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Abstract

Neuroglia represent a diverse population of non-neuronal cells in the nervous systems, be that 

peripheral, central, enteric or autonomic nervous system. Arguably, these cells represent about half 

of the volume of the human brain. This volumetric ratio, and by extension glia to neurone ratio, 

not only widely differ depending on the size of the animal species brain and its positioning on the 

phylogenetic tree, but also vary between the regions of an individual brain. Neuroglia derived from 

a dual origin (ectoderm and mesodermal) and in an assorted morphology, yet their functional traits 

can be mainly classified into being keepers of homeostasis (water, ions, neurotransmitters, 

metabolites, fuels, etc.) and defenders (e.g., against microbial organisms, etc.) of the nervous 

system. As these capabilities go awry, neuroglia ultimately define their fundamental role in most, 

if not, all neuropathologies. This concept presented in this chapter serves as a general introduction 

into the world of neuroglia and subsequent topics covered by this book.
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1.1 The Birth of the Concept of Homoeostatic Neuroglia

The complexity of the human brain is remarkable: a population of more than 200 billion (i.e. 

2 × 1011) neural cells (neurones and neuroglia) is packed within a limited volume (average 

human brain occupies 1200–1400 cm3). These neural cells form complex networks, 

connected through 15–20 trillions of chemical and electrical synapses that provide for 

computing power of this organ. The logistical support underlying this highly complex organ 

is provided by a specific class of cells known as neuroglia.

The concept of connective tissue of the nervous system emerged in the nineteenth century 

[16, 47]; this concept was initially formalised by Rudolf Virchow who introduced the term 

neuroglia in the 1850s [100, 101]. According to Virchow the neuroglia was ‘…connective 

substance that forms in the brain, in the spinal cord and in the higher sensory nerves a type 

of putty (neuroglia), in which the nervous elements are embedded…’ [100]. Prominent 

neuroanatomists of the second half of the nineteenth century characterised the cellular nature 

of glia in great detail, and described many types of glial cells [16]. At the same time 

numerous theories have considered the functional role of neuroglia in the brain homeostasis, 

nutritional support, regulation of blood flow, sleep and conscience, as well as in 

neuropathology [6, 29, 30, 72, 79]. The first major type of glia, the astroglia, has been 

defined in 1895, when Michal von Lenhossék suggested to name a sub-population of 

parenchymal glia astrocytes, star-like cells (from Greek αστρoν κυτoς). At the same time 

the parenchymal glia was also sub-classified into protoplasmic (grey matter) and fibrous 

(white matter) cells [6]. The myelinating cells of the central nervous system (CNS) were 

first drawn by the Scottish pathologist William Ford Robertson [74, 75], and subsequently 

Pío del Río Hortega named them oligodendrocytes and recognised their myelinating 

function [24]. It was also Pío Del Río Hortega who identified and named microglia as the 

defensive cellular elements of the CNS, by demonstrating that these cells undergo 

remarkable metamorphosis in pathology and suggesting their role as ‘garbage collectors’ 

[21–23]. Finally, in the 1980s the fourth type of neuroglia, the NG2 glia (also known as 

oligodendrocyte progenitor cells or polydendrocytes), was discovered by William Stallcup 

and colleagues, after they developed an antibody to a chondroitin sulphate proteoglycan, 

dubbed NG2 [88]. Based on their developmental origin (neuroepithelial or mesodermal), 

neuroglia of the CNS have been classified as macroglia (astrocytes, oligodendrocytes, NG2) 

and microglia, respectively.

