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ABSTRACT
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors for all-cause mortality,
cardiovascular disease, and cancer. Identifying epigenetic alterations associated with MetS in
African Americans (AAs) and Whites may provide insight into genes that influence its differential
health outcomes. We examined DNA methylation (DNAm) and performed an epigenome-wide
association study (EWAS) of MetS among AAs and Whites with and without MetS. We assessed
age, race and poverty status associated DNAm among AAs (n = 225) and White (n = 233) adults
using NCEP-ATP III guidelines. Genome-wide DNAm measurement was assessed using Illumina
Infinium Methylation EPIC BeadChip. Differentially methylated positions (DMPs) and differentially
methylated regions (DMRs) were identified using dmpFinder and bumphunter. EWAS was per-
formed using CpGassoc. We found significant DMPs associated with age, poverty status and MetS
in each race. GSTT1(Glutathione S-Transferase Theta 1) was one of the top-hypermethylated genes
and MIPEP (Mitochondrial Intermediate Peptidase) was one of the most hypomethylated genes
when comparing AAs with and without MetS. PPP1R13L (Protein Phosphatase 1 Regulatory
Subunit 13 Like) was the top hypermethylated and SCD (stearoyl-CoA desaturase-1) was one of
the most hypomethylated genes for Whites with and without MetS. EWAS results showed that
DNAm differences might contribute to MetS risk among Whites and AAs since different genes
were identified in AAs and Whites. We replicated previously identified MetS associated genes and
found that Thioredoxin-interacting protein (TXN1P) was statistically significantly differentially
expressed only in Whites. Our results may be useful in further studies of genes underlying
differences in MetS among AAs and Whites.
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Introduction

Metabolic Syndrome (MetS) a cluster of three or
more cardiometabolic risk factors including elevated
triglycerides, central adiposity, reduced high-density
lipoprotein (HDL) cholesterol, hypertension, and
elevated fasting plasma glucose [1] is an important
signature symptom complex associated cardiovascu-
lar and cancer morbidity and mortality. MetS is
becoming more prevalent with increasing obesity
prevalence and thereby imposing a noticeable bur-
den on the health-care system [2]. MetS is emerging
as an important public health problem not only in
the United States but also internationally. In Europe,
25% of adults have MetS [3]. According to the
National Health and Nutrition Examination Survey

(NHANES), the overall prevalence of MetS in adults
(aged 18 and older) in the United States during the
years 1988–2012 was 34.2% [4], present in approxi-
mately a third of the US population or around 68
million individuals [5]. MetS prevalence increases
with age; approximately 50% of Americans over 50
years of age have MetS [6]. There are also racial and
ethnic differences in prevalence. Non-Hispanic black
women were more likely than non-Hispanic White
women to have MetS [4]. The prevalence of MetS
increased between 1988 and 2012 for both men and
women in the US; however, the most noticeable
increase has been among non-Hispanic black men.
MetS prevalence increased by 55% among non-
Hispanic black males compared to 31% for non-
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Hispanic White men and 12.5% for Hispanic
men [4].

MetS portends increased risk for chronic disease
and mortality. The most well-known link is
between MetS and incidence of cardiovascular dis-
ease. However, there are clearly established links
between MetS and increased risk of chronic kidney
disease, diabetes mellitus, arthritis, schizophrenia,
non-alcoholic fatty liver disease and multiple types
of cancer. MetS is associated with a greater risk of
mortality, with a 2-fold increased risk for cardio-
vascular events or death, and an 1.8-fold increased
risk of mortality [7,8]. The connection between
MetS and diseases that have disproportionate inci-
dence, prevalence and mortality among minority
and poor poulations makes it a critically important
entity to examine it in the context of health dis-
parities. Potential common mechanisms behind
MetS and its associated diseases include mitochon-
drial dysfunction, inflammation, microbial altera-
tions, environmental and drug effects [9]. The
social determinants of health [10] including low
educational attainment and poverty are important
risk factors for MetS as well as race and ethnicity
[11]. Environmental factors also influence risk for
MetS. These include: urbanization, the built envir-
onment and workplace environment [12–16]. In
addition, genetic factors are also implicated in
MetS [11].

The increasing prevalence of MetS and its nega-
tive impact on overall health status has led to a
resurgence of investigations examining the under-
lying biologic mechanisms. One of the major gaps
in our knowledge remains the interaction of
genetic and epigenetic factors that underlie MetS.
Among the genetic factors influencing MetS, epi-
genetic factors such as DNA methylation may play
a key role. DNA methylation (DNAm) is an epi-
genetic mechanism through which a methyl group
is added to the carbon 5 of a cytosine pyrimidine
ring next to a guanidine nucleotide, which is com-
monly called a CpG residue. This forms a 5-methyl
cytosine leading to changes and modifications in
gene expression without altering the underlying
DNA sequence [17]. Recent advances have sug-
gested that MetS is a programmable disease and
epigenetic modifications due to DNAm can be
used as an effective biomarker [18]. Therefore,
identification of alterations due to DNAm may

provide understanding about the potential
mechanism through which MetS influence the
gene expression and ultimately increase chronic
disease risk and mortality [19].

Although several studies identified alterations in
DNAm that may influenceMetS and its components
[19,20], how racial differences influence the preva-
lence of MetS and biological mechanisms underlying
these racial disparities remain unclear. Therefore,
identification of DNAm alterations associated with
MetS that are race-specific may provide insight into
the genes that influence differential health outcomes.
The main goal of our study is to examine DNAm
signatures measured across the genome associated
with MetS using DNA from urban dwelling AA and
White adult participants in the Healthy Ageing in
Neighbourhoods of Diversity across the Life Span
(HANDLS) study.

Materials and methods

Subjects and sample collections

Samples included in the present study are from the
HANDLS study cohort initiated in 2004 (https://
handls.nih.gov/). HANDLS is a prospective popula-
tion-based longitudinal study with a fixed cohort of
3,720 community-dwelling AA and White partici-
pants between 30 and 64 years of age [21]. The
recruited participants were from 13 pre-determined
neighbourhoods (contiguous census tracts) in the city
of Baltimore selected using area probability sampling
based on the 2000USCensus. The sampling frame for
the overall study is a four-way factorial cross of age,
sex, race, and socioeconomic status indexed by pov-
erty status (with a reported household income below
or above 125% of the Federal Poverty Guidelines for
2004). All participants provided written informed
consent. The HANDLS study is approved by the
National Institute of Environmental Health Sciences
(NIEHS) Institutional Review Board (Protocol num-
ber: 09-AG-N248).

