

selects the correct mean model more often than the adjusted R2 in various scenarios. Later 

on, Gosho (2016) mentioned that QICWp would not be applied to select a “working” 

correlation structure. To compensate for the imperfection of QICWp, Gosho (2016) proposed 

QICWr for variable selection and correlation structure selection in WGEE. Until now, none 

of these have been implemented in R, and our package wgeesel fills up this gap.
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Furthermore, this package provides a valuable and essential tool for researchers to simulate 

longitudinal data with missing responses to different types (i.e., continuous, binary and 

count). Leisch et al. (1998) proposed an algorithm to generate multivariate binary 

distributions with a given correlation structure or with given pairwise joint probabilities. 

Demirtas and Doganay (2012) developed algorithms to generate multivariate random 

variables with binary and normal/non-normal components. Amatya and Demirtas (2017) 

generated mixed multivariate count and continuous data from two marginal moments of 

Poisson and normal distributions. By considering most commonly used correlation 

structures (i.e., exchangeable, AR1), complete longitudinal data can be first generated based 

on multivariate distributions, and then given pre-specified drop-out model, the missing 

probabilities will be calculated. Note that if one observation is missing, the subsequent ones 

will also be missing to achieve the monotone pattern which is our focus here.

The paper is organized as follows. In Section 2, we outline marginal model fitting (i.e., 

WGEE, doubly robust GEE), and thus described model selection criteria particularly for 

WGEE when the outcome data are dropout missing under MAR. Section 3 describes the 

core functions (wgee, QICW.gee, MLIC.gee, etc.) in wgeesel. Simulation studies are 

conducted for the data with different types of outcomes or correlation structures in Section 

4. Section 5 illustrates the use of wgeesel in a longitudinal data application with repeated 

binary responses. Lastly, we summarize the features of the package and provide future 

directions in Section 6.

2. Methodology

2.1. WGEE and doubly robust WGEE

Let Yij represent the jth response on the ith subject with a p × 1 vector of covariates xij, j = 

1, …, T, i = 1, …, K. Thus, Yi = (Yi1, …, YiT)T is denoted as a T × 1 vector of outcomes, 

and Xi = (xi1, …, xiT)T is a T × p matrix of covariates for subject i. For simplicity, we 

assume balanced data with equal number of observations for all subjects. Let μi = (μi1, …, 

μiT)T = E(Yi|Xi) and Vi = var(Yi|Xi). Note that μi is usually modeled via a generalized linear 

model with g(μi) = Xiβ with g as a specified link function (McCullagh and Nelder 1989), β 
is a p-vector of regression parameters, and Vi is given by Vi = ϕAi

1 / 2Ri(ρ)Ai
1 / 2. The matrix 

Ai is a T × T diagonal matrix with diagonal elements var(Yij|xij) = ν(μij), j = 1, …, T, where 

ν is a known variance function at μij and ϕ is a scale (dispersion) parameter, and Ri(ρ) is a 

specified “working” correlation matrix depending on a set of parameters ρ. If Ri(ρ) is the 

true correlation matrix, then Vi is the true covariance matrix of Yi. Denote the indicator rij as 

1 if the outcome Yij is observed; otherwise rij = 0 if Yij is missing.

Under MAR assumption, Robins et al. (1995) proposed WGEE method, which extends GEE 

by incorporating a weight matrix based on the inverse probability of observing each 

observed outcome (i.e., observation-level weight matrix) to adjust for dropout missingness 

(Preisser et al. 2002). Given the observed data for subject i, the probability of observing the 

response Yij is denoted as wij = Pr(rij = 1 | Yi,Xi), which is generally unknown, but can be 

estimated. For the first time point, we always assume ri1 = 1. Under the monotone missing 

pattern, wij = λi1 × λi2 × ⋯·λij, where λi1 = 1, and λij = Pr(rij = 1 | ri(j−1) = 1, Yi1, …, 
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Yi(j−1), Xi), for j = 2, …, T. λij can be estimated from the logistic regression model with zij 

as a vector of predictors such as the time variable, baseline covariates, and/or past outcome 

variable and α is the vector of corresponding regression parameters.

Under MAR, the estimate of β can be obtained based on the following estimating equation:

U(β) = ∑
i = 1

K
Ui(β) = ∑

i = 1

K
Di

TV i
−1W i Y i − μi = 0, (1)

where Di =
∂μi
∂βT , and the weight matrix Wi = diag(ri1/wi1, … riT/wiT). Robins et al. (1995) 

have showed that WGEE estimator β  is consistent estimation of β without requiring correct 

specification the correlation matrix. We adopt the following algorithm to develop the wgee 

function, where the observation-specific weight matrix is considered (Lin and Rodriguez 

2015):

1. Fit a logistic regression model with data (rij, zij) and estimate α by maximizing 

the following log-partial likelihood:

∑
i = 1

K
∑
j = 2

T
ri, j − 1log λij(α)rij 1 − λij(α) 1 − rij . (2)

Thereafter, the conditional probability of observing subject i at the jth time is 

estimated by wij = λi1 × λi2, …λij, where λij = λij zij, α  is the predicted 

probability obtained from the logistic regression.