1.2 The Definition of Neuroglia

The definition of neuroglia is based on the unifying fundamental function of these cells, 

which, regardless of their origin, is homeostasis of the nervous system. This function is 

fundamental for both physiological context, when glial cells perform their routine 

housekeeping duties, as well as for pathological context, when glial cells can undergo 

reactive remodelling in order to preserve, repair and restore brain homeostasis. Failure in 

this function results in the development of the neurological disease and damage to the 

nervous tissue. Therefore, neuroglia can be defined as homeostatic and defensive cells of the 

nervous system, represented by highly heterogeneous cellular populations of different origin, 

structure and function [94].
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In this sense neuroglia are the ultimate supportive cells of the nervous system, keeping it in a 

functional state. This reflects upon evolution of the nervous system, which resulted in the 

division of labour: the information processing and electrical excitability became confined to 

the neuronal networks, whereas homeostatic support and defence became the sole 

prerogative of the neuroglia [95]. This homeostatic support occurs at all levels of 

organisation of the nervous system: at molecular level (control over homoeostasis of ions, 

neurotransmitters, protons, reactive oxygen species, metabolites, etc.), at cellular level 

(astrocytes involvement in neurogenesis), at network level (both astroglia and microglia 

regulate synaptogenesis, synaptic maturation and extinction), connectome level (which is 

maintained by myelinating oligodendroglia and Schwann cells), organ level (astrocytes 

control blood-brain barrier and glymphatic flow and regulate functional hyperaemia) and 

systemic level (glial cells emerge as central chemoceptors and contribute to systemic control 

over ventilation, ion homeostasis and energy metabolism); for comprehensive coverage of 

neuroglial homeostatic capabilities see [1, 2, 7, 19, 31, 34, 37, 41, 45, 46, 49, 50, 59, 68, 70, 

93, 96, 97, 103, 105].

This ultimate homeostatic capability of neuroglia underlies their fundamental role in 

neuropathology, the latter being broadly defined as a homeostatic failure of the nervous 

system. Environmental stress and/or pathological insults trigger glial homeostatic response 

(when glial cells attempt to keep homeostatic equilibrium or steady state) and glial 

reactivity, which represents an evolutionary conserved programme of glial cells remodelling 

aimed at mounting defence of the nervous tissue. Neuroglial reactivity is manifested in 

reactive astrogliosis, microglial activation and Wallerian degeneration (for 

oligodendrocytes). At the same time glial asthenia or atrophy, which is observed in 

numerous neurological conditions, facilitates evolution of the disease because of 

compromised homeostatic and defensive capabilities. Although the fundamental role of 

neuroglia in neuropathology has been predicted by prominent neurologists of the nineteenth 

and the beginning of the twentieth centuries (such as Rudolf Virchow, Carl Frommann, Alois 

Alzheimer, Nicolas Achucarro and Franz Nissl), the pathophysiological role of glia begun to 

be universally recognised only in the recent decade; for references and concepts see [11, 12, 

53, 66, 67, 76, 81, 84–86, 99]. The concept of astrotauopathology, recently introduced by 

Kovacz [51], supports the notion that the neuroglia emerges in the limelight when 

considering the evolution of neurological diseases.

1.3 Glial Numbers

The numerical preponderance of glial cells in the brains and spinal cords of different species 

and glial to neurone ratio (GNR) have been a matter of the most common fallacy over recent 

decades. The notion of glial cells outnumbering neurones in the human brain by a factor of 

10 or even 50 [10, 18, 44] represented an undisputed general knowledge that has been 

repeatedly proclaimed in glial literature (for critical analysis see for example [39, 98, 102]). 

The story of exceedingly high number of glial cells in the human brain goes back to Franz 

Nissl [58]; this idea became rather popular and reached the climax in writings of Robert 

Galambos who considered that neuroglia represent the primary seat of intelligence, 

consciousness, emotions and are overall responsible for our ‘humanity’. ‘Glia is … 

conceived as genetically charged to organize and program neuron activity so that the best 
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interests of the organism will be served; the essential product of glia action is visualized to 

be what we call innate and acquired behavioural responses. In this scheme, neurons in large 

part merely execute the instructions glia give them’ [28]. The notion was further promoted 

by the finding that the Einstein’s brain had a rather higher glia to neurone ratio in his 

associated cortex than that found in the control human population [25], leading to 

speculations that this could be the reason for his remarkable intellectual abilities (https://