Study inclusion

The present study involves the samples collected at the
baseline of the study, between August 2004 to March
2009 for which DNAmethylation data were available.
Of the 3,720 baseline participants (mean ± SD age(y):
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48.6 ± 8.7), there were 508 participants who were
previously selected by randomly sampling the cohort
using a factorial design across race, sex, and poverty
status to permit analysis of possible interactions
among these sociodemographic factors (Figure S1).
From these 508 samples, 458 samples passed quality
control. We defined MetS using the following criteria
suggested by the National Cholesterol Education
Program Third Adult Treatment Panel (NCEP ATP
III) [22] definition: i) waist circumference (≥ 102 cm
for men; ≥ 88 cm for women) ii) blood pressure
(≥ 130/85mmHg) or treatment of previously diag-
nosed hypertension iii) high-density lipoprotein
(HDL) cholesterol (<40 mg/dL for men; <50 mg/dL
for women) iv) triglycerides (≥150 mg/dL) v) hyper-
glycaemia (≥100 mg/dL) or treatment of previously
diagnosed type 2 diabetes. The presence of MetS was
established as having three or more criteria.

Quantification of DNAm using bisulphite
treatment and DNA methylation quantification
using the infinium methylation EPIC Beadchip

DNA 250 ng from donor samples were treated with
sodium bisulphite using Zymo EZ-96 DNA
Methylation kit according to themanufacturer’s pro-
tocol (Zymo Research, Orange, CA, USA). For all the
kits, we have followed the standard protocols pro-
vided by the manufacturer with the suggested input/
elution volumes [23]. Subsequently, the samples
underwent bisulphate treatment followed by gen-
ome-wide DNAm analysis using Illumina Infinium
HumanMethylation EPIC BeadChip (EPIC). In the
present study, we have used the latest version of
EPIC which is a high throughput platform that effi-
ciently quantifies the methylation at 866,836 CpG
sites on the human genome [24,25].

Data processing, background correction, and
adjustment

Quality control and data preprocessing were per-
formed using the Bioconductor package minfi [26]
by loading the respective IDAT files into the package.
Data analysis was performed in R by integratingminfi
[26], DMRcate [27], limma [28], missMethyl [29],
IlluminaHumanMethylation EPICanno.ilm10b2.hg19
[30], and IlluminaHumanMethylationEPICmanifest
[31] using raw methylation values. Background

correction, dye-bias equalization and normalization
of the β scores were performed using the normal-
exponential out-of-band (NOOB) correction method
[32] in theminifi package. Batch effects from the plate
and other potential sources of technical variability in
methylation measurements were removed using
ComBat [33]. Probes associated with single nucleotide
polymorphisms (SNPs) were removed using the func-
tion dropLociWithSnps in minfi [26]. This function
drops the probes that contain either an SNP at the
CpG interrogation or at the single nucleotide
extension.

Prediction of significant DMPs

The methylation level based on β values were
produced for CpG probe ranging from 0 (the
CpG site is unmethylated) to 1 (the CpG site is
fully methylated) differentially methylated posi-
tions (DMPs) associated with each variable in
our study using the function dmpFinder in
minfi package [26]. This function tests each
genomic position for the association between
methylation and a phenotype of interest by test-
ing linear regression for continuous phenotypes
and F-test for categorical phenotypes. DMPs pre-
dicted from dmpFinder, were prioritized using
the criteria described previously [34], i.e., i) a
p-value <0.05, i.e., nominally associated with
each phenotype of interest (ii) a Δbeta value of
±0.1, i.e., a relatively large differential methyla-
tion. Further, differentially methylated regions
(DMR) were predicted using the bumphunter
function in minfi package [26]. A DMR was
defined as a DMP using the following criteria
described previously [34], i.e., i) a DMR with a
≥ 2 adjacent CpGs within 1000-bp physical dis-
tance ii) adjacent CpGs yielding a Δbeta in the
same direction, i.e., all three CpGs in the DMR
was consistently hypo- or hyper-methylated.

Differential-methylated interaction hotspots and
gene enrichment analysis

To infer interactome modules that represent hot-
spots of differential DNAm, we used champ.EpiMod
function in ChAMP package [35]. The EpiMod
algorithm can be run at probe level where the
most differentially methylated probe will be
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assigned to each gene or it can be run at the gene-
level where a DNAm value is assigned to each gene
using an optimized procedure described previously
[36]. The EpiMod algorithm is a functional super-
vised algorithm version of FEM package which uses
only the differential DNAm statistics. Epimod uses a
network of relations between genes for identifying
the subnetworks where a significant number of
genes are associated with a phenotype of interest.
Specifically, the weights in the interactome network
in our study were constructed from differential
DNAm statistics between the participants with and
without MetS among AAs and Whites. All the other
parameters of the Epimod algorithm were run as
shown previously [37,38]. Gene ontology (GO)
terms overrepresented in the genes harbouring dif-
ferentially methylated probes were identified by per-
forming a gene-set enrichment analysis with the
number of CpG sites per gene using topGSA func-
tion in missMethyl [29] package. GO terms with a
false discovery rate (FDR) p-value <0.01 calculated
using the method of Benjamini and Hochberg were
considered as significant.

Cell-type composition

Generally, analysis of methylated DNA in the con-
text of the cell population may uncover novel gene
and environment interactions as well as markers of
health and disease [39]. Therefore, we have used
the ‘EstimateCellCounts’ function in the minfi
Bioconductor package by importing the
FlowSorted.Blood.EPIC, a recently developed opti-
mized library for reference-based deconvolution of
whole-blood biospecimens to estimate the compo-
sition of cell types assayed using the Illumina
HumanMethylationEPIC BeadArray [40].

Epigenome-wide association analysis (EWAS)

Multivariable linear regression was used to model
the relationship between DNAm levels and MetS.
Participants were grouped into two categories
(with and without MetS) for both AAs and
Whites and coded as a factor (0 and 1) in our
model. To check whether the methylation levels
associated with MetS were influenced by variables

such as age, poverty status and sex, we have
included them in the EWAS model to adjust for
confounding. The above model was also run with
the inclusion of CD8+ and CD4+ T lymphocyte,
natural killer cell, B lymphocyte, monocyte and
granulocyte cell populations to assess confounding
effects. All the models were constructed using the
cpg.assoc function in CpGassoc package [41]
implemented in R available at http://genetics.
emory.edu/conneely. The cpg.assoc function con-
structs fixed or mixed-effects models between a
phenotype of interest and methylation of indivi-
dual CpG sites across the genome using a matrix
or data frame of β-values as input. It assesses
significance using different statistical tests includ-
ing Holm method, false discovery rate (FDR) and
permutation procedures [41]. We constructed
Manhattan plots to show our epigenome-wide
association analysis of MetS and used mixed mod-
els to compare methylation of the top CpG sites
associated with MetS and adjusted for variables in
each race.

