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Background. The severity of the 2017–2018 influenza season in the United States was high, with influenza A(H3N2) viruses 
predominating. Here, we report influenza vaccine effectiveness (VE) and estimate the number of vaccine-prevented influenza-asso-
ciated illnesses, medical visits, hospitalizations, and deaths for the 2017–2018 influenza season.

Methods. We used national age-specific estimates of 2017–2018 influenza vaccine coverage and disease burden. We estimated VE 
against medically attended reverse-transcription polymerase chain reaction–confirmed influenza virus infection in the ambulatory 
setting using a test-negative design. We used a compartmental model to estimate numbers of influenza-associated outcomes prevented 
by vaccination.

Results. The VE against outpatient, medically attended, laboratory-confirmed influenza was 38% (95% confidence interval [CI], 
31%–43%), including 22% (95% CI, 12%–31%) against influenza A(H3N2), 62% (95% CI, 50%–71%) against influenza A(H1N1)
pdm09, and 50% (95% CI, 41%–57%) against influenza B. We estimated that influenza vaccination prevented 7.1 million (95% CrI, 
5.4 million–9.3 million) illnesses, 3.7 million (95% CrI, 2.8 million–4.9 million) medical visits, 109 000 (95% CrI, 39 000–231 000) 
hospitalizations, and 8000 (95% credible interval [CrI], 1100–21 000) deaths. Vaccination prevented 10% of expected hospitaliza-
tions overall and 41% among young children (6 months–4 years).

Conclusions. Despite 38% VE, influenza vaccination reduced a substantial burden of influenza-associated illness, medical visits, 
hospitalizations, and deaths in the United States during the 2017–2018 season. Our results demonstrate the benefit of current influ-
enza vaccination and the need for improved vaccines.
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The 2017–2018 influenza season in the United States was a 
high severity season [1, 2]. Circulation of influenza viruses was 
widespread for an extended period throughout the country. 
Influenza A(H3N2) viruses predominated, but influenza 
A(H1N1)pdm09 and B viruses also circulated [2]. The Centers 
for Disease Control and Prevention (CDC) has estimated 

that there were 48.8 million influenza illnesses, 959  000 hos-
pitalizations, and 79  400 influenza-associated deaths during 
2017–2018, the highest morbidity and mortality since the 2009 
pandemic [3].

Influenza vaccination is the primary strategy to prevent in-
fluenza illness and its complications. Recent reports estimate 
that 42% of the US population was vaccinated against influenza 
during the 2017–2018 season [4, 5]; the mid-season estimates 
of the effectiveness of influenza vaccine were 36% against all 
influenza A and B virus infections and 25% against A(H3N2) 
virus infections [6]. Here, we report end-of-season vaccine ef-
fectiveness (VE) and apply it with vaccine coverage to estimate 
the number of influenza-associated illnesses, medical visits, 
hospitalizations, and deaths prevented by influenza vaccination.
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METHODS

Influenza Vaccine Composition

The recommended composition of the 2017–2018 
Northern Hemisphere trivalent influenza vaccine in-
cluded an A/Michigan/45/2015 (H1N1)–like virus, an 
A/Hong Kong/4801/2014 (H3N2)–like virus, and a B/
Brisbane/60/2008–like virus (Victoria lineage). In addition, 
quadrivalent vaccines included a B/Phuket/3073/2013–like 
virus (Yamagata lineage) [7].

Influenza Vaccine Effectiveness

Effectiveness of 2017–2018 influenza vaccination for the pre-
vention of outpatient medically attended influenza illness was 
determined through the US Influenza Vaccine Effectiveness 
(Flu VE) Network, which has been described in detail pre-
viously [8–11]. Briefly, study staff recruited, consented, and 
enrolled patients aged ≥6 months who sought outpatient care 
for acute respiratory illness (including cough) within 7  days 
of symptom onset at 52 participating healthcare facilities in 5 
research sites in Michigan, Pennsylvania, Texas, Washington, 
and Wisconsin. Patients who received an antiviral medication 
in the 7  days before enrollment or who were enrolled in the 
prior 14 days were not eligible. Study staff collected a combined 
nasal and throat swab from patients aged ≥2 years or a nasal 
swab only from children aged <2 years. Reverse-transcription 
polymerase chain reaction (RT-PCR) was used to detect influ-
enza viruses, including subtype and lineage. All diagnostic lab-
oratories used primers and probes from the CDC and passed 
proficiency testing. Staff interviewed patients for demographic 
data, current health status, symptoms, and reported receipt 
of 2017–2018 influenza vaccine. We looked for International 
Classification of Diseases codes assigned to medical encoun-
ters in the year prior to enrollment to determine whether par-
ticipants had a preexisting health condition associated with 
increased risk of severe influenza [12, 13].

