Skip to main content
. 2020 Apr 21;14:103. doi: 10.3389/fnhum.2020.00103

Table 4.

EEGNet architecture.

Layer Input size Output size Kernels Kernel size Stride Padding
Conv2d 1 × 3 × 300 8 × 3 × 300 8 (1, 31) (1, 1) (0, 15)
BatchNorm2d 8 × 3 × 300 8 × 3 × 300
Depthwise Conv2d 8 × 3 × 300 16 × 1 × 300 16 (3, 1) (1, 1) (0, 0)
BatchNorm2d 16 × 1 × 300 16 × 1 × 300
Elu 16 × 1 × 300 16 × 1 × 300
AvgPool2d 16 × 1 × 300 16 × 1 × 75 (1, 4) (1, 4) (0, 0)
Dropout 16 × 1 × 75 16 × 1 × 75
Seperable Conv2d 16 × 1 × 75 16 × 1 × 75 16 (1, 15) (1, 1) (0, 7)
BatchNorm2d 16 × 1 × 75 16 × 1 × 75
Elu 16 × 1 × 75 16 × 1 × 75
AvgPool2d 16 × 1 × 75 16 × 1 × 9 (1, 8) (1, 8) (0, 0)
Dropout 16 × 1 × 9 16 × 1 × 9
Linear 144 2