MetS associated genes in breast and colon
cancer tumour tissues

Because MetS is associated with cancers known to
have differential morbidity and mortality among
AAs, we investigated whether genes differentially
methylated in MetS were also highly methylated in
colon and breast tumours in AAs and Whites.
Genes identified to be significantly associated
with MetS in our HANDLS cohort were queried
for methylation status in the publically available
NCI Cancer Genome Atlas (TCGA) database for
breast and colon cancers. To perform differential
analysis, we downloaded the publicly available
DNAm data for different cancer types from the
TCGA database [42,43]. We performed analysis of
TCGA datasets using TCGAbiolinks, an R/
Bioconductor package for integrative analysis of
the TCGA data which provides different features
including facilitating the GDC open-access data
retrieval, preparing the data using the appropriate
pre-processing strategies, providing the platform
to perform different standard analyses and provid-
ing several packages for data analysis [44].
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Results

Baseline characteristics

To examine whether alterations in DNAm is specific
for each race, we obtained peripheral blood mono-
nuclear cells (PBMCs) from the HANDLS partici-
pants. There were significant differences in
demographic factors such as race and age between
the MetS+ and MetS− participants (Table 1).
Among all participants only 31% (n = 142) had
MetS (MetS+), 68.9% (n = 316) did not have MetS
(MetS−) with AA being 49.1% and Whites being
50.8% (Figure S1). Among the 225, AAs about
11% met the criteria for MetS whereas, among 233
White adults selected from the HANDLS study,
about 20% met the criteria for MetS (Figure S1). In
both races, MetS+ participants were older on aver-
age compared with MetS− participants with 51 ± 8.4
years and 47.6 ± 8.7 years, respectively. In both
races, waist circumference was significantly higher
in MetS+ compared with MetS− participants
(Table 2). In addition, MetS+ participants showed
higher levels of triglycerides (127 vs. 81 mg/dL
among AA men, 133 vs. 79 mg/dL among AA
women; 213 vs. 96 mg/dL among White men, 166
vs. 91 mg/dL among White women), lower levels of
HDL cholesterol (37.4 vs. 56.8 mg/dL among AA
men, 44.6 vs. 64.5 mg/dL among AA women; 38.4
vs. 48.4 mg/dL among White men, 42.9 vs. 57.6 mg/
dL amongWhite women) and higher levels of blood
pressure and fasting glucose (117.0 vs. 95.4 mg/dL
among AA men, 109.1 vs. 91.9 mg/dL among AA
women; 149.1 vs. 95.8 mg/dL among White men,

121.1 vs. 93.2 mg/dL among White women) com-
pared with MetS− participants (Table 2).

Identification of DMPs associated with MetS, age,
poverty status and sex

After completing the quality control, methylation
data for 835,642 CpGs were analysed using
DMPFinder to identify DMPs associated with vari-
ables includingMetS, age, poverty status and sex.We
used CpG prioritization process to select the most
robustly associated DMPs for MetS, age, poverty
status and sex by selecting all CpGs yielding a sig-
nificant p-value <0.01. There were 2,867 DMPs for
AA, 1069 (9%) which are unique to AA and 10,926
DMPs for Whites, 9128 (76%) which are unique in
Whites with 1798 (15%) DMPs being overalpped
between the participants when compared between
MetS+ with MetS− participants (Figure 2(a)).
Among the 2,867 DMPs in AAs, 679 (7%) were
hypermethylated with top hits being LOC391322
(cg04234412), HLA-C (cg11917734), GYPC
(cg22055451), LOC100507073 (cg01235375), HLA-
C (cg11574174), LDHC (cg11821245), MAD1L1
(cg16476700), GSTT1 (cg17005068) genes
(Figure1(a)) and 390 (25.1%) were hypomethylated
with top hits being CELF4 (cg15355235), MIPEP
(cg05755219), FRMD4A (cg26708920), SNTG2
(cg21938029) and FAM197Y2 (cg22028367)
(Figure 1(a)). Of these DMPs, specific for AAs,
genes HLA-C (cg11917734), GYPC (cg22055451),
MIPEP (cg05755219) and FRMD4A (cg26708920)
showed a beta value of ± 0.1. Among the 10,926
DMPs in White population, 8088 (82.4%) were
hypermethylated with top hits being C1orf106
(cg10092377), HLA-DQB1 (cg14323910), ACBD5
(cg14240646), EBF4 (cg05825244), KCNQ5
(cg00964035) genes (Figure 1(b)) and 1040 (66.9%)
were hypomethylated with top hits being C1orf109
(cg24088508), LOC102467223 (cg08050114), SCD
(cg09797202), MICAL3 (cg26379583), SMAD2
(cg06161952) (Figure 1(b)). Of these DMPs, none
of them showed a beta value of ± 0.1.

We identified 16,136 DMPs for AAs and 15,288
DMPs for White participants (Figure 2(b)) for
age. Among the 16,136 DMPs for age in AAs,
712 (10.2%) were hypermethylated with top hits

Table 1. Demographic information of the study participants.

Characteristics
MetS+

(N = 142)
MetS−

(N = 316) p Value*

Race (%)
African Americans 50 (35.2) 175 (55.3) <0.0001
Whites 92 (68.7) 141 (47.4)

Agea 51 ± 8.4 47.6 ± 8.7 0.0001
Sex (%)

Men 67 (47.1) 162 (51.2) 0.4794
Women 75 (52.8) 154 (48.7)

Poverty status (%)
Above 63 (44.3) 166 (52.5) 0.1297
Below 79 (55.6) 150 (47.4)

aPresented as mean (standard deviation) for normal continuous
characteristics.