For all US Flu VE Network sites, a participant’s vaccination 
status was based on documented receipt of 2017–2018 influenza 
vaccine in electronic immunization records (medical records, 
state immunization systems, and employee health records). In 
addition, at 4 sites (excluding Wisconsin), we considered adults 
aged ≥18 years vaccinated if they reported timing and place of 
vaccination without documented receipt. We excluded children 
(aged 6 month–8 years) who were partially vaccinated. We used 
a test-negative design to estimate VE, contrasting the odds of 
influenza vaccination among participants with RT-PCR–pos-
itive influenza (cases) to the odds of vaccination among par-
ticipants who were negative for influenza (controls) using a 
logistic regression model [14]. We estimated VE and 95% con-
fidence intervals (CIs) against any influenza and by influenza 
virus type or subtype in separate models and stratified models 
by participant age (6 months–4 years, 5–17 years, 18–49 years, 

50–64 years, and ≥65 years). We adjusted all logistic regression 
models, a priori, for network site, calendar time (in bi-week 
increments), participant age, and high-risk status.

The Flu VE Network study was approved by institutional re-
view boards at each participating site and the CDC.

Estimates of Influenza-associated Outcomes

The methods for estimating age-specific influenza burden have 
been detailed elsewhere, and estimates from the 2017–2018 
season are available from the CDC [3, 15]. This method uses 
mathematical multipliers to calculate illnesses, medical visits, 
and deaths from data on hospitalized cases reported through 
the Influenza Hospitalization Surveillance Network (FluSurv-
NET), as illustrated in Supplementary Figure 1. For this anal-
ysis, we restricted burden estimates to those aged ≥6 months. 
We further estimated the burden by influenza virus type and 
subtype using virologic distributions observed in the US Flu 
VE Network patients for illnesses and medical visits and the 
distributions observed in FluSurv-NET to estimate hospital-
izations and deaths for each (sub)type [16]. As data on influ-
enza A subtype were missing for 60% of FluSurv-NET patients 
with influenza A virus infection, we used multiple imputation 
(70 imputations) to estimate the rate of hospitalization for each 
subtype, including patient age, surveillance site, and admission 
time period (October–December, January, February, or March–
May) in the imputation model.

Influenza Vaccine Coverage

We obtained annual estimates of influenza vaccination coverage 
in the United States by month, from August 2017 through April 
2018, which were reported by the CDC (Supplementary Figure 
2) [4, 5].

Influenza-associated Outcomes Prevented by Vaccination

We estimated the effect of seasonal influenza vaccination on 
disease burden using a mathematical compartmental model, 
stratified by age group [17]. We began the model with all mem-
bers of the US population unvaccinated and susceptible to in-
fluenza. Each month the susceptible population was divided, 
based on observed data, into those who became infected (using 
data on estimated illness), those who were vaccinated and 
protected against influenza (using data on vaccine coverage 
and effectiveness), and those who remained susceptible to in-
fection. Each month we estimated age-specific rates of illness 
(and medical visits, hospitalizations, and deaths) by dividing 
the monthly illnesses by the prior month’s susceptible popula-
tion. Using these rates among susceptible persons, we estimated 
the number of outcomes that would have occurred in the same 
population without influenza vaccination. We calculated the 
prevented outcomes as the difference between outcomes in the 
absence of vaccination and those estimated under current levels 
of vaccination [15, 18, 19].

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
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Estimates of VE in adult outpatients and inpatients during 
2017–2018 were similar in the United States, thus we assumed that 
VE estimates from the US Flu VE Network applied to all influenza 
outcomes and were also constant across the season [20]. We applied 
(sub)type-specific VE estimates to the (sub)type-specific models.

We estimated the number needed to vaccinate (NNV) to 
prevent 1 influenza-associated hospitalization by dividing the 
number of vaccinated individuals by hospitalizations prevented 
by vaccination. When VE 95% CIs included the null, the unde-
fined value of NNV was indicated as >999 999. Our estimates of 
NNV were stratified by age group.

