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Abstract

Astroglial cells are involved in most if not in all pathologies of the brain. These cells can change 

the morpho-functional properties in response to pathology or innate changes of these cells can lead 

to pathologies. Overall pathological changes in astroglia are complex and diverse and often vary 

with different disease stages. We classify astrogliopathologies into reactive astrogliosis, 

astrodegeneration with astroglial atrophy and loss of function, and pathological remodelling of 

astrocytes. Such changes can occur in neurological, neurodevelopmental, metabolic and 

psychiatric disorders as well as in infection and toxic insults. Mutation in astrocyte-specific genes 

leads to specific pathologies, such as Alexander disease, which is a leukodys-trophy. We discuss 

changes in astroglia in the pathological context and identify some molecular entities underlying 

pathology. These entities within astroglia may repent targets for novel therapeutic intervention in 

the management of brain pathologies.
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7.1 Prologue: Neuroglia in Neurological Diseases

The role of neuroglia in neurological disorders have been widely accepted by leading 

neuroanatomists and neurologists of the nineteenth century, from Rudolf Virchow (who 

indicated that the ‘interstitial tissue of the brain and spinal marrow are one of the most 

frequent seats of morbid change’ [222]) to Carl Fromann, Alois Alzheimer and Nicolas 

Achucarro [1, 6, 8, 77], to name but a few. The neuropathological philosophy of the 

twentieth century was dominated by neurono-centric views, while the last decade witnessed 

the resurgence of neurogliopathology. Recently, the pathological potential of neuroglia in 

general, and astrocytes in particular, has been extensively studied and the fundamental 

principles of astrogliopathology have been defined [33, 74, 79, 152, 156, 173, 191, 192, 216, 

219, 220, 234].

Neuroglial cells are primary homeostatic and defensive cells of the nervous system; and 

naturally, all types of glia are contributing to neuropathological developments. Astrocytes 

are a part of neural networks; they interact with neurones, with other glia and with blood 

vessels, thus, maintaining the structural and functional integrity of the neural tissue. 

Astrocytes are indispensable for maintaining neuronal functional and neuronal survival both 

in physiology and in pathology [214]. Therefore, astroglial failure creates a disease-

permissive landscape and underlies neuronal malfunction, neuronal death and neurological 

deficits.

7.2 Principles of Astrogliopathology

Pathological changes in astroglia in neurological diseases are complex and diverse (Fig. 7.1). 

These changes can be generic or disease-specific. They often vary at different disease stages. 

In the context of human pathology, changes are affected by age and comorbidity. 

Astrogliopathology is classified into (i) reactive astrogliosis; (ii) astrodegeneration with 

astroglial atrophy and loss of function; and (iii) pathological remodelling of astrocytes (Fig. 

7.1, [74, 156, 220]); all these pathological reactions occur together or in isolation.

7.2.1 Reactive Astrogliosis

Reactive astrogliosis is observed in many neurological disorders. Until very recently, 

astroglial reactivity was considered the sole manifestation of astrogliopathology. From 

histopathological point of view, astroglial reactivity is characterised by mor phological 

hypertrophy and up-regulation of two major cytoskeletal intermediate filaments/proteins, 

glial fibrillary acidic protein (GFAP) and vimentin [95, 155, 191]. Reactive astrocytes 

undergo a variety of substantial modifications, showing multiple phenotypes with both 

neuroprotective and neurotoxic features. These phenotypes arguably are disease-specific, 

although they all can share some common properties [120, 121, 156]. Transcriptomes of 
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reactive astrocytes in ischemia and endotoxin activation, for example, show significant 

differences [233].

Conceptually, reactive astrogliosis represents an evolutionary conserved (the first 

manifestations of astroglial reactivity are observed in many invertebrates including annelids 

and insects) defensive reprogramming of astroglia aimed at: (i) increased neuroprotection 

and trophic support of the nervous tissue; (ii) isolation of the lesioned area; (iii) 

reconstruction of the compromised blood–brain barrier; and (iv) facilitating the post-lesion 

regeneration of the nervous tissue [7, 156, 191]. The astrogliotic programme, therefore, has a 

high degree of flexibility and tailors functional and biochemical reprogramming of 

astrocytes to the nature and strength of the insult. Even within the same lesioned regions, 

astrocytes demonstrate a degree of heterogeneity in expression of transcription factors, 

inflammatory agents and signalling molecules [78, 92].