www.theguardian.com/science/2007/feb/21/neuroscience.highereducation) (https://

www.npr.org/templates/story/story.php?storyId=126229305). The public myth of glia has 

extended into that of an untapped part of the brain that we may not use, perhaps gloriously 

captured in Starbuck’s The Way I see it? (http://www.stevekmccoy.com/blog/2005/08/

starbucks_the_w) #236 quote ‘Scientists tell us we only use 5% of our brains. But if they 

only used 5% of their brains to reach that conclusion, then why should we believe them?’ Of 

course, based on any functional imaging, this myth has been debunked and the authors 

would like to assure the readers that we had used the vast majority if not all of our brains to 

write this chapter.

None of these concepts had experimental confirmation. Exceptionally high glia to neurone 

ratio of the human brain was not related to actual cell counts; to the contrary most of 

stereological investigations produced the GNR values in the neocortex somewhere around 

1.5 (see Table 1 in [42, 102]), with the number of neuronal counts in the range of 20–30 

billion and glial cells in the range of 27–38 billion. In the cerebellum, which contains the 

largest number of brain neurones (around 70 billion) the number of glial cells is much 

smaller, with GNR not exceeding 0.1 [3, 4]. These stereological data obviously made the 

total GNR estimate of 10:1 unrealistic. Further advances in defining the glial numbers are 

associated with the application of isotopic fractionation technique, which counts nuclei of 

neurones and non-neuronal cells in the homogenates of the nervous tissue [8, 40, 54]. This 

technique demonstrated that the total numbers of neuronal and non-neuronal cells in the 

human brain are more or less on par, both being in the range of ~80–100 billion. After 

subtracting the population of endothelial cells which may account for about 20% of all non-

neuronal cells, the true number of glial can be estimated at ~60 billion and total GNR for the 

whole brain is therefore less than 1:1. The density of glia is quite different in various brain 

areas. For example, the GNR varies between 1.2 in the grey matter of the occipital cortex 

and 3.6 in the grey matter of frontal cortical regions [73, 82], it is technically an infinity in 

the white matter that does not contain neuronal cell bodies, and hence inclusion of white 

matter counts increases the total GNR in the cortex to ~3. As already alluded above the GNR 

in cerebellum is very low probably not exceeding 0.1. Much higher GNR values were 

reported for the striatum (3.7:1), for the superior colliculus (10:1), for the ventral pallidum 

(12.2:1), for the lateral vestibular nucleus (30–50:1), while for the globus pallidus a very 

high GNR of 160:1 has been calculated from stereological counts [5, 8, 64, 71, 80, 91, 102]. 

Similarly, the GNR for the spinal cord was determined at 5:1 in cynomolgus monkey and 

almost 7:1 in humans [9].

Evolution of the nervous system paralleled with an increase in GNR, which however was not 

entirely linear and was not directly related to the intelligence. The nervous system of 

invertebrates has, as a rule, relatively smaller numbers of glial cells, with a GNR between 

0.01:1 and 0.2:1 (50 glial cells derived from neuronal/epithelial progenitors and six glial 

Verkhratsky et al. Page 4

Adv Exp Med Biol. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.theguardian.com/science/2007/feb/21/neuroscience.highereducation
https://www.theguardian.com/science/2007/feb/21/neuroscience.highereducation
https://www.npr.org/templates/story/story.php?storyId=126229305
https://www.npr.org/templates/story/story.php?storyId=126229305
http://www.stevekmccoy.com/blog/2005/08/starbucks_the_w
http://www.stevekmccoy.com/blog/2005/08/starbucks_the_w


cells that are mesodermally derived per 302 neurones in Caenorhabditis elegans [63, 89]; 10 

glial cells per 400–700 neurones in every ganglion of the leech [20]; ~9000 glial cells per 

90,000 neurones in the CNS of Drosophila [26, 52]). At the same time, the buccal ganglion 

of the great ramshorn snail Planorbis corneus contains 298 for example, in the cortex, the 