We used a Monte Carlo algorithm to estimate a 95% cred-
ible interval (CrI) around the estimates of prevented outcomes, 
incorporating uncertainty in each data input. Briefly, we chose 
a value at random from the assumed distribution for each of the 
model inputs (Supplementary Table 1) and calculated the esti-
mated prevented outcome and repeated the process 5000 times. 
Distributions for VE and vaccine coverage were truncated at 0.

Sensitivity Analysis for Vaccine Coverage

Missing responses to the influenza vaccination question were 
more common in the telephone survey in 2017–2018 compared 
with 2016–2017. We conducted sensitivity analyses to assess the 
effect of differences in vaccine coverage on estimates of prevented 
hospitalizations [4]. We explored the following scenarios for age 
group–specific coverage: as observed in 2016–2017; 2017–2018 
coverage assuming individuals with missing responses were vac-
cinated; 2017–2018 coverage assuming individuals with missing 
responses were unvaccinated; and reducing coverage by 3%–17% 
to account for overestimation by self-report [21–25].

RESULTS

Among the population eligible for influenza vaccination and 
aged ≥6 months, we estimated there were 47.9 million illnesses, 
22.1 million medical visits, 953 000 hospitalizations, and 79 400 
deaths associated with influenza in 2017–2018. Adults aged 
≥65 years accounted for 15% of illnesses but 70% and 90% of all 
hospitalizations and deaths, respectively.

Influenza A(H3N2) was associated with the highest rates 
of illness, affecting 9% of children aged 6 months–4 years and 
15% of adults aged 50–64 years (Figure 1 and Supplementary 
Table 2). After applying these rates to the US population, influ-
enza A(H3N2) was associated with an estimated 28.4 million 
illnesses, 13.0 million medical visits, 587 000 hospitalizations, 
and 49 000 deaths overall (Supplementary Table 3). Influenza 
A(H1N1)pdm09 virus infections were less common, with 4.6 
million illnesses. Influenza B virus infections accounted for 15.7 
million illnesses, 32% of all influenza illnesses.

Vaccine Effectiveness

From the US Flu VE Network, 8900 people were enrolled and 
8436 were included in analysis for the 2017–2018 influenza 

season, including 3050 case-patients with RT-PCR–confirmed 
influenza and 5386 controls with noninfluenza acute respira-
tory illness (Table 1; Supplementary Table 4). Influenza A virus 
infections were identified from November 2017 through 
February 2018 (Supplementary Figure 3). Influenza A(H3N2) 
viruses accounted for 84% of influenza A virus infections; and 
influenza B virus infections occurred later in the season with a 
peak in mid-March.

Among those enrolled in the US Flu VE Network, 42% of 
influenza-positive case-patients and 53% of influenza-negative 
controls were vaccinated against influenza (Supplementary 
Table 5). Of the vaccinated participants aged <65  years with 
known vaccine type, 97% received quadrivalent inactivated in-
fluenza vaccine (IIV4) and 3% received trivalent inactivated in-
fluenza vaccine (IIV3). Of vaccinated adults aged ≥65 years with 
known vaccine type, 51% received high-dose IIV3, 47% received 
standard-dose IIV4 or IIV3, and 2% received adjuvanted IIV3.

VE against any influenza A  or B virus infection was 38% 
(95% CI, 31%–43%) after adjustment for study site, age, high-
risk condition, and calendar time (Figure 2; Supplementary 
Table 5). The VE estimates against any influenza virus infection 
varied by age group and were statistically significant in all age 
groups except for people aged ≥65 years (Figure 2). The adjusted 
VE against A(H3N2) was 22% (95% CI, 12%–31%) overall but 
also varied by age and was only statistically significant in chil-
dren aged 6 months–4 years. The adjusted VE against A(H1N1)
pdm09 was 62% (95% CI, 50%–71%) and VE against influenza 
B was 50% (95% CI, 41%–57%).

Vaccine-prevented Burden

We estimated that influenza vaccination prevented 7.1 million 
(95% CrI, 5.4 million–9.3 million) illnesses and 3.7 million (95% 
CrI, 2.8 million–4.9 million) medical visits (Table 2). Prevented 
illnesses included 2.3 million illnesses due to A(H3N2) viruses 
and 1.4 million illnesses due to A(H1N1)pdm09 viruses; 48% 
and 70% of which, respectively, were prevented among children 
(Supplementary Table 6). Additionally, more than 3 million ill-
nesses from influenza B viruses were prevented with vaccination.