The initiation of astrogliosis is regulated mainly by damage-associated molecular patterns 

(DAMPs) or pathogen-associated molecular patterns (PAMPs). The DAMPs are endogenous 

molecules released from damaged or dying cells (ATP being the most prominent example), 

blood-borne factors that infiltrate brain parenchyma, etc. The PAMPs are exogenous 

molecules associated with infectious invaders such as bacteria or viruses; they mostly act 

through Toll-like receptors (TLRs) widely expressed in astrocytes [99, 203]. Astroglial cells 

express a wide range of receptors to both DAMPs and PAMPs: P2X7 purinoceptors, TLRs, 

nucleotide-binding oligomerisation domains (NOD)-like receptors (NLRs), double-stranded 

RNA-dependent protein kinase, scavenger receptors, mannose receptor and receptors for 

complement components and mediators, such as CXCL10, CCL2, interleukin-6 and B-cell-

activating factor of the tumour necrosis factor (TNF) family [70]. Often, exposure of 

astrocytes to DAMPs and PAMPs evokes cytosolic Ca2+ increases due to its release from the 

endoplasmic reticulum (ER) intracellular store. These Ca2+ signals are critical for instigating 

the astrogliotic programme. For instance, genetic deletion of predominant astroglial Ca2+ 

release channel of the ER, inositol 1,4,5-triphospate receptor type 2, suppresses astrogliotic 

response [101]. Similarly, pharmacological inhibition of Ca2+ release from the ER restrains 

astroglial reactivity triggered by amyloid-β [2]. Stimulation of astrocytes with ATP (a 

classical DAMP) not only triggers Ca2+ signalling [34, 211] but also induces formation of 

inflammasomes comprised of the NLR protein-1 or −2 LR, the adaptor protein apoptosis-

associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) 

and caspase-1. Activation of these inflammasomes leads to the processing of inflammatory 

caspase-1 and interleukin-1β (IL-1β) [137].

Reactive astrogliosis is classified according to the morphological properties and severity 

(Fig. 7.1). From the morphological perspective, astrogliosis is divided into isomorphic and 

anisomorphic astrogliosis. The isomorphic astrogliosis preserves astroglial territorial 

domains and it is fully reversible, whereas anisomorphic astrogliosis proceeds with violation 

of territorial domains, cell migration and territorial overlap, formation of astroglial palisades 

and ultimately the scar formation [156]. According to the severity, astrogliosis is classified 

into (i) mild to moderate astrogliosis; (ii) severe diffuse astrogliosis; and (iii) severe 

astrogliosis with compact scar formation [190, 191]. Fundamentally, astrogliosis provides 

for defence of the nervous tissue; it increases neuroprotection and is ultimately important for 

Verkhratsky et al. Page 3

Adv Exp Med Biol. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



post-lesion regeneration. Even scar formation carries clear definitive function isolating the 

damaged area of the CNS and saving the whole at the expense of its part [156, 210]. 

Suppression of reactive astrogliosis usually exacerbates the course of pathology [156]. 

Inhibition of astroglial reactivity enlarges the size of the traumatic lesions and aggravates 

neurological deficit [148]. Deletion of GFAP and vimentin, both being critical for the 

execution of astrogliotic programme, facilitates the development of ischaemic infarcts [116] 

and exacerbates post-traumatic synaptic loss [154]. Ablation of astroglial reactivity 

increased the accumulation of β-amyloid and reduced microglial association with senile 

plaques in the animal model of the Alzheimer’s disease [157]. Nonetheless, in conditions of 

prolonged stress or severe damage, reactive astrocytes may acquire neurotoxic potential and 

astrogliosis as a process can become maladaptive [155].