2. Assuming independence of the responses Yi, compute an initial estimate of β 
with an ordinary generalized linear model.

3. Given the specified “working” correlation structure, estimate the correlation 

matrix R based on the standardized residuals, the current estimate of β, denoted 

by βq, and the specific structure of R, q = 1, 2, …, Q.

4. Compute the T × T estimated covariance matrix: V i = ϕAi
1 / 2Ri(ρ )Ai

1 / 2
, based on 

βq

5. Update β  by βq:

βq + 1 = βq + ∑
i = 1

K
Di

TV i
−1Di

−1
∑
i = 1

K
Di

TV i
−1W i Y i − μi . (3)

6. Repeat steps 3–5 until convergence.

7. Compute the asymptotic covariance matrix of β  as follows (Preisser et al. 2002):
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V W = ∑
i=1

K
Ui

−1
∑
i=1

K
EiEi

T ∑
i=1

K
Ui

−1
, (4)

where Ei = Ui − ∑i = 1
K UiSi

T ∑i = 1
K SiSi

T −1
Si, Ui = Di

T V i
−1W i Y i − μi , and 

Si = ∑jri, j − 1 rij − λij zij.

It is known that WGEE estimators are consistent when the dropout model is correctly 

specified (Robins et al. 1995). The more appealing method, doubly robust GEE, has gained 

more attention due to the relaxation of this restriction by combining the imputation method, 

and doubly robust GEE estimators are still consistent if either of the dropout model and the 

outcome model for imputation is correctly specified (Seaman and Copas 2009; Prague et al. 

2016). There are different versions of doubly robust GEE because of subjective selection of 

the outcome model under the variety of scenarios, and here we establish a function of drgee 

based upon the package CRTgeeDR, where more details can be referred to Prague et al. 

(2016, 2017).

Of note is that both WGEE and doubly robust GEE can achieve valid inference under the 

assumption of MAR (Shen and Chen 2012; Wang and Long 2011; Gosho 2016; Seaman and 

Copas 2009; Prague et al. 2016). Therefore, sensitivity analysis is crucial to evaluate the 

missing mechanism before model fitting in practice. There exist substantial work and 

discussion on missing data (Little and Rubin 1987; Ibrahim and Molenberghs 2009). Due to 

the program availability, the most recent work by Moreno-Betancur and Chavance (2016) is 

recommended, where the pattern-mixture model factorization of the full data likelihood was 

proposed (Moreno-Betancur and Chavance 2016); however, other programs combining SAS 

and R functionalities can also be considered (Bunouf et al. 2015).

2.2. Model selection

In this section, we outline the existing information criteria for GEE model selection with 

particular attention for longitudinal data in the presence of dropout/monotone missingness 

under MAR. Of note is that two major objective functions are relied on for information 

criteria derivation, quasi-likelihood function (i.e., QIC, QICW) and quadratic loss function 

(i.e., MLIC, MLICC) (McCullagh and Nelder 1989; Pan 2001; Shen and Chen 2012).

2.2.1. QIC and QICW—Based on quasi-likelihood, Pan (2001) proposed a criterion, 

QIC, to select an optimal mean model or “working” correlation structure in GEE, which is 

shown by

QIC = − 2Q β Ri ;Ii,Di + 2tr ΩIV G , (5)

where Q β Ri ; Ii, Di = ∑i = 1
K ∑j = 1

T Q β, ϕ; Y ij  is a quasi-likelihood function, and 

ΩI = ∑i = 1
K Di

T Ai
−1Di. given the “working” correlation structure is independent. In addition, 

Pan (2001) provided QICu = − 2Q β Ri ; Ii, Di + 2p as an approximation to QIC. Because if 

all model specifications in GEE are correct, ΩI
−1

 and V G are asymptotically equivalent, thus 
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tr ΩIV G ≈ tr(I) = p. Since the validity of the penalty term 2p is unclear under finite 

samples, the application of QICu is not recommended (Cui and Qian 2007).