GNR is about 0.3–0.4 in rodents, ~1.1 in cat, ~1.2 in horse, 0.5–1.0 in rhesus monkey, 2.2 in 

Göttingen minipig, ~1.5 in humans and as high as 4–8 in elephants and the fin whale [15, 

27, 38, 43, 55, 65, 92]. The largest absolute number of glial cells has been counted in the 

neocortex of whales [27, 56]; stereological cell counts in the neocortex of the long-finned 

pilot whale (Globicephala melas) brain determined there are approximately 37.2 billion 

neurones and 127 billion glial cells and this gives a GNR of 3.4 [56]. The largest GNR was 

found in the neocortex of the common Minke whale (Balaenoptera acutorostrata), which 

contained ~12.8 billion neurones and 98 billion of glia giving therefore a GNR of ~7.6 [27].

1.4 Classification and Main Functions

Neuroglia (Fig. 1.1, see also [94]) are classified into glia of the peripheral nervous system 

(PNS) and of the CNS. The glial cells of the PNS originate (similarly to peripheral 

neurones) from the neural crest and are classified into:

1. Schwann cells [48] associated with sensory, motor, sympathetic and 

parasympathetic axons; Schwann cells are further subdivided into (i) myelinating 

Schwann cells that myelinate peripheral axons; (ii) non-myelinating Schwann 

cells that surround multiple non-myelinating axons and (iii) perisynaptic 

Schwann cells, which enwrap peripheral synapses and maintain homoeostasis in 

the perisynaptic milieu.

2. Satellite glial cells [35, 36], which are surrounding neurones in sensory, 

sympathetic and parasympathetic ganglia. These satellite glial cells control local 

homeostasis and are capable of reactive remodelling in pathology.

3. Olfactory ensheathing cells [77], which are a part of the olfactory system. These 

cells extend very fine processes that enclose large numbers of unmyelinated 

olfactory axons

4. Enteric glia [32, 33], represented by homeostatic glial cells of the enteric nervous 

system.

Neuroglia of the CNS are subdivided into macroglia (cells of ectodermal, neuroepithelial 

origin) and microglia (cells of mesodermal, myeloid origin). The macroglia is further 

classified into:

1. Astroglia or astrocytes. Astrocytes are heterogeneous population of primary 

homeostatic glia residing throughout the brain and the spinal cord, in both grey 

and white matter. Astroglia include [94, 96]:

i. protoplasmic astrocytes of grey matter;

ii. fibrous astrocytes of white matter
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iii. surface-associated astrocytes associated with the cortical surface in the 

posterior prefrontal and amygdaloid cortex;

iv. Velate astrocytes, which are localised in the parts of the brain that are 

densely packed with small neurones, for example in the olfactory bulb 

or in the granular layer of the cerebellar cortex;

v. Radial glia, which are the pluripotent neural cells precursors that 

generally disappear at birth in mammals

vi. Radial astrocytes, which include Bergmann glia in the cerebellum, 

Müller glia of the retina, radial glia-like neural stem cells of the 

neurogenic niches and tanycytes of the hypothalamus, hypophysis and 

the raphe part of the spinal cord;

vii. Pituicytes, which are the glial cells of the neurohypophysis;

viii. Gomori astrocytes rich in iron and positive for Gomori’s chrome alum 

hematoxylin staining identified in the hypothalamus and in the 

hippocampus;

ix. Perivascular and marginal astrocytes, which are placed near the pia 

mater, where they form endfeet with blood vessels. These astrocytes do 

not establish contacts with neurones and their main function is in 

establishing the pial and perivascular glia limitans barriers.

x. Ependymocytes, choroid plexus cells and retinal pigment epithelial 

cells. These cells line up the ventricles and the subretinal space; the 

choroid plexus cells produce the cerebrospinal fluid. Ependymocytes 

possess small movable processes (microvilli and kinocilia), which by 

rhythmic movements produce a stream of cerebrospinal fluid.