Overall, an estimated 109  000 (95% CrI, 38  900–231  000) 
hospitalizations were prevented by vaccination, or 10% (95% 
CrI, 4%–19%) of expected hospitalizations (Table 2). However, 
the percent of expected hospitalizations prevented by vaccina-
tion varied by age group, from a low of 7% (95% CrI, 4%–10%) 
in adults aged 18–49  years, who had the lowest vaccine cov-
erage, to a high of 41% (95% CrI, 33%–47%) in children aged 
6  months–4  years, who had high vaccine coverage and the 
highest VE (Figure 3).

The burden of influenza-associated hospitalizations was 
greatest in adults aged ≥65 years, and our model estimated that 
influenza vaccination prevented approximately 65 000 influen-
za-associated hospitalizations (95% CrI, 0–185 000; 9% of ex-
pected, 95% CrI, 0%–21%) in this age group despite lower VE 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
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compared with other age groups. Using the estimated vaccine 
coverage and the overall prevented hospitalizations, we esti-
mate that 462 people (95% CrI, 162–>999 999) aged ≥65 years 
needed to be vaccinated for each influenza-associated hospital-
ization prevented (Table 3).

Finally, an estimated 8000 (95% CrI, 1100–21  000) influ-
enza-associated deaths were prevented by vaccination (9% of 
expected deaths, overall; 95% CrI, 1%–20%). Influenza vacci-
nation prevented an estimated 39% (95% CrI, 30%–45%) of 
influenza-related mortality in children aged 6 months–4 years.

In sensitivity analysis, all CrIs for estimates of prevented 
hospitalizations using various vaccine coverage scenarios over-
lapped with the CrIs using the reported 2017–2018 coverage 
(Supplementary Table 7).

DISCUSSION

During the 2017–2018 season, currently available influenza 
vaccines reduced the risk of any influenza-associated medically 

attended illness by 38% and A(H3N2)-associated illness by 
22%. When modeled with burden and vaccine coverage, we 
estimated that influenza vaccination prevented 7.1 million 
illnesses, 109  000 hospitalizations, and 8000 deaths related to 
influenza. In children aged 6  months–4  years, the benefits of 
vaccination were greatest, with 41% of all expected hospital-
izations prevented by vaccination. VE against A(H1N1)pdm09 
and B viruses was greater in all age groups than for A(H3N2); 
accordingly, the benefit of vaccination against these viruses was 
greater than against A(H3N2) viruses. Nevertheless, our results 
suggest that currently available vaccines provided substantial 
benefit during a season with high rates of influenza-associated 
medical visits, hospitalizations, and deaths.

The population benefit of influenza vaccination in our 
model depends on burden, VE, and vaccine coverage. During 
2017–2018, the benefit of influenza vaccination was substan-
tial mainly because of the high burden of influenza-associated 
disease. Vaccination prevented 109  000 hospitalizations, but 
this number represents only 10% of expected hospitalizations 

Figure 1. Adjusted rates of influenza-associated (A) illnesses, (B) medical visits, (C) hospitalizations, and (D) deaths, by age group and influenza (sub)type—United States, 
2017–2018 influenza season.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz075#supplementary-data
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overall. Thus, while vaccination is an important strategy to mit-
igate some of the burden and severity of the influenza season, 
improvements in both VE and vaccine coverage are needed and 
would result in a greater reduction in burden, enhancing both 
the public health and economic benefits of annual influenza 
vaccination. Our model of prevented illness may underestimate 

the population benefit of vaccination as it only accounts for di-
rect effects of vaccination. Various studies suggest that influenza 
vaccination, particularly of school-aged children, may also pro-
vide indirect protection (ie, herd immunity) against influenza 
virus infection, largely by reducing the probability of contact 
with an infected person [27–32]. The magnitude of indirect 

Table 1. Demographic and Clinical Characteristics of Participants Enrolled in the US Influenza Vaccine Effectiveness Network—United States, 2017–2018 
Influenza Season

 Test Result Status Vaccination Status 

 Influenza Positive Influenza Negative   Vaccinated  

Characteristic No. (%) No. (%) P Valuea Total No. (%) P Valueb

Overall 3050 … 5386 … 8436 4113 …

Study site … … … … <.001 … … … <.001

 Michigan 532 (39) 836 (61) 1368 750 (55)