7.2.2 Astroglial Atrophy

Astrodegeneration is a widespread class of astrocytopathy, which is represented by 

morphological atrophy, increased astroglial death and hence decrease in astroglial density 

and an impairment of homeostatic functions. Astrodegeneration has been observed in 

various types of neuropathologies [90, 212, 221]. Astrodegeneration is particularly 

prominent in major psychiatric diseases. For instance, schizophrenia, major depressive 

disorder, Wernicke–Korsakoff encephalopathy, and addictive disorders are all accompanied 

with a reduction in the packing density of astrocytes and a failure of their homeostatic 

cascades, the latter most notably associated with glutamate homeostasis and glutamate–

glutamine shuttle, which are both impaired [50, 53, 54, 134, 163, 165, 178, 218]. Aberrant 

astroglial glutamate transport and catabolism are arguably responsible for abnormal 

neurotransmission as well as for excitotoxic neuronal death, both resulting in psychotic 

symptoms. In amyotrophic lateral sclerosis, insufficient astroglial glutamate clearance from 

the extracellular space instigates excitotoxic death of large motor neurones [177, 207], 

whereas in Alzheimer’s disease, reduced astroglial synaptic coverage contributes to early 

synaptic extinction and cognitive deficiency [215].

7.2.3 Pathological Remodelling of Astrocytes

Pathological remodelling of astrocytes covers abnormalities associated with an acquisition 

of abnormal molecular cascades or functional properties, which drive pathology [74, 156]. 

Pathological remodelling of astroglia contributes to various leukodys-trophies, most notably 

to Alexander disease, megalencephalic leukoencephalopathy with subcortical cysts or 

vanishing white matter syndrome, in all of which the astrocytopathy initiates lesions of the 

white matter [113]. In Alexander disease, astroglial expression of sporadically mutated 

GFAP gene results in early and severe leukomalacia [131]. Pathological remodelling in 

astroglia has been also described in mesial temporal lobe epilepsy, in which astrocytes 

acquire aberrant morphology, reduce gap junctional coupling and down-regulate expression 

of Kir4.1 channels; all these changes compromise K+ homeostasis thus contributing to the 

initiation of seizures [19].
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7.3 Astrogliopathology in Neurological Diseases

7.3.1 Neurotrauma

Traumatic injury of the brain and of the spinal cord are classified according to their nature 

(penetrating wounds or concussions; the later when occurring in the cervical spinal cord is 

known medically as cervical cord neurapraxia), their severity (mild, moderate or severe), 

volume (focal or diffuse), outcome (death, vegetative state, severe disability, moderate 

disability and good recovery) and anatomical localisation. According to its very nature, a 

traumatic injury to the CNS has a complex pathophysiology associated not only with direct 

damage to neural cells, but also with a damage to the whole organ with destruction of the 

blood–brain barrier and blood vessels, ischaemic insults, opening the way for secondary 

infection, etc. Neurotrauma predominantly triggers astrogliotic response; reactive 

phenotypes, however, very much depend on the pathological context [32, 33] with the 

severity of the damage and its anatomical localisation affecting astroglial activation.

In the healthy brain, astrocytes form numerous barriers with blood vessels and with 

cerebrospinal fluid; endfeet of astroglial cells together with the parenchymal basement 

membrane create glia limitans, which physically separates the brain parenchyma from blood 

vessels, perivascular spaces and the meninges. In response to a neurotrauma, an astrogliotic 

scar barrier is formed that delineates and isolates the areas of a focal damage from the 

healthy brain. Suppression of astrogliosis with consequent malformation of an astroglial scar 

markedly exacerbates tissue damage and neurological deficit [189]. The heterogeneity of 

reactive astroglial phenotypes very much depends on the distance to the lesion core. Close to 

the lesion astrocytes lose their domains, their processes overlap and the astroglial palisades 

are formed, reflecting anisomorphic astrogliosis. Astrocytes gather around the damaged sites 

and form the scar [32]. Astrocytes distant to the lesion core undergo isomorphic gliosis; they 

become hypertrophic and arguably neuroprotective. Contribution of astrocytes to tissue 

pathology in neurotrauma is multifaceted. Besides forming a protective scar astrocytes 

regulate inflammatory response, provide for homeostatic protection of the nervous tissue 

through the removal of extracellular glutamate, buffering K+ or releasing scavengers of 

reactive oxygen species and regulate post-traumatic remodelling of synaptic networks. 