In addition, the brain of higher primates (including humans) contains 

several types of specialised astrocytes [17, 98], which include:

xi. Interlaminar astrocytes;

xii. Polarised astrocytes;

xiii. Varicose projection astrocytes.

Function of these hominoid astroglia remain unknown.

Parenchymal astrocytes of the human brain are substantially larger and more complex 

compared with astroglial cells of rodents, and have distinct gene expression pattern [60–62, 

87, 104]. Human protoplasmic astrocytes have about 10 times more primary processes and a 

more complex secondary process arborisation, with an average volume about 16.5 times 

larger than that of the corresponding astrocytes in a rat brain [61]. The larger human 

protoplasmic astrocytes also have extended outreach onto neuronal structures, on average 

contacting and encompassing up to 2 million synapses residing within astrocytic territorial 

domains, significantly more than the integrating capacity of rodent protoplasmic astrocytes, 
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which covers ~20,000–120,000 synaptic contacts [13, 61]. Similarly, human fibrous 

astrocytes have a 2.14-fold larger domain compared to that in rodents [61].

2. Oligodendroglia or oligodendrocytes, the myelinating cells of the CNS are 

subdivided into 4 classes [94]:

i. Type I oligodendrocytes are most numerous in the cortex and grey 

matter; they have small rounded somata and fine branching processes 

that myelinate 30 or more small diameter axons;

ii. Type II oligodendrocytes are similar to type I, but have parallel arrays 

of intermediate length internodes (100–250 μm), and are most common 

in white matter, such as the corpus callosum, optic nerve, cerebellum 

and spinal cord;

iii. Type III oligodendrocytes have larger (than type I and II) irregular cell 

bodies, with one or more thick primary processes that myelinate a small 

number of large diameter axons with long internodes (250–500 μm). 

These cells are localised in the cerebral and cerebellar peduncles, the 

medulla oblongata, and the spinal cord funiculi;

iv. Type IV oligodendrocytes, are somewhat similar to Schwann cells, 

being directly associated with a large diameter axon to form a single 

long internodal myelin sheath (as long as 1000 μm), and are restricted 

to tracts containing the largest diameter axons near the entrance/exit of 

nerve roots into the CNS.

3. NG-2 glia also known as oligodendrocyte progenitor cells or OPCs, or 

synantocytes, or polydendrocytes [14, 57]. The NG2 glia can have homeostatic 

role and contribute to adulthood myelination, albeit their functions are yet to be 

better characterised.

Microglia originate from the foetal macrophages that migrate into the neural tube very early 

in the embryonic development; arguably, microglia represent the first parenchymal glia to 

populate neural tissue in development. Microglial cells carry numerous physiological 

functions, including shaping neuronal synaptic connectivity, removing of redundant or 

apoptotic neurones in the development and regulating synaptic transmission [45, 46, 90]. 

Microglia form the main defence system of the CNS through evolutionary conserved 

programme of activation (microgliosis) which can produce numerous neuroprotective and 

neurotoxic phenotypes [78, 83].

In terms of numbers, the most numerous glia are oligodendrocytes and NG2 cells combined 

(40–60%), with astrocytes accounting for 20–40% and microglia for ~10% of neuroglia 

population, although there is, of course, a considerable variability between the brain regions, 

developmental stage and species.

1.5 Envoi and Outlook

One of the two goals of this chapter is to serve as a general introduction into the world of 

Neuroglia. The other goal is to pique an interest of the reader into subsequent chapters in 
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this book. As we tersely reviewed Neuroglia we establish the origin of these cells, their 

classification and their general functions in homeostasis and defence of the brain. In the 

following chapters, we explore the role of these cells in the progression of neuropathologies, 

especially neurodegenerative disorders. For a long time, the neurone-centric view dominated 

neuropathological thinking, and only recently the role of glia has been reassessed and the 

perception is mounting of specific importance of neuroglia that to a very large extent defines 

the progression and outcome of most (if not all) neurological diseases.
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Fig. 1.1. 
Classification of neuroglia
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