Literatures have shown that QIC does not perform satisfactory in the application of 

longitudinal data with dropout/monotone missingness that is MAR. Shen and Chen (2012) 

showed that the proportion of correct model selection by QIC decreased as the dropout rate 

increased. To adjust for missing data under MAR, Platt et al. (2013) proposed a criterion, 

QICW p = − 2Qw β Ri ; Ii, Di, W i + 2p, where Qw β Ri ; Ii, Di, W i  is the weighted quasi-

likelihood component with Wi defined in Eq. (1). This criterion is an extension of QICu, but 

they did not provide comprehensive evaluation. Later on, Gosho (2016) proposed a criterion 

for model selection based on the weighted quasi-likelihood function given by

QICW r = − 2Qw β Ri ;Ii,Di,W i + 2tr ΩIV W , (6)

where the only difference between QICWp and QICWr is the second penalty term which was 

extended from QIC in Eq. (5). The model with the smallest QICWr can be used for both 

variable selection and correlation structure selection. In particular, the author also argued 

that 2p would be an inappropriate penalty term of QICWp for model selection regardless of 

the presence or absence of dropout missingness.

2.2.2. MLIC and MLICC—Another alternative criterion for variable selection in WGEE 

is MLIC proposed by Shen and Chen (2012). Unlike QICWr, MLIC is based on a quadratic 

loss function, which is employed to measure how well the candidate model predicts the true 

model. Mallows (1973) also considered this measure for the development of Mallows’ Cp. 

MLIC is expressed as follows:

MLIC = ∑
i = 1

K
Y i − μi

TW i Y i − μi + 2tr HK
−1JK , (7)

where

HK = ∑
i = 1

K
DiT V i−1W iDi

and

JK = ∑
i = 1

K
DiT V i−1W i Y i − μi

0 Y i − μi
0 T W i − Gi Y i − μi

0 T W i Di

evaluated at β  and α, where Gi = ∑m = 1
K UmSm

T ∑m = 1
K SmSm

T −1Si with U and S defined in 

Eq. (4). Here, μi
0 = E Y i  denotes the true mean for subject i with the estimate denotedby μi

based on the candidate model. In practice, μi
0 is unknown, which can be estimated from the 

largest candidate model under consideration (Mallows 1973; Shen and Chen 2012). In 
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addition, with regard to the selection of “working” correlation structure, Shen and Chen 

(2012) developed the following criterion:

MLICC = ∑
i = 1

K
Y i − μi

TW i Y i − μi + 2tr HK
−1LK , (8)

where

LK= ∑
i = 1

K
DiT V i−1 Φi * W i Y i − μi

0 Y i − μi
0 T W i Di .

Note that Φi is a T × T matrix with the (j, u) element as Φi,j,u = wi,s, s = min(j, u), 1 ≤ j, u ≤ 

T. (* denotes the element-by-element multiplication of matrices).

2.3. Simulation of longitudinal data with missing responses under MAR

For the simulation of longitudinal data, we consider three types of outcomes (i.e., 

continuous, binary and count) and potential correlation structures shown in Table 1. The 

marginal mean μi of the outcome variables Yi is given by

g μi = β0 + β1
Txi, (9)

where g is the link function corresponding to types of outcomes, for instance, an identity 

link function for continuous outcomes, a logit link function for binary outcomes, and a log 

link function for count data. xi includes cluster-level or subject-level covariates of interest 

and the associated parameters are denoted by β1. Then, Yi can be generated with a given 

correlation structure R(ρ) and marginal mean μi. Here, we adopt the functions of 

“mvrnorm”, “rmvbin” and “genPoisNor” for three types of outcome generation, and the 

details of the algorithms can be referred to the literature (Demirtas and Doganay 2012; 

Leisch et al. 1998; Amatya and Demirtas 2017). Afterward, given the pre-specified model 

for missing data, the probability of missingness at each observation for each subject can be 

obtained; thus, the missing status can be determined based on the Bernoulli distribution. 

Note that if one observation is missing, all the subsequent ones will also be missing, and also 

the assumption of MAR is ensured by the model for missingness which only depends on the 

observed data.

3. Description of core functions

The main function in wgeesel to implement WGEE approach for longitudinal data with 

dropout/monotone missing responses under MAR is wgee. In addition, wgeesel provides 

functions QIC.gee, QICW.gee and MLIC.gee to compute QIC, QICW, and MLIC for model 

selection in GEE adjusted for potential missing data that is MAR.

3.1. Main functions

The standard code for fitting the marginal model by WGEE is:

Xu et al. Page 9

Commun Stat Simul Comput. Author manuscript; available in PMC 2020 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



wgee (model, data, id, family, corstr, scale=NULL, mismodel=NULL)

• model: The model to be fitted by WGEE method. It is the same as the formula 

argument in the geeglm function.

• data: The name of the dataset.

• id: Subject id in the dataset.