 Pennsylvania 501 (38) 804 (62) 1305 599 (46)

 Texas 725 (37) 1260 (63) 1985 753 (38)

 Washington 501 (29) 1224 (71) 1725 1022 (59)

 Wisconsin 791 (39) 1262 (61) 2053 989 (48)

Male sex 1322 (38) 2131 (62) .001 3453 1553 (45) <.001

Age group (y) … … … … <.001 … … … <.001

 <5 262 (24) 847 (76) 1109 551 (50)

 5–17 837 (46) 965 (54) 1802 632 (35)

 18–49 965 (34) 1894 (66) 2859 1128 (39)

 50–64 571 (38) 937 (62) 1508 891 (59)

 ≥65 415 (36) 743 (64) 1158 911 (79)

Race/ethnicity … … … … .02 … … … <.001

 White, non-Hispanic 2171 (36) 3888 (64) 6059 3117 (51)

 Black, non-Hispanic 266 (40) 392 (60) 658 226 (34)

 Other, non-Hispanic 269 (33) 543 (67) 812 418 (51)

 Hispanic 331 (38) 550 (62) 881 339 (38)

 Unknown 13 (50) 13 (50) 26 13 (50)

Any high-risk conditionc 1370 (34) 2633 (66) .001 4003 2445 (61) <.001

Asthma/pulmonary high-risk condition 537 (32) 1125 (68) <.001 1662 994 (60) <.001

Cardiovascular high-risk condition 274 (34) 540 (66) .12 814 587 (72) <.001

Diabetes high-risk condition 232 (34) 449 (66) .24 681 480 (70) <.001

Body mass index ≥40d 179 (32) 381 (68) .03 560 360 (64) <.001

Other high-risk condition 922 (35) 1704 (65) .18 2626 1702 (65) <.001

Interval from onset to enrollment (days) … … … … <.001 … … … <.001

 <3 1444 (45) 1759 (55) 3203 1472 (46)

 3–4 1066 (35) 2008 (65) 3074 1501 (49)

 5–7 540 (25) 1619 (75) 2159 1140 (53)

Influenza test resulte          

 Negative … … 5386 … 5386 2842 (53)

 Influenza B positive 958 …. … … 958 377 (39)

 B/Victoria 39 … … … 39 8 (21)

 B/Yamagata 908 … … … 908 369 (41)

 Influenza A positive 2103 … … … 2103 899 (43)

 A (H1N1)pdm09 318 … … … 318 93 (29)

 A (H3N2) 1761 … … … 1761 795 (45)

aP value calculated using χ2 comparing frequency of participants testing influenza positive vs negative by characteristic.
bP value calculated using χ2 test that compares the frequency of vaccination by participant characteristic.
cPresence of a high-risk health condition is defined as the presence of ≥1 medical record–documented International Classification of Disease, 10 Edition, high risk code from 1 October 2016 
to enrollment, as defined by the Advisory Committee on Immunization Practices guidance for conditions that increase risk for complications from influenza [26].
dBody mass index was calculated as kg/m2 from height and weight recorded in the electronic medical record. Calculated for adults aged ≥18 years only.
eFourteen influenza B viruses were of unknown lineage; 34 influenza A viruses were of unknown subtype. There were 25 coinfections that are each counted twice in the table above: 11 
A(H3N2) and A(H1N1)pdm09, 9 B/Yamagata and A(H3N2), 3 B/Victoria and B/Yamagata, 1 A(H1N1)pdm09 and B/Yamagata, and 1 B/Yamagata and A of unknown subtype.
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protection is inconsistent between studies [33]; however, the 
population benefit of seasonal influenza vaccination would be 
greater if indirect effects were present and considered in the 
model [34, 35].