*Significance determined using chi-square test for categorical, t-test for
continuous variables.
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Table 2. Baseline characteristics of HANDLS study participants.
African American

Men
MetS+
(N = 20)

MetS−
(N = 91) p Value*

Agea 49.1 ± 10.4 48.51 ± 8.3 0.80
Poverty status (%)

Above 8 (3.5) 48 (21.3) 0.4322
Below 12 (5.3) 43 (19.1)

High WC
WC (cm)a 113.5 ± 16.9 94.6 ± 16.3 0.0001
Elevated Triglycerides
Triglycerides (mg/dL)b 127 ± 88.5 81 ± 42 0.0003
Reduced HDL cholesterol
HDL cholesterol (mg/dL)a 37.4 ± 8.9 56.8 ± 19.07 <0.0001
Elevated blood pressure
DBP (mmHg)a 75.0 ± 13.7 73.8 ± 11.0 0.73
SBP (mmHg)a 125.7 ± 17.3 119.2 ± 14.9 0.1344

Elevated fasting glucose
Fasting glucose (mg/dL)a 117.0 ± 27.7 95.4 ± 14.7 0.002

Women
MetS+
(N = 30)

MetS−
(N = 84) p Value*

Agea 50.7 ± 8.3 47.0 ± 9.1 0.04
Poverty status

Above 15 (6.6) 44 (19.5) 0.9911
Below 15 (6.6) 40 (17.7)

High WC
WC (cm)a 109.7 ± 15.1 95.6 ± 14.6 <0.0001

Elevated Triglycerides
Triglycerides (mg/dL)§ 133 ± 73.2 79 ± 52 0.0005

Reduced HDL cholesterol
HDL cholesterol (mg/dL)a 44.6 ± 9.3 64.5 ± 17.9 <0.0001
Elevated blood pressure
DBP (mmHg)a 74.9 ± 9.4 70.9 ± 10.6 0.0064
SBP (mmHg)a 125.8 ± 16.2 116.8 ± 16.1 0.0125

Elevated fasting glucose
Fasting glucose (mg/dL)a 109.1 ± 25.9 91.9 ± 13.4 0.0013

Whites

Men
MetS+
(N = 47)

MetS−
(N = 71) p Value*

Agea 51.4 ± 6.7 46.9 ± 8.8 0.001
Poverty status

Above 21 (9.0) 36 (15.4) 0.6507
Below 26 (11.1) 35 (15.0)

High WC
WC (cm)a 114.6 ± 13.3 96.9 ± 15.2 <0.0001
Elevated Triglycerides

Triglycerides (mg/dL)b 213 ± 100 96 ± 60 <0.0001
Reduced HDL cholesterol
HDL cholesterol (mg/dL)a 38.4 ± 9.2 48.4 ± 10.8 <0.0001
Elevated blood pressure
DBP (mmHg)a 79.5 ± 9.8 71.6 ± 9.4 <0.0001
SBP (mmHg)a 127.2 ± 16.4 114.5 ± 13.2 <0.0001

Elevated fasting glucose
Fasting glucose (mg/dL)a 149.1 ± 77.0 95.8 ± 12.5 <0.0001

Women
MetS+
(N = 45)

MetS−
(N = 70) p Value*

Agea 51.4 ± 9.3 47.8 ± 8.5 0.03
Poverty status
Above 19 (8.1) 38 (16.3) 0.2839
Below 26 (11.1) 32 (13.7)

High WC
WC (cm)a 114.9 ± 16.5 93.3 ± 18.6 <0.0001

Elevated Triglycerides
Triglycerides (mg/dL)b 166 ± 98 91 ± 51.2 <0.0001

(Continued )
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being ELOVL2 (cg16867657), SLC7A2
(cg26333902), GPR6 (cg11372636), GRM2
(cg26079664), GRM2 (cg12934382) genes (Figure
1(c)) and 3800 (42.4%) were hypomethylated with
top hits being SMYD3 (cg04798314), FIGN
(cg01620164), DDO (cg02872426), DNAH9
(cg13108341), STPG1 (cg21531089) (Figure 1(c))
genes for age. Among the 15,288 DMPs for age in
White population, 2866 (41.4%) were hyper-
methylated with top hits being GRM2
(cg26079664), ELOVL2 (cg16867657), PPP1R13L
(cg27152890), CAPN8 (cg18391209), MDGA1
(cg14926196) genes (Figure 1(d)) and 798 (8.9%)
were hypomethylated with top hits being FIGN
(cg01620164), APBB2 (cg11299543), KCNJ8
(cg00573770), ZEB2 (cg22083892), PDCD1LG2
(cg13207212) (Figure 1(d)). None of the DMPs
associated with age had beta coefficients of ± 0.1
among both AA and White participants.

Our results showed 1,598 DMPs for AA and 5,447
DMPs for White participants when compared
between poverty status above and below (Figure 2
(c)). Among the 1,598 DMPs for poverty status in
AAs, 713 (16%) were hypermethylated with top hits
being LCE1D (cg15967253), RNF39 (cg13401893,
cg12633154, cg10930308, cg07382347, cg06249604,
cg16078649), FCGBP (cg03635532), CDC40
(cg19586483), ADARB2 (cg24432675) genes
(Figure 1(e)) and 460 (22.3%) were hypomethylated
with top hits being LINC00339 (cg19558832),
ZNF714 (cg01326874), ADAMTS17 (cg05079227),
C19orf57 (cg27284398), LCLAT1 (cg10326673,
cg15652532) (Figure 1(e)) genes. Among the 5,447
DMPs for poverty status in White population, 3459
(78%) were hypermethylated with top hits being

NINJ2 (cg01201512), SLC7A2 (cg26333902),
ERAP1 (cg08986950), CAPN8 (cg18391209),
GSTTP1 (cg15242686) genes (Figure 1(f)) and 1563
(76%) were hypomethylated with top hits being
AHRR (cg05575921), LOC391322 (cg04234412),
OVCH2 (cg14495594), ARRB1 (cg22867893), ATF2
(cg07253311) (Figure 1(f)) genes. None of the DMPs
associated with poverty status in AAs had beta coef-
ficients of ± 0.1 whereas in White participants,
AHRR gene showed a beta of ± 0.1.