• family: Specify the error distribution and link function in wgee and is identified 

by the name of the corresponding distribution in a generalized linear model. The 

available function are: “gaussian”, “binomial” and “poisson”.

• corstr: Three pre-defined “working” correlation structures are available, and they 

are “independence”, “exchangeable”, “ar1” and “unstructured” (Table 1).

• scale: A numeric variable giving the value for the scale parameter ϕ. It should be 

known; otherwise, it needs to be estimated. The default setting is NULL.

• mismodel: Specify the logistic regression model for weight estimation.

The wgee function largely follows the syntax and the output style of the geeglm function and 

provides comprehensive outputs including parameter estimation, weights, scale parameter 

and so on. Also, with regard to the existing information criteria for model selection, the 

functions for computing QIC, QICW and MLIC are:

QIC.gee(object);

QICW.gee(object);

MLIC.gee(object, object_full).

The arguments in the model selection function QIC.gee, QICW.gee and MLIC.gee are fitted 

model objects of class “wgee”. One argument of note in MLIC.gee is object_full, which is 

the fitted model object of class “wgee” that specifies the largest candidate model under 

consideration. QIC.gee calculates QIC and QICu. QICW.gee computes the QICWr and 

QICWp. MLIC.gee outputs MLIC and MLICC.

In addition, the data_sim function in wgeesel is utilized for the simulation of longitudinal 

data with missing responses under MAR, where normal, Bernoulli or Poisson longitudinal 

data with monotone missingness are considered. data_sim simulate multivariate random 

variables depending on the following packages: MASS, bindata and PoisNor (Ripley et al. 

2017; Leisch et al. 2012; Amatya and Demirtas 2016). In particularly, multivariate normal 

data are generated through MASS. Correlated binary data are generated by bindata. 

Correlated Poisson variables are generated through PoisNor by inverse CDF transformation 

method. Through specifying the number of lags, y_lag can generate the lagged responses 

within-subject, which can be included as potential covariates in the dropout model for 

weight estimation in WGEE.
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3.2. Other available functions

Besides the main selection criteria in WGEE, wgeesel also provides the functions to 

calculate additional information criteria including MQIC, RJC and corrected RJC for regular 

GEE which are briefly introduced in Section 1 (Imori 2013; Rotnitzky and Jewell 1990; 

Wang and Long 2011). Note that MQIC.gee computes the MQIC and MQICu; RJC 

calculates the RJC for selection of “working” correlation structure; RJC2 calculates 

corrected RJC to select “working” correlation structure for balanced data when the sample 

size is relatively small. Also, the function of drgee can be used to perform doubly robust 

GEE model fitting by specifying the dropout model and the outcome model, which is built 

upon on the package CRTgeeDR (Prague et al. 2016, 2017). In addition, three datasets with 

different types of outcomes from real applications also available in wgeesel. For research 

purpose, the simulation function, data_sim, for longitudinal data with monotone missingness 

are also provided with more details described in Section 4. The objects returned by the 

functions are detailed in the reference manual (see Value part), which is available from the 

Comprehensive R Archive Network at https://cran.r-project.org/package=wgeesel.

4. Simulation

In this section, we will conduct simulation studies to evaluate the validity of wgee by 

comparing the results from PROC GEE (SAS Institute Inc. 2016) and other existing 

programs. We consider three types of outcomes, continuous, binary and count, and the 

marginal mean μij is given by g(μij) = β0 + β1xij, i = 1, 2, …, K; j = 1, 2, …, T, where g is 

the link function described above, xij is a cluster-level covariate following up a Bernoulli 

distribution, the number of visits T = 3 for each subject, and the sample size K = 100. The 

true parameter values are β0 = −0.5 and β1 = 0.5, and the true correlation structure is 

exchangeable with the correlation coefficient ρ = 0.25.

For the dropout model, we assume the following logistic regression model:

log λij
1 − λij

= α0 + α1xij + α2Y i, j − 1, (10)

where λij = Pr(rij = 1 | ri,j−1 = 1, Yi, xij), α0 = 1, α1 = −0.5 and α2 = −0.5. The overall 

proportion of missing observations (i.e., the number of missing observations over KT) is 

between 20% to 35%, which varies across different set-ups.