VE against circulating A(H3N2) viruses and prevented 
fraction of A(H3N2) disease were lower than with influenza 
A(H1N1)pdm09 and B viruses. Reduced vaccine protection 
against A(H3N2) viruses is likely multifactorial and was also 
observed during the 2016–2017 influenza season with the same 
A(H3N2) vaccine reference virus (A/Hong Kong/4801/2014) 
[36]. Antigenic characterization indicated that most circulating 
A(H3N2) viruses in 2017–2018 remained antigenically sim-
ilar to the cell-propagated A/Hong Kong/4801/2014 reference 
virus, suggesting limited antigenic drift between the seasons 
[2]. However, A(H3N2) viruses continued to evolve, and sev-
eral viral genetic groups circulated. Further, many circulating 
A(H3N2) viruses were poorly inhibited by antisera raised 
against egg-adapted viruses used for production of the majority 
of influenza vaccines in the United States [2]. The higher VE 
against A(H3N2) viruses that we observed in young children 
may suggest that the immune response to the current A(H3N2) 
vaccine virus differs by age. This deserves more attention as 
young children had higher VE despite being vaccinated with 

egg-based vaccines. Among older adults, egg adaptation of 
A(H3N2) vaccine viruses may have contributed to reduced ef-
fectiveness despite increasing use of high-dose vaccine, which 
was shown previously to be more effective than standard-dose 
influenza vaccines in previous A(H3N2) predominant seasons 
[37]. Even with reduced VE among older adults, vaccination 
still prevented 1 influenza-related hospitalization for every 462 
people vaccinated. More broadly, we need to better understand 
the factors that contribute to differences in VE in order to im-
prove influenza vaccines.

Our estimates of the effect of vaccination rely on large, mul-
tistate research and surveillance platforms, but there are limi-
tations to the available data. First, multipliers are used to scale 
surveillance data to national burden estimates. Data to calculate 
the multipliers often lag by 2 years; thus, we use multipliers meas-
ured during previous influenza seasons. Any changes in testing 
practices, care-seeking behavior, or disease severity patterns 
that occurred during 2017–2018 would not be reflected in the 
multipliers. Our estimates of the effect of vaccination will be re-
vised on CDC websites as data are updated. Second, we imputed 
subtype-specific hospitalization rates because subtyping was 
not performed systematically in FluSurv-Net. Third, our model 
does not currently account for possible waning effectiveness of 

Figure 2. Adjusted vaccine effectiveness (VE) against outpatient, medically attended influenza-associated illness, US Flu VE Network—2017–2018 influenza season. The 
y-axis scale has been truncated for simplicity; however, for adults aged ≥65 years, the 95% confidence interval around the adjusted VE estimate against influenza A(H1N1)
pdm09 extends beyond the lower limit of the y-axis (adjusted VE = 0.19, 95% confidence interval, –.91, .65).
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influenza vaccination over the season [38–44]. The current lit-
erature is inconsistent about the amount of waning that occurs; 
however, including any amount of waning effectiveness in the 
model would have reduced our estimated population benefit. 
Fourth, vaccination coverage estimates from self-report and tele-
phone surveys have limitations, including lower response rates 
and possible inaccuracy of vaccination status [21–25, 45, 46]. 
All results of our sensitivity analysis fell within the CrIs using 
reported coverage. Fifth, as we assumed that influenza vaccina-
tion would not increase the risk of infection, our CrIs are trun-
cated at zero and thus skewed in favor of a population benefit. 
Finally, the role of genetic and antigenic diversity on the VE and 
estimated population benefit deserves further investigation; full 
antigenic and genetic characterization of specimens from the 
US Flu VE Network is ongoing toward this effort.

Our results highlight the large burden of influenza- associated 
illnesses, medical visits, hospitalizations, and deaths during 
2017–2018 and the value of current vaccines to reduce the 
 burden of disease, even with a VE of 38% against influenza 

Ta
bl

e 
2.

 
Es

tim
at

es
 o

f I
nfl

ue
nz

a 
A

- a
nd

 B
-A

ss
oc

ia
te

d 
Ill

ne
ss

, M
ed

ic
al

 V
is

its
, H

os
pi

ta
liz

at
io

ns
, a

nd
 D

ea
th

s 
Pr

ev
en

te
d 

by
 In

flu
en

za
 V

ac
ci

na
tio

n—
U

ni
te

d 
St

at
es

, 2
01

7–
20

18
 In

flu
en

za
 S

ea
so

n

 
Ill

ne
ss

es
M

ed
ic

al
 V

is
its

H
os

pi
ta

liz
at

io
n

D
ea

th

A
ge

 G
ro

up
N

um
be

r 
Pr

ev
en

te
d

95
%

 C
rI

a
N

um
be

r 
Pr

ev
en

te
d

95
%

 C
rI

N
um

be
r 

Pr
ev

en
te

d
95

%
 C

rI
%

 P
re

ve
nt

ed
95

%
 C

rI
N

um
be

r 
Pr

ev
en

te
d

95
%

 C
rI

6 
m

on
th

s–
4 

ye
ar

s
2 

12
1 

51
1

(1
 4

45
 1

33
, 2

 9
28

 9
29

)
1 

42
1 

41
3

(9
71

 0
80

, 1
 9

66
 9

76
)