We identified 14,124 DMPs for AAs and 17,156
DMPs for White participants (Figure 2(d)) which
were statistically significant for sex. Among the
14,124 DMPs in AAs, 531 (10%) were hyper-
methylated with top hits being GYG2P1
(cg06907892), FAM197Y2 (cg22028367),
PPP1R2P9 (cg22223709), NLGN4Y (cg03278611),
DDX3Y (cg03601053) genes (Figure 1(g)) and
4139 (27.3%) were hypomethylated with top hits
being CNKSR2 (cg16767700), TAZ (cg03670113),
SLC25A14 (cg10717149), FHL1 (cg01742836),
CUL4B (cg26505478) (Figure 1(g)) genes. Among
the 17,156 DMPs differentially associated with sex
in the White participants, 3070 (57.8%) were
hypermethylated with top hits being GYG2P1
(cg06907892), FAM197Y2 (cg22028367),
PPP1R2P9 (cg22223709), NLGN4Y (cg03278611),
DDX3Y (cg03601053) genes (Figure 1(h)) and
4632 (30.5%) were hypomethylated with top hits
being CNKSR2 (cg16767700), TAZ (cg03670113),
SLC25A14 (cg10717149), FHL1 (cg01742836),
CUL4B (cg26505478) (Figure 1(h)) genes. Results
showed a higher number of DMPs had beta coeffi-
cients of ± 0.1 in Whites (Table S13) compared to
the AA (Table S10) participants.

Table 2. (Continued).

African American

Men
MetS+
(N = 20)

MetS−
(N = 91) p Value*

Reduced HDL cholesterol
HDL cholesterol (mg/dL)a 42.9 ± 8.6 57.6 ± 15.6 <0.0001

Elevated blood pressure
DBP (mmHg)a 74.0 ± 11.1 68.3 ± 9.6 0.0057
SBP (mmHg)a 125.5 ± 17.7 112.1 ± 15.7 <0.0001

Elevated fasting glucose
Fasting glucose (mg/dL)a 121.1 ± 43.6 93.2 ± 16.6 0.0001

aPresented as mean (standard deviation) for normal continuous characteristics.
bPresented as median (interquartile range) for non-parametric continuous characteristics.
*Significance determined using chi-square test for categorical, t-test for continuous, or Mood’s median test for non-
parametric continuous variables.
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Figure 1. Volcano plots of differentially methylated positions between MetS and non-MetS in each race (a) DMPs associated
with MetS in AAs (b) DMPs associated with MetS in Whites (c) DMPs associated with age in AAs (d) DMPs associated with age in
Whites (e) DMPs associated with poverty status in AAs (f) DMPs associated with poverty status in Whites (g) DMPs associated with
sex in AAs (f) DMPs associated with sex in Whites. Blue colour dots represent the genes with p-value<0.05. Green colour dots
represent the genes with p-value <0.05 and hypermethylated with positive beta values. Red colour dots represent the genes with p-
value <0.05 and hypomethylated with negative beta values. Black colour dots represent the genes that are not statistically
significant at a p-value <0.05.
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Identification of interactome hotspots associated
with MetS

We asked if the identified differentially methylated
statistically significant genes specific to each race
among AAs and Whites act as functionally impor-
tant interactome hotspots. Identification of

interactome hotspots is useful in obtaining the
functional insight of a specific phenotype of inter-
est. In other words, it is useful to know whether
differential methylation changes associated with a
phenotype occur randomly or if they target speci-
fic gene modules or pathways [45]. In order to

Figure 2. Venn diagrams of significant hyper and hypomethylated DMPs in AAs and Whites (a) DMPs associated with MetS (b)
DMPs associated with age (c) DMPs associated with poverty status (d) DMPs associated with sex.
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infer interactome modules that represent hotspots
of differential DNA methylation, we used the
interactome procedure as described previously
[36,38,46]. Since we did not have any matched
mRNA expression data from our samples, we
applied the EpiMod algorithm, a version of FEM
that takes only differential DNA methylation sta-
tistics into consideration. We used the procedure
as described previously [47]. Results from interac-
tome hotspot analysis for MetS+ compared with
MetS− revealed a number of significant hotspots
of epigenetic deregulation, centred around the
genes including LDB1, NPTN, ARRB2, ITGB7,
TRIM29, VPS41, F10 (Figure 3, Figure S2) among
AAs and genes including CREB1, NEDD4, RAB4A,
STX1A, ATRIP, EPAS1, TEC, TOPBP1 among
White participants (Figure 4, Figure S3). Most of
these identified significant hotspots in AA (Table
S11(a)) and White population (Table S11(b)) were
found to be hypermethylated except the genes
NPTN, ARRB2, ITGB.

Further, to evaluate the functionality of
genes associated with MetS, age, poverty status

and sex, we used gene ontology classification in
the CpG context and identified the top 20 most
significantly enriched pathways as detailed in
the Figure S4. Results showed a higher number
of significantly enriched GO terms associated
with MetS, age, poverty status and sex among
Whites compared to the AAs (Figure S4).
There were fewer GO terms associated with
poverty among AAs when compared to
Whites. In addition, there was limited overlap
of the GO terms multicellular organism devel-
opment, developmental process and anatomical
structure development present in both AAs and
Whites (Figure S4(e)) compared to the Whites
(Figure S4(f)) indicating that poverty status
may have a race-specific role in regulating dif-
ferent molecular, cellular and biological pro-
cesses. This was unique for poverty status
while the other covariates demonstrated con-
siderable overlap in the GO terms among AAs
and Whites. Together, these results showed
that most of the genes in both AAs and
Whites were significantly enriched with the

Figure 3. Differential-methylated interaction hotspots identified in AAs . Interactome hotspots of epigenetic deregulation
comparing MetS to non-MetS samples, inferred using the EpiMod/FEM algorithm showing (a) LIM domain binding 1 (LDB1) (b)
Neuroplastin (NPTN) (c) arrestin beta 2 (ARRB2) (d) integrin subunit beta 7 (ITGB7) genes as centred seed genes.
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GO terms cellular and metabolic processes,
protein binding and developmental process
(Figure S4(a–h)).

Cell-type estimates

Genome-scale measures of DNAm in samples
derived from peripheral blood may include signals
from all the cell types present and may influence the
confound associations of DNAm with the modelled
outcomes [48]. Therefore, we have estimated the
cell-type composition and quantified the correla-
tions among them. Results showed that neutrophils
(Neu), CD4T, CD8T, natural killer (NK) and B cells
were visually evident among AAs (Figure S5(a))
whereas neutrophils (Neu), CD4T, CD8T, natural
killer (NK) and monocytes (mono) were visually
evident among White population (Figure S5(b)).
Importantly, correlations of DNAm were stronger
with neutrophil populations compared to the other

cell subsets in AA and White population suggesting
that these cell ratios were important determinants of
DNAm in whole blood for both the races (Figure S5
(a, b)). CD8T cells were positively correlated with
NK, B cell and mono cell population in AAs (Figure
S5(a)). In contrast, CD8T cells were positively corre-
lated with NK, B cell and CD4T cell population
among the Whites (Figure S5(b)) indicating a clear
difference in cell population estimate between the
two races.