We use the function data_sim in wgeesel to simulate 250 Monte Carlo datasets for each 

simulation setting. The sample code for simulating one longitudinal binary data is below:

R> id <- rep (1:100, each = 3) #simulate 100 subjects each with 3 

observations

R> x <- cbind (1, rep (rbinom (100, 1, 0.5), each = 3)) #generate covariate 

x (binary)

R> x_mis <- cbind (1, rep (runif (100), each = 3)) #generate x2 (continuous)
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R> sim_data <- data_sim (id, rho = 0.25, phi = 1, x, beta = c (−0.5, 0.5), 

x_mis,

+ para = c (1, −0.5, −0.5), corstr = “exchangeable”, family = “binary”,

+ lag_level = 1) # simulate the correlated binary data

R> data_final <- sim_data$data [,c (“id”, “response_mis”, “ind”, “ylag1”, 

“2”, “V2”)]

R> colnames (data_final) <- c (“id”, “response”, “R”, “y_lag”, “x1”, “x2”)

R> head (data_final)

id response R y_lag x x2

1 1 0 1 NA 0 0.7209039

2 1 NA 0 0 0 0.7209039

3 1 NA 0 0 0 0.7209039

4 2 0 1 NA 1 0.8757732

5 2 0 1 0 1 0.8757732

6 2 0 1 0 1 0.8757732

We apply the WGEE method on the datasets with three types of outcomes under 

exchangeable, AR1 and unstructured “working” correlation structures. The parameter 

estimates are obtained from wgee and PROC GEE. The results are summarized in Table 2 

using the following measures: the difference between the mean of the parameter estimates 

and the true value (Bias), the mean of the standard error estimates (SE), the Monte Carlo 

standard deviation of the parameter estimates (SD). It is noted that PROC GEE is still under 

experimental version and cannot provide the ODS (Output Delivery System) output of the 

parameter estimates from the dropout model. From the results, we can see that wgee yields 

satisfactory parameter estimates because of negligible biases. Under the true correlation 

structure (i.e., exchangeable), the estimates obtained by wgee are exactly the same as the 

estimates from PROC GEE. When the “working” correlation structure is misspecified (i.e., 

AR1, unstructured), the estimates from wgee are comparable with those from PROC GEE in 

terms of bias and SE. Also, as we expect, SDs are close to SEs throughout even though there 

is some discrepancy for count data which may be due to higher missing rate. Thus, we 

confirm that our function of wgee provides valid inference, and comprehensive output (e.g., 

the parameter estimates of the dropout model) can be provided for other research purposes.

Moreover, we also evaluate the estimators from WGEE and doubly robust GEE by using our 

functions of wgee and drgee to compare their performances under correct and misspecified 
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dropout models, where the misspecified dropout model only considers xij as the covariate. 

The results are summarized in Table 3, where the mean square errors (MSE) of the 

parameter estimates are reported to assess efficiency. The misspecification of dropout model 

deteriorates WGEE model fitting but the influence is mild, and similar to the literature 

(Seaman and Copas 2009; Prague et al. 2016; Stephens et al. 2012), doubly robust 

estimators are more efficient than WGEE estimators in particularly when the dropout model 

is misspecified.

5. An illustrative real data application

One of real data examples in our package wgeesel is the imps data set, which is from the 

National Institute of the Mental Health Schizophrenia Collaborative Study (Gibbons and 

Hedeker 1994). A total of 386 patients were enrolled in this study including 293 patients in 

treatment group (Drug = 1) and 93 patients in the placebo group (Drug = 0). Each patient 

was visited four times (Week 0, 1, 3 and 6). During each visit, the severity of the 

schizophrenia disorder (IMPS79) was measured, which is ranged from 0 to 7. We 

dichotomize IMPS79 by using the threshold of 4 (Y = 1 if IMPS ≥ 4; otherwise, Y = 0). We 

are particularly interested in the marginal association between the risk factors (i.e., drug, 

sex) and the response Y. The missing proportion is 7.3% due to patient dropouts. The 

missing mechanism needs to be investigated before model fitting. From Figure 1, we can see 

that the dropout is not MCAR because the trajectory operates differently in the drug and 

placebo groups, and also dropout does not only depend on covariates because the subjects 

with complete and missing observations follow different (pre-dropout) trajectories. 

Therefore, it is reasonable to assume MAR mechanism, and this is also validated by 

sensitivity analysis (Moreno-Betancur and Chavance 2016).