14
 7

90
(1

0 
07

5,
 2

0 
41

9)
41

(3
3,

 4
7)

74
(0

, 1
89

)

5–
17

 y
ea

rs
1 

36
6 

96
5

(6
13

 3
10

, 2
 1

78
 4

12
)

71
0 

82
2

(3
19

 1
68

, 1
 1

43
 2

56
)

37
48

(1
68

2,
 5

97
3)

15
(7

, 2
2)

89
(2

8,
 1

97
)

18
–4

9 
ye

ar
s

1 
13

8 
40

7
(6

63
 1

81
, 1

 6
10

 4
81

)
42

1 
21

1
(2

43
 1

49
, 6

03
 8

87
)

63
90

(3
72

2,
 9

04
0)

7
(4

, 1
0)

22
8

(1
19

, 4
03

)

50
–6

4 
ye

ar
s

1 
79

2 
53

0
(6

73
 6

87
, 2

 9
37

 7
68

)
77

0 
78

8
(2

92
 1

97
, 1

 2
63

 2
30

)
19

 0
09

(7
14

4,
 3

1 
15

4)
10

(4
, 1

5)
86

8
(3

30
, 1

59
1)

≥6
5 

ye
ar

s
71

5 
07

3
(0

, 2
 0

33
 7

56
)

40
0 

44
1

(0
, 1

 1
45

 6
16

)
65

 0
07

(0
, 1

84
 8

87
)

9
(0

, 2
1)

67
96

(0
, 1

9 
84

4)

A
ll 

ag
es

7 
13

4 
48

7
(5

 3
93

 9
25

, 9
 3

10
 3

39
)

3 
72

4 
67

4
(2

 8
19

 7
61

, 4
 8

77
 6

88
)

10
8 

94
4

(3
8 

85
4,

 2
30

 9
43

)
10

(4
, 1

9)
80

54
(1

05
9,

 2
1 

32
0)

A
bb

re
vi

at
io

n:
 C

rI
, c

re
di

bl
e 

in
te

rv
al

. 
a Th

e 
95

%
 C

rI
 is

 f
ro

m
 5

00
0 

M
on

te
 C

ar
lo

 s
im

ul
at

io
ns

.

Figure 3. Estimated percent of expected influenza-associated hospitalizations 
prevented by vaccination—United States, 2017–2018 influenza season.

Table 3. Number Needed to Vaccinate to Prevent 1 Influenza A- and 
B-Associated Hospitalization—United States, 2017–2018 Influenza Season

Age Group Number Needed to Vaccinate 95% Credible Intervala

6 mo–4 y 821 (606, 1190)

5–17 y 7811 (4925, 17 494)

18–49 y 5758 (4105, 9849)

50–64 y 1311 (808, 3502)

65+ y 462 (162, >999 999)

All ages 1223 (578, 3438)

aThe 95% credible interval is from 5000 Monte Carlo simulations. 
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A and B viruses and 22% against A(H3N2) viruses. Given the 
substantial burden of influenza-associated illness, efforts to im-
prove influenza vaccines are imperative. An A(H3N2) vaccine 
component with improved effectiveness could substantially 
reduce the number of influenza-associated hospitalizations 
among older adults [47]. Several studies have suggested that 
vaccines with a higher dose of antigen may offer protective 
advantages over standard-dose inactivated influenza vaccines in 
older adults [37, 48, 49]. Also, it is possible that vaccine viruses 
not propagated in eggs could be advantageous, especially for 
the A(H3N2) vaccine component. There were 2 licensed vac-
cines (cell culture–derived inactivated vaccine and recombi-
nant vaccine) that did not include egg-propagated A(H3N2) 
viruses in 2017–2018 [50]. Efforts to determine the advantages 
of nonegg-based and enhanced vaccines are ongoing. At this 
time, vaccination remains an important component of influ-
enza prevention; and our results indicate that current vaccines 
prevented a substantial burden of illness during the 2017–2018 
influenza season.
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