Reactive astrocytes are indispensable in remodelling as suppression of astrogliosis down-

regulates post-traumatic regeneration of synaptic connectivity and neuronal networks [7].

7.4 Infectious Diseases

7.4.1 Infection of Nervous Tissue

Infections of the CNS caused by bacteria, viruses, fungi and parasites are classified into 

meningitis, encephalitis or brain abscess. Not every infectious agent can invade the CNS. 

Rather, only certain neurotropic viruses, bacteria, fungi and parasites can penetrate into the 

brain and the spinal cord with relative ease. Furthermore, most of the pathogens are 

effectively stopped by the brain barriers [110]. Infectious agents may cross the blood–brain 

barrier using the paracellular route, via transcytotic mechanism, inside entering monocytes 

(the Trojan horse hypothesis) as well as by other mechanisms such as, for example, 
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hijacking of β-adrenergic receptors as shown for Neisseria meningitidis (meningococcus) 

[47].

Neuroglial contribution to the infectious lesions of the CNS is of fundamental importance. 

Neuroprotective activation of astrocytes and microglia to a large extent defines the spread of 

infection through the nervous tissue and hence determines the outcome of the disease. The 

glial response, in turn, depends on the nature of an infectious agent. For example, contact of 

astrocytes with the Gram-positive bacteria such as Pneumococcus or Staphylococcus 
triggers rapid astrogliotic activation with marked cellular hypertrophy and up-regulation of 

GFAP expression [96] accompanied with synthesis and secretion of pro-inflammatory agents 

such as TNF-α, ILs and macrophage inflammatory protein 1α [122]. Activation of 

astrocytes by infectious agents (see for example [70, 197, 228]) is mediated mainly through 

pattern recognition receptors (PRRs), which are represented by TLR 2, 3, 4, 9 [65], NLRs, 

retinoic acid-inducible gene (RIG)-like receptors (RLRs) and cytokine receptors [108]. The 

NOD2 receptor, operational in astrocytes, recognises a minimal motif present in all bacterial 

peptidoglycans and it is required for astroglial reactive reprogramming in response to N. 
meningitidis and Borrelia burgdorferi [43].

Activation of astrocytes is also linked to TLR receptors [67]. Distinct TLR subtypes 

recognise and respond to different PAMPs. Lipopolysaccharide (LPS), for example, signals 

through TLR4; TLR3 is activated by double-stranded RNA; peptidoglycans interacts with 

TLR2, while TLR9 senses CpG DNA [40]. Activated TLRs interact with adaptor proteins 

myeloid differentiation factor 88 (MyD88) and/or a TIR-containing adaptor molecule, Toll/

interferon-1 receptor domain-containing adaptor inducing interferon-γ (TRIF), which acts as 

a part of relevant signalling cascade [40]. Bacterial infection of the nervous tissue down-

regulates expression of connexins hence decreasing gap junctional connectivity of astroglial 

syncytia [66]. Direct interaction of several bacteria such as Streptococcus pneumonia, B. 
burgdorferi and N. meningitides triggers astroglial reactivity as well as increases the 

production of pro-inflammatory cytokines and chemokines such as IL-6, TNF-α, IL-8, 

CXCL-1 and CXCL-10 [240]. Besides activation, astrocytes may undergo pathological 

remodelling and act as a reservoir for infection. Furthermore, astrocytes can promote 

apoptotic death of their uninfected neighbours through gap junction route [68, 240]. 

Astroglial reactivity, that includes overexpression of GFAP, keeps infectious process at bay. 

Indeed, genetic deletion of GFAP associated with suppressed astrogliosis, significantly 

exacerbated the neurological damage induced by intra-brain injection of S. aureus [197].