Here, WGEE models are adopted for analysis, and model selection on marginal mean is 

conducted given the AR1 “working” correlation structure. Five candidate models shown in 

Shen and Chen (2012) are considered, and the corresponding information criteria of QIC, 

QICW and MLIC are calculated for each candidate model. The dropout is considered to be 

affected by Yi,t−1, Yi,t−2 and Yi,t−3, and the model for missingness is

logit Rit = α0 + α1 Drug i + α2Timei + α3Sexi + α4Yi, t − 1 + α5Yi, t − 2I(t > 2) + α6Yi, t − 3I(t > 3)

where I(t > 2) = 1 if t > 2, and 0 otherwise. I(t > 3) = 1 if t > 3, and 0 otherwise. Thus, the 

first step is to generate a new dataset with Yi,t−1, Yi,t−2I(t > 2) and Yi,t−3I(t > 3) through the 

following program:

R> library (wgeesel)

R> data (imps)

R> imps$subject <- imps$ID

R> lag1y <- ylag (imps$ID, imps$Y, 1) ###create lagged y(t − 1)##
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R> lag2y <- ylag (imps$ID, imps$Y, 2, na=F) ###create lagged y(t−2) I (t>2) 

##

R> lag3y <- ylag (imps$ID, imps$Y, 3, na=F) ###create lagged y(t−3) I (t>3) 

##

R> imps_new <- cbind (imps, lag1y, lag2y, lag3y)

Then, we fit a full candidate model in WGEE method via the function wgee as follows:

R> fit <- wgee (Y˜Time + Sex + Drug + Time : Sex + Sex : Drug + Drug : Time, 

imps_new,

+ imps_new$ID, family=“binomial”, corstr = “ar1”, scale = NULL,

+ mismodel =R˜Drug+Time+Sex+lag1y+lag2y+lag3y)

summary of fit, which is the object of class “wgee”, summarizes the fit of the model in 

WGEE method, including parameter estimates, p-values from hypothesis testing of each 

parameter in Eq. (1), estimated correlation and scale parameters:

R> summary (fit)

Call:

wgee (model = Y ˜ Time + Sex + Drug + Time:Sex + Sex : Drug + Drug:Time, 

data = imps_new, id = imps_new$ID, family = “binomial”, corstr = “ar1”, 

scale = NULL, mismodel = R ˜ Drug + Time + Sex + lag1y + lag2y + lag3y)

Estimates Robust SE z value Pr(>|z|)

(Intercept) 3.2657 0.4931 6.623 < 2e–16 ***

Time −1.1803 0.2387 −4.945 7.6e–07 ***

Sex −0.1877 0.4940 −0.380 0.704

Drug −0.5239 0.4918 −1.065 0.287

Time:Sex 0.0227 0.1712 0.133 0.894

Sex:Drug 0.3449 0.4601 0.750 0.453

Time:Drug −0.2518 0.2289 −1.100 0.271

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ‘ 0.1 ‘ ‘ 1

Estimated Scale Parameter: 0.9632

Estimated Correlation: 0.4175

Moreover, the summary of fit$mis_fit, which is the object of class “glm”, summarizes the fit 

of dropout model including parameter estimates, and p–values from hypothesis testing of 

each regression parameter in Eq. (2):

R> summary (fit$mis_fit)

Call:

glm (formula = mismodel, family = binomial(), data = data [adjusted_idx,])

Deviance Residuals:

Min 1Q Median 3Q Max

−2.45695 0.08982 0.31660 0.42653 1.26253

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.8056 1.2081 5.633 1.77e–08 ***

Drug 0.8357 0.2646 3.158 0.001587 **

Time −2.8870 0.6457 −4.471 7.78e–06 ***

Sex 0.2592 0.2477 1.047 0.295258

lag1y 0.7567 0.2750 2.752 0.005928 **

lag2y −0.6886 0.3653 −1.885 0.059420.

lag3y 1.7137 0.5093 3.365 0.000766 ***---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 561.17 on 1121 degrees of freedom

Residual deviance: 483.96 on 1115 degrees of freedom
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AIC: 497.96

Number of Fisher Scoring iterations: 7

We can see that Yi,t−1 and Yi,t−3 are significantly associated with the dropout missigness, 

and Yi,t−2 has the significant trend. Next step is to conduct model selection, and based on the 

functions of QIC.gee, QICW.gee, and MLIC.gee in wgeesel, we can have

R> QIC.gee (fit)

QIC QICu Quasi_lik

1 1390 1383.5 −684.7

R> QICW.gee (fit)

QICWr QICWp Wquasi_lik

1 1537.1 1531 −758.5

R> MLIC.gee (fit, fit)

MLIC MLICc Wquad_loss

1 1 257.5 256.9 253.4

The calculation of QIC, QICW and MLIC are returned as well as the quasi-likelihood 

(Quasi_lik), weighted quasi-likelihood (Wquasi_lik) and weighted quadratic loss 

(Wquad_loss).

We summary the results of the five candidate models in Table 4. The values in bold are 

selected as the minimum across the candidate models based on the criterion under 

consideration. We find out that Model 2 has the smallest MLIC values among all five 

candidate models given AR1 “working” correlation structure. The selection results based on 

MLIC are the same as those in Shen and Chen (2012). Compared to the results from MLIC, 

the model selected by QICWr and the naive QIC seems larger with an redundant interaction 

term (i.e., Drug × Time, which is non-significant).