Age, poverty status and sex are associated with
variable DNA methylation in MetS

To identify whether DNA methylation sites in MetS
are associated with variables such as age, poverty
status and sex we performed an EWAS. Initially, we
examined whether MetS is influenced by the vari-
able cell population. Results showed that 5 DMPs
(ARHGEF10, PCGF3, NPSR1, MGRN1, FBL)

Figure 4. Differential-methylated interaction hotspots identified in White population. Interactome hotspots of epigenetic
deregulation comparing MetS to non-MetS samples, inferred using the EpiMod/FEM algorithm showing (a) CAMP responsive
element-binding protein 1 (CREB1) (b) neural precursor cell expressed developmentally down-regulated 4 (NEDD4) (c) Ras-related
protein Rab-4A (RAB4A) (d) syntaxin 1A (STX1A) genes as centred seed genes.
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associated with MetS were influenced by the variable
cell population at a significant threshold of −log10
(1e-5) in AAs (Figure S6(a)). In contrast, none of the
DMPs were associated with MetS for the variable
cell population among Whites (Figure S6(b)). These
results indicate that variable cell populations influ-
ence MetS only among the AA population. Next, we
used multivariable linear regression to model the
relationship between DNA methylation levels and
MetS under the influence of cofounders age, poverty
status and sex. Results from multivariable linear
regression models for age showed that four DMPs
among AAs (Figure 5(a); Table S12(a)) and 23
DMPs among Whites (Figure 5(b); Table S12(b))
were associated with methylation levels and
MetS at a significant threshold of −log10(1e-5).
Meanwhile, the results from multivariable linear
regression models showed 5 DMPs among AAs
(Figure 5(c); Table S13(a)) and 48 DMPs among
Whites (Figure 5(d); Table S13(b)) for poverty sta-
tus. There were 6 significant DMPs among AAs
(Figure 5(e); Table S10(a)) and 40 DMPs among
Whites (Figure 5(f); Table S10(b)) for sex. There
were 5DMPs among AAs (Figure 5(e); Table S11
(a)) and 40 DMPs among Whites (Figure 5(f); Table
S11(b)) for all variables (age+poverty status+sex)
that were associated with methylation levels and
MetS at the significant threshold of −log10(1e-5).
Further, results from multivariable linear regression
models showed that 1DMP (TXN1P) amongWhites
for age, poverty status, sex and all the variables
together (age+poverty status +sex) was associated
with methylation levels and MetS at a significant
threshold of −log10(5e-8) (Figure 5(b–h)).
Respective QQ plots of the distribution of the p
values for each of the different multivariable linear
regression models generated were illustrated in the
Figure S7(a–d).

Differential methylation in MetS and cancer

Since one of our aims was to investigate the role of
MetS and DNAm in a population at risk for health
disparities and cancer is a leading cause of disparate
health outcomes in these populations, we examined
whether there was overlap in differential DNA
methylation patterns between HANDLS participants
and breast and colorectal tumours in the TCGA
database. We selected colorectal and breast cancer

because of the differential incidence and mortality
for these two cancers among AAs and because the
TCGA database had representative data for tumours
taken from both AAs and Whites. We examined
whether any of the significantly differentially methy-
lated annotated genes for MetS in our population
coincided with the significantly differentially methy-
lated annotated genes in these colorectal and breast
tumours. To this end, we downloaded the publicly
available methylation datasets from the primary
solid tumours of breast invasive carcinoma
(TCGA-BRCA) and colon adenocarcinoma
(TCGA-COAD) from AAs and Whites from the
GDC Data Portal using R package TCGAbiolinks.
Box plots showing the number of samples from each
of these datasets considered for our study was pro-
vided in the Figure S8(a,b). From the downloaded
datasets, first, we identified genes that are differen-
tially methylated between AAs andWhites in each of
the selected cancer types. Results from prioritizing
the DMRs at a significant p-value <0.01 and a mean
methylation cut-off of 0.25 showed that HOOK2
(cg11738485), S100A14 (cg08477332), RPH3AL
(cg21040096), C20orf71 (cg15131258) were the top-
hypomethylated genes and MRPL28 (cg08923669),
PACS2 (cg18397450, cg12425861, cg18912855) were
the most hypermethylated genes in the breast cancer
dataset (Figure 6(a)) and DHRS4 (cg01878807),
LRRN1 (cg10507275), ECHDC3 (cg09219688),
C6orf47 (cg15415945) were the top-hypermethylated
genes and S100A14 (cg08477332), ATXN1
(cg26843612), HOOK2 (cg11738485, cg06417478,
cg04657146, cg23899408), EPAS1 (cg17518825),
SSPO (cg01996567), DHX58 (cg20291162) were the
most hypomethylated genes in the colon adenocar-
cinoma dataset (Figure 6(b)). Furthermore, we dis-
covered overlap with genes that are significantly
differentially methylated between AA and White,
MetS+ and MetS− HANDLS participants for both
breast (Figure 7) and colon cancer (Figure 8)
datasets.

Discussion

In this study, we analysed the race-specific
alterations in DNAm among the middle-aged
AAs and Whites with and without MetS. Our
cross-sectional study focused on younger parti-
cipants compared to previous methylation
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studies on MetS [19,20]. We found that age,
poverty status and sex-influenced DNA methy-
lation across multiple CpG sites in both AAs
and Whites. We identified a significant number
of DMPs associated with MetS, age, poverty

status and sex that were shared or were unique
for each race (Figure 2). Among the significant
DMPs that are unique for each race, most were
hypomethylated among AAs whereas the
majority were hypermethylated in Whites

Figure 5. Manhattan plots showing the results of epigenome-wide association studies (EWAS) of MetS. The model included
(a) age (c) poverty status (e) sex (g) age, poverty status and sex as covariates for AA (b) age (d) poverty status (f) sex (h) age, poverty
status and sex as covariates for Whites. The bottom (blue) line indicates the FDR-adjusted p-value threshold −log10(1e-5) and the
top (red) line indicates the Bonferroni threshold for genome-wide significance threshold −log10(5e-8).
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(Figure 2). The EWAS showed that there was
only one unique gene that passed the level of
significance for association of methylation level
and MetS within the context of multiple vari-
ables. The DMP (TXN1P) found only in Whites
met the significant threshold of −log10(5e-8)
for age, poverty status, sex and all the variables
together (age+poverty status +sex). We also
found that there was overlap of hypermethyated

and hypomethylated genes between TCGA col-
orectal and breast cancer tumour samples and
those found in the HANDLS cohort.