Astrocytes are fundamental players not only in bacterial but also in viral infections of the 

CNS. First and foremost, astrocytes can be directly infected by a virus. For example, 

astrocytes accumulate human immunodeficiency virus-1 (HIV-1) in a cluster of 

differentiation 81 (CD81)-lined vesicles. Inside these vesicles, the virus is protected from 

degradation [83]. The very same vesicles contributed to the secondary trans-infection of T-

cells [83]. In the dementia caused by HIV brain infection, astrocytes undergo both reactive 

remodelling and astroglial degeneration and astroglial death. These processes may reduce 

homeostatic support and hence contribute to cognitive deficit [46]. The astroglial infection 

with HIV-1 (similarly to bacterial infection) decreased expression of connexins and syncytial 

connectivity [150]. In a similar manner, astrogliotic response is mounted in response to 
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infection with the herpes simplex virus 1 (HSV1). Here, activation of astrocytes is mediated 

by TLR3 and it is neuroprotective. Deletion of TLR3 suppressed astrogliosis and 

exacerbated HSV pathology in mice [168] as well as in humans [91]. Infection with 

cytomegalovirus (CMV) was associated with astroglial homeostatic failure. The CMV 

infected astrocytes showed decreased released of thrombospondins and deficient glutamate 

uptake, possibly linked to an increased excitotoxicity [235, 236]. Neurotropic viruses of the 

family of Flaviviridaem represented by Zika virus and tick-borne encephalitis virus (TBEV) 

invade astrocytes by endocytosis [159, 240]. Astroglial infection with TBEV does not 

visibly affect their survival or function, and it is generally believed that astroglial cells act as 

a reservoir for this type of virus [240]. Astrocytes also represent the cellular target for some 

protozoan parasite, most notably for Toxoplasma gondii. Astrocytes infected with T. gondii 
undergo biochemical remodelling associated with up-regulated synthesis of kynurenic acid 

that in turn may be linked to some forms of schizophrenia, which will be discussed in 

appropriate section below. In addition, infection of astrocytes with this protozoan results in 

the loss of gap junctions [37].

7.4.2 Systemic Infections and the Brain: Sepsis-Associated Encephalopathy

Systemic inflammation frequently accompanies various infectious and non-infectious 

diseases including degenerative and metabolic disorders. This systemic inflammation often 

is manifested in the form of sepsis. Sepsis (and in particular abdominal sepsis) is frequently 

accompanied with an acute brain dysfunction, generally defined as sepsis-associated 

encephalopathy or SAE [187]. From the clinical perspective, the SAE is regarded as a sign 

of the severity of a septic state, which potentially worsens the prognosis [158]. The SAE is 

defined as a clinical syndrome associated with the general brain dysfunction that develops in 

sepsis in the absence of primary infection of the nervous tissue. The histopathological signs 

of the SAE include infarctions, petechial and small focal haemorrhages, septicembolic 

abscesses and septicopyemic microabscesses, disseminated intravascular coagulation (DIC) 

syndrome with fibrinous microthrombi, multifocal necrotising leukoencephalopathy, 

necrotic or apoptotic neuronal death, perivascular and cytotoxic oedema, damage of the 

blood–brain barrier and reactive neuroinflammation [89, 186, 187]. Sepsis is often 

associated with the formation of abscesses and microabscesses in the brain parenchyma, 

which can be regarded as directly associated with the SAE. The SAE, especially at the early 

stages is often associated with ‘sickness behaviour’, the syndrome accompanying system 

inflammation. The symptomatology of sickness behaviour syndrome includes anxiety, 

anorexia, anhedonia, depression, cognitive changes, including decreased concentration, 

learning and memory [56].

At the neurochemical level, the leading pathological changes in an SAE are represented by 

aberrant neurotransmission, which is responsible for cognitive and psychotic symptoms. 