6. Conclusion

The key features of this R package wgeesel rely on WGEE model fitting and comprehensive 

information criteria for WGEE model selection on marginal mean and/or correlation 

structures. Simulation studies have shown that the function of wgee provides valid inference 

by comparing to the existing software (i.e., SAS), and comprehensive output including the 

estimates of the parameters of marginal mean regression as well as the dropout model, scale 

and correlation coefficients, and the weights matrix. The current version can be applied for 

correlated data with different types of outcomes (i.e., continuous, binary and count) under 
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commonly used “working” correlation structures (i.e., independence, exchangeable, AR1 

and unstructured). More importantly, wgeesel provides a flexible and user-friendly tool to 

conduct model selection in GEE adjusted to monotone/dropout missing responses that are 

MAR. We accommodate all existing information criteria (i.e., QIC, QICW, MLIC) in 

wgeesel to make it possible for identifying the best candidate model in real applications. 

QICW and MLIC have been shown to have superior performance on model selection 

compared to QIC in the presence of dropout missingness under MAR (Gosho 2016; Shen 

and Chen 2012). In addition, we also establish a function to conduct doubly robust GEE 

based upon the work by Prague et al. (2016, 2017). The doubly robust GEE estimators have 

more appealing properties than WGEE estimators because they are consistent if either of the 

dropout and outcome models is correctly specified, which has been validated through 

simulation studies; however, those information criteria for model selection are not applicable 

for doubly robust GEE. On the other hand, to ensure valid inference from wgeesel, the 

assumption of MAR needs to hold; therefore, the investigation on missing mechanism is 

crucial, and sensitivity analysis can be conducted to evaluate the inference deviance under 

different missing mechanisms, and further verify the MAR assumption (Bunouf et al. 2015; 

Moreno-Betancur and Chavance 2016).

Under non-monotone missingness, the MI method has been popularly employed for 

statistical inference, and the studies on model selection (i.e., doubly robust GEE) in this area 

are limited. Shen and Chen (2013) recommended the use of the MI-based model selection 

methods (i.e., MI-based QIC and MLIC), which perform better based on improper 

(frequentist) imputation than based on proper (Bayesian) imputation (Wang and Robins 

1998; Lu et al. 2010). By employing the existing multiple imputation packages, such as 

mice in R (van Buuren and Groothuis-Oudshoorn 2011), we plan to incorporate multiple-

imputation-based model selection approaches into wgeesel to accommodate general patterns 

of missing data for future studies, and keep adding more features for wide applications in 

practice and research.
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Figure 1. 
Mean IMPS79 across time by the status of dropout.
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Table 1.

The list of potential correlation structures in wgee.

Name R(ρ)

Independence Cor(Yij, Yij′) = 0, j ≠ j′

Exchangeable Cor(Yij, Yij′) = ρ, j ≠ j′

First-order Autoregressive (AR1) Cor(Yij, Yij′) = ρ|j–j’|, j ≠ j′

Unstructured Cor(Yij, Yij′) = ρjj’, j ≠ j′
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Table 2.

Summary of estimation results in WGEE with K = 100 and T = 3.