We found significant DMPs associated with
MetS, age, poverty status and sex in both races.
GSTT1(Glutathione S-Transferase Theta 1),
known to be associated with cellular response to
oxidative stress and cardiometabolic disorders was
identified as one of the top-hypermethylated genes

Figure 6. Volcano plots of differentially methylated regions among African Americans and Whites in TCGA datasets (a)
DMRs associated with breast cancer tumour TCGA data (b) DMRs associated with colon cancer tumour TCGA data. Blue colour dots
represent the genes with p-value<0.01. Green colour dots represent the genes with p-value <0.01 and hypermethylated with
positive beta values. Red colour dots represent the genes with p-value <0.01 and hypomethylated with negative beta values. Black
colour dots represent the genes that are not significant.

Figure 7. Venn diagrams showing the of significant hyper and hypomethylated genes among AA and Whites in MetS and
breast cancer TCGA dataset (a) African Americans (b) Whites.

EPIGENETICS 475



(Table S1(a)) and MIPEP (Mitochondrial
Intermediate Peptidase) a mitochondrial signal
peptidase found in White adipose tissue was iden-
tified as one of the most hypomethylated genes
when comparing AAs with and without MetS
(Table S1(a)). Polymorphisms in GSTT1gene
were associated with MetS in Zoroastrians in
Yazd, Iran [49]. The gene ACBD5 (Acyl-CoA
Binding Domain-containing 5) that plays a role
in peroxisomal β-Oxidation of very-long-chain
fatty acids [50] was identified as the top hyper-
methylated (Table S1(b)) and SCD (stearoyl-CoA
desaturase-1), known to be required for the meta-
bolic effects of leptin was identified as one of the
most hypomethylated genes (Table S1(b)) when
comparing Whites with and without MetS.

ELOVL2 (ELOVL fatty acid elongase 2), known
to be associated with age-related DNA methylation
changes and regulation of metabolism in mam-
mals [51] was identified as one of the top-hyper-
methylated genes (Table S2(a)) associated with age
while DDO (D-aspartate oxidase), a flavin adenine
dinucleotide-dependent peroxisomal enzyme that
displays selective oxidative activity towards acidic
d-amino acids [52], was identified as one of the
most hypomethylated genes in AAs among DMPs
associated with age (Table S2(a)). The gene

PPP1R13L (Protein Phosphatase 1 Regulatory
Subunit 13 Like), that plays a role in apoptosis
and NF-κB inflammatory pathways [53], was iden-
tified as the top-hypermethylated gene (Table S2
(b)) associated with age. FIGN (fidgetin, microtu-
bule severing factor), known to have a role in
congenital heart disease [54] was identified as
one of the most hypomethylated genes (Table S2
(b)) in Whites among the DMPs associated
with age.

In our cohort, we identified several genes
whose methylation may be influenced by poverty
status: RNF39, ZNF714, GSTTP1, and AHRR.
RNF39 (ring finger protein 39), known to be
hypermethylated in multiple sclerosis previously
[34], was hypermethylated (Table S3(a)). When
comparing AAs below poverty to those above,
ZNF714 (zinc finger protein 714), documented
previously to be hypomethylated in visceral adi-
pose tissue from morbidly obese patients [55]
was one of the most hypomethylated genes
(Table S3(a)). When comparing Whites below
and above poverty status, the gene GSTTP1
(Glutathione S-transferase theta pseudogene 1)
that plays a role in glutathione metabolism was
the top-hypermethylated gene (Table S3(b)).
AHRR (Aryl-hydrocarbon receptor repressor),

Figure 8. Venn diagrams showing the of significant hyper and hypomethylated genes among AA and Whites in MetS and
colon cancer TCGA dataset (a) African Americans (b) Whites.
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known to be hypermethylated in offspring of
obese compared to normal-weight mothers [56]
was identified as one of the most hypomethylated
genes (Table S3(b)) when comparing Whites
below and above poverty status. Sex was impor-
tant in methylation status in some genes.
NLGN4Y (neuroligin 4 Y-linked), known to be
involved in maternal immune responsivity [57],
was identified as one of the top-hypermethylated
genes (Table S4(a, b)) in both AAs and Whites
among DMPs associated with sex. CNKSR2 (zinc
finger protein 714) known to function as a reg-
ulator of Ras signalling [58] was identified as one
of the most hypomethylated genes in AAs and
Whites among DMPs associated with sex (Table
S4(a,b)).

Our examination of interactome hotspots showed
differences between AAs and Whites. We identified
the following hot spots for MetS in AAs. LDB1(LIM
domain binding 1) known to regulate energy homo-
eostasis during diet-induced obesity [59], NPTN
(neuroplastin) a gene that plays a role in signalling
mechanisms [60],ARRB2 (arrestin beta 2), known to
promote 5-FU-induced apoptosis via the NF-κB
pathway in colorectal cancer [61], ITGB7 (integrin
subunit beta 7) a gene that regulates multiple mye-
loma cell adhesion, migration, and invasion [62]
(Figure 3). In Whites, we identified CREB1(cAMP
responsive element binding protein 1 known to be
associated with type 2 diabetes mellitus risk [63],
NEDD4 (NEDD4 E3 ubiquitin protein ligase)
which has an important role in controlling cell
growth and in maintaining tissue homoeostasis
[64], RAB4A (RAB4A, member RAS oncogene
family), known to modulate the amiloride-sensitive
sodium channel (ENaC) function in colonic epithelia
[65] and STX1A (syntaxin 1A) known to play an
essential role in biphasic exocytosis of the incretin
hormone glucagon-like peptide 1 in type 2 diabetes
[66] as an interactome hotspots (Figure 4) for MetS.
These identified interactome hot spots may play a
key role in pertinent to metabolic pathways and may
subsequently modulate the biologic mechanisms
relevant to MetS.

Further, we identified differences in the enrich-
ment of GO terms in molecular, cellular and biolo-
gical processes associated with MetS, age, poverty
status and sex among AAs and Whites (Figure S4).
For MetS, the following GO terms were common

among AAs and whites: protein binding, binding,
intracellular organelle part, intracellular membrane-
bounded organelle, cell part, intracellular organelle,
cell, intracellular, cytoplasm, intracellular part,
membrane-bounded organelle, organelle, cellular
metabolic process, metabolic process (Figure S4(a)).
In the context of age, we identified the following GO
terms in both AAs and whites: binding, molecular
function, cell part, cell, cellular component, biologi-
cal regulation, cellular process, biological process
(Figure S4(b)). There were also multiple overlapping
GO terms for poverty status between AAs and
whites. These included, multicellular organismal
process, developmental process and anatomical
structure developments. However, we found a nota-
ble difference in the number of genes enriched asso-
ciated GO terms that correlate with poverty between
AAs and Whites. This suggests that poverty status is
a key variable in defining the molecular pathways
that are influenced due to methylation. (Figure S4
(c)). For sex, the GO terms protein binding, binding,
molecular function, membrane-bounded organelle,
cytoplasmic part, organelle, cell, cell part, cytoplasm,
cellular component, intracellular part, intracellular,
cellular process and biological process were found
commonly associated in both AAs and Whites
(Figure S4(d)).

We performed an EWAS to identify DNAmethy-
lation sites in MetS that were confounded by vari-
ables such as age, poverty status and sex. In our
multivariable linear regression models, we have
replicated previously identified genes ABCG1,
IGF2BP1 as significantly methylated in MetS
among African-American adults [19]. We have
found that the gene ABCG1 is statistically significant
under the influence of confounding variables age
(AAs: cg08668779; p-value = 0.014825, Whites:
cg08668779; p-value = 8.79 x 10 − 7), poverty status
(AAs: cg08668779; p-value = 0.0056, Whites:
cg08668779; p-value = 1.42 x 10 − 7), sex (AAs:
cg08668779; p-value = 0.002, Whites: cg08668779;
p-value = 1.51 x 10 − 7), age+poverty status +sex
(AAs: cg08668779; p-value = 0.0072, Whites:
cg08668779; p-value = 0.0002). On the other hand,
the gene IGF2BP1 was found statistically significant
under influence of confounding variables age
(cg24876164; p-value = 0.02192) and age+poverty
status +sex (cg24876164; p-value = 0.038) among
AAs. In Whites IGF2BP1 was found statistically
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significant under influence of confounding variables
age (cg24876164; p-value = 0.0043), poverty status
(cg24876164; p-value = 0.0026), sex (cg24876164; p-
value = 0.0015), and age+poverty status +sex
(cg24876164; p-value = 0.0028). These results
demonstrate that MetS was consistently associated
with increased methylation in the ABCG1 gene in
both races whereas MetS was consistently associated
with increased methylation in the IGF2BP1 gene
only in Whites under the influence of different con-
founding variables.

Further, we have found that the gene Thioredoxin-
interacting protein (TXN1P) (cg19693031) was signif-
icantly differentially methylated and associated with
the variables age, poverty status, sex, and age+poverty
status+sex (Figure 5(b–h)) in White participants.
TXN1P, an endogenous inhibitor of antioxidant thior-
edoxin (TRX), plays an important in oxidative stress
and endothelial cell inflammation in diabetes and its
vascular complications [67]. TXNIP binds to the fruc-
tose transporters, promotes fructose absorption by the
small intestine and regulates glucose homoeostasis in
mammals [68,69]. Previous studies showed that the
modulation of the thioredoxin/thioredoxin reductase
system may be considered as a novel target in the
management of several disorders including MetS,
insulin resistance, type 2 diabetes, hypertension and
atherosclerosis [70]. Our results also demonstrate that
MetS was consistently associated with differential
methylation in the TXN1P gene under the influence
of different confounding variables only in the Whites
indicating that it can be used as a possible prognostic
marker for MetS among the Whites. We did not find
any statistically significant genes among AAs.
Previous studies that also identified TXN1P as an
important gene in MetS have failed to include non-
White participants [71]. Our data suggest that this
gene may not be important for AA adults; however,
we cannot definitively state this without evaluating a
larger cohort of AAs in our future work.

MetS is an important risk factor for cancer sig-
nificantly influencing incidence and mortality for
several commonly occurring cancers [72]. Previous
studies showed that MetS was associated with a
52% increase in post-menopausal breast cancer
risk [73] and an increased risk of colorectal cancer
incidence in both men and women [72,74]. In
addition, the cancer mortality rate is 83% higher
in those with three or more MetS components

compared to cancer patients without MetS [75].
We examined whether annotated genes that are
significantly methylated in MetS in our study parti-
cipants overlapped with the annotated genes that
are significantly methylated in tumours from
patients of the same race. This analysis revealed
that there was overlap of hypermethylated and
hypomethylated genes identified in the TCGA col-
orectal and breast cancer tumour samples with
those genes significantly and differentially methy-
lated in White and AA HANDLS participants with
and without MetS for both breast (Figure 7) and
colon cancer (Figure 8).

Further, our results showed that the genes
ABCG1(cg08668779), IGF2BP1 (cg24876164) and
TXN1P (cg19693031) that are significantly methy-
lated in our EWAS models were also significantly
methylated with both breast (Table S12) and colon
cancer (Table S13) datasets with a p-value <0.001.
These three genes and the biologic pathways of
which they are a part provide a hint about how
MetS promotes tumorigenesis.

Our study has several notable strengths. The
participants are community-dwelling middle-aged
AAs and Whites allowing us to analyse race-spe-
cific differences associated with MetS and DNA
methylation in a diverse cohort. The genome-
wide DNAm analysis was performed using the
latest version of EPIC which can efficiently quan-
tify the methylation at more CpG sites compared
to the previous Illumina HumanMethylation450
array. Nevertheless, several limitations should
also be noted. The cross-sectional study design
limits our ability to infer causality between MetS
and DNA methylation. The study does not exam-
ine MetS in Hispanics who also have significant
health disparities that may be influenced by MetS.

Conclusions

In conclusion, MetS in AA and White adults has a
distinctive pattern of significantly differentially
methylated DMPs, different interactome hotspots,
different cell types and functional pathways that
may be central to understanding molecular aspects
of MetS. Identifying differential methylation pat-
terns and different genes associated with MetS in
populations at heightened risk for adverse health
outcomes may enhance chances for early diagnosis
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by facilitating the development of biomarkers that
could permit early diagnosis and treatment that
would ultimately result in narrowing health
disparities.
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