Substantial changes in expression of main neurotransmitter receptors including receptors for 

γ-aminobutyric acid (GABA), serotonin, dopamine and noradrenaline have been observed in 

the brain in systemic infections [100, 208]. Changes in neurotransmitter homeostasis in 

sepsis are arguably related to alterations of amino acids levels in the blood characterised by a 

decrease in branched chain amino acids together with relative increase in aromatic amino 

acids [15]. In addition, compromised brain barriers allow a substantial influx of aromatic 
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amino acids, such as tyrosine, phenylalanine and tryptophan, which may act as false 

neurotransmitters and alter biosynthesis of true neurotransmitters (e.g., dopamine, 

noradrenaline and serotonin—[188]).

Astrocytes, endfeet of which form glia limitans and hence can be considered as the 

parenchymal portion of brain barriers (the blood–brain and the blood–cerebrospinal fluid), 

define, to a very large extent, the resistance of the nervous tissue to the systemic 

inflammation. Intimate contacts of astrocytes with all other cellular elements of the nervous 

tissue allow them to regulate the relationship between the CNS and systemic physiology and 

pathology. In the context of SAE, astroglial reactivity is the principal mechanism that limits 

the propagation of pathological agents through the nervous tissue [41, 193]. Inhibition of 

astrogliotic response compromises astroglial barrier function and aggravates encephalopathy 

in the context of systemic inflammation or infectious lesion to the brain. For example, in 

transgenic mice with deleted gene for GFAP (this intervention suppresses astrogliosis), brain 

abscesses caused by Staphylococcus aureus or Toxoplasma gondii were much larger. 

Lesions become poorly demarcated, bacterial penetration significantly increased, neuronal 

death was much exacerbated and severe brain oedema developed [197]. Suppression of 

astroglial reactivity by activation of NF-κB signalling cascade in retinal ischemia or in 

spinal cord injury, is associated with an increased neuronal damage [27, 63]. Finally, 

inability of astrocytes to acquire reactive phenotype results in swelling, cytotoxic oedema 

and spread of damage in infectious abscesses [187].

Astrocytes contribute to the pathology of the blood–brain barrier, which is classified as 

disruptive and non-disruptive alterations, with both variants present in systemic 

inflammation [187]. The non-disruptive BBB pathology develops at the molecular and 

cellular levels when BBB permeability is affected following up- or down-regulation of 

receptors and transporters expressed in endothelial cells and astrocytes [209]. Disruptive 

BBB alterations develop through anatomical changes, which include degradation of 

glycocalyx, a loss of integrity of tight junctions, mitochondrial damage, appearance of 

fenestrae between endothelial cells, endothelial cells death, collapse of glia limitans and 

astrocytopathy. Disruption of BBB in systemic inflammation is mediated by blood-derived 

metalloproteinases, prostanoids, nitric oxide and reactive oxygen species [38, 136]. The 

switch between non-disruptive and disruptive BBB pathology depends on the severity of 

systemic inflammation. At the early stages of SAE the non-disruptive changes prevail, 

whereas in severe sepsis, both non-disruptive and disruptive changes occur [209].

7.5 Toxic Damage of the CNS

7.5.1 Heavy Metal Toxic Encephalopathies

Heavy metals, which cause severe brain damage with cognitive deficits, target primarily 

astrocytes. This is because heavy metals (such as manganese, lead, aluminium or mercury, in 

the form of methylmercury) mainly accumulate into astrocytes through different 

plasmalemmal transporters. In general, heavy metals down-regulate astroglial expression of 

glutamate transporters which decrease glutamate clearance and trigger excitotoxicity [198, 

199, 217, 232].
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Poisoning by methylmercury is known as Minamata disease named after the city of 

Minamata in Japan where the disease was first described [129]. The symptoms of Minamata 

disease include visual abnormalities, sensory lesions, cerebellar ataxia, hearing loss, 

weakness, tremor and cognitive decline. Methylmercury primarily accumulates in astroglia, 

where it inhibits glutamate and cystine uptake [5]. Suppression of glutamate uptake 

instigates exocytotic neuronal death, whereas inhibition of cystine transport limits astroglial 

synthesis of glutathione hence reducing astroglial capacity to counteract