Type
Parameters True

Exchangeable AR1 Unstructured

Bias SE SD Bias SE SD Bias SE SD

PROC GEE β0 −0.5 0.0136 0.1113 0.1098 0.0135 0.1118 0.1107 0.0133 0.1111 0.1101

β1 0.5 −0.0087 0.1658 0.1646 −0.0082 0.1667 0.1655 −0.0115 0.1651 0.1644

Continuous

wgee β0 −0.5 0.0136 0.1113 0.1098 0.0136 0.1118 0.1105 0.0136 0.1108 0.1099

β1 0.5 −0.0087 0.1658 0.1646 −0.0082 0.1666 0.1655 −0.0117 0.1645 0.1642

α0 1 −0.0191 0.2665 0.2833 −0.0191 0.2665 0.2833 −0.0191 0.2665 0.2833

α1 −0.5 0.0216 0.3614 0.3665 0.0216 0.3614 0.3665 0.0216 0.3614 0.3665

α2 −0.5 −0.0124 0.1882 0.1916 −0.0124 0.1882 0.1916 −0.0124 0.1882 0.1916

PROC GEE β0 −0.5 −0.0066 0.2435 0.2581 −0.0060 0.2446 0.2592 −0.0065 0.2441 0.2623

β1 0.5 0.0178 0.3602 0.3620 0.0184 0.3622 0.3638 0.0155 0.3617 0.3689

Binary

wgee β0 −0.5 −0.0066 0.2435 0.2581 −0.0062 0.2446 0.2594 −0.0074 0.2435 0.2618

β1 0.5 0.0178 0.3602 0.3620 0.0183 0.3623 0.3638 0.0160 0.3604 0.3675

α0 1 −0.0101 0.2787 0.2904 −0.0101 0.2787 0.2904 0.0101 0.2787 0.2904

α1 −0.5 0.0337 0.3381 0.3534 0.0337 0.3381 0.3534 0.0337 0.3381 0.3534

α2 −0.5 0.0042 0.3383 0.3309 0.0042 0.3383 0.3309 0.0042 0.3383 0.3309

PROC GEE β0 −0.5 −0.0012 0.1483 0.1739 −0.0030 0.1494 0.1751 −0.0077 0.1481 0.1754

β1 0.5 −0.0122 0.2007 0.2262 −0.0099 0.2015 0.2301 −0.0113 0.2001 0.2348

Count

wgee β0 −0.5 −0.0012 0.1483 0.1738 −0.0019 0.1491 0.1750 −0.0038 0.1498 0.1733

β1 0.5 −0.0121 0.2007 0.2262 −0.0115 0.2014 0.2297 −0.0188 0.2032 0.2383

α0 1 0.0045 0.2746 0.2748 0.0045 0.2746 0.2748 0.0056 0.2746 0.2749

α1 −0.5 −0.0053 0.3458 0.3596 −0.0053 0.3458 0.3596 −0.0099 0.3457 0.3571

α2 −0.5 0.0006 0.2018 0.2114 0.0006 0.2018 0.2114 0.0024 0.2017 0.2112

Notes: The missing proportion is 28% for the data with continuous outcome, 32% for the data with binary outcomes and 35% for the data with 
count outcomes. The true correlation structure is exchangeable. Bias is the difference between the mean of the parameter estimates and the true 
value; SE is the mean of the standard error estimates and SD is the Mont Carlo standard deviation of the parameter estimates.
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Table 3.

Summary of estimation results in WGEE and doubly robust GEE with K = 100 and T = 3.

Type Parameters True

Correct dropout model Mis-specified dropout model

Bias SE MSE Bias SE MSE

wgee β0 −0.5 0.0136 0.1113 0.0122 −0.0162 0.1094 0.0122

β1 0.5 −0.0087 0.1658 0.0271 −0.0180 0.1623 0.0266

Continuous

drgee β0 −0.5 −0.0198 0.0699 0.0123 −0.0093 0.0690 0.0118

β1 0.5 −0.0083 0.0925 0.0220 −0.0106 0.0909 0.0218

wgee β0 −0.5 −0.0066 0.2435 0.0664 −0.0432 0.2414 0.0665

β1 0.5 0.0178 0.3602 0.1309 0.0048 0.3560 0.1293

Binary

drgee β0 −0.5 −0.0380 0.1330 0.0615 −0.0283 0.1329 0.0609

B1 0.5 0.0124 0.1769 0.1111 0.0110 0.1764 0.1110

wgee β0 −0.5 −0.0012 0.1483 0.0301 −0.0316 0.1451 0.0278

β1 0.5 −0.0121 0.2007 0.0511 −0.0231 0.1966 0.0463

Count

drgee β0 −0.5 −0.0298 0.0779 0.0240 −0.0238 0.0776 0.0239

B1 0.5 −0.0057 0.0956 0.0348 −0.0071 0.0950 0.0350

Notes: The missing proportion is 28% for the data with continuous outcome, 32% for the data with binary outcomes and 35% for the data with 
count outcomes. The true exchangeable correlation structure is used for both models. Bias is the difference between the mean of the parameter 
estimates and the true value; SE is the mean of the standard error estimates and MSE is the mean square error of the parameter estimates.
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Table 4.

Analysis results of imps data for five candidate models.

Covariate
Model

1 2 3 4 5

Time −1.34(0.08)*** −1.37(0.08)*** −1.37(0.08)*** −1.17(0.21)*** −1.18(0.24)***

Drug −0.85(0.24)** −0.86(0.24)** − 0.36(0.44) − 0.52(0.49)

Sex 0.12(0.18) −0.19(0.49)

Sex × Time 0.02(0.17)

Sex × Drug 0.34(0.46)

Drug × Time −0.25(0.23) −0.25(0.23)

QIC (AR1) 1401.2 1382.1 1385.2 1381.8 1390.0

QICWr (AR1) 1554.8 1529.6 1532.7 1529.5 1537.1

MLIC (AR1) 261.9 255.8 256.5 256.0 257.5

*
p-value < 0.05;

**
p-value < 0.01;

***
p-value < 0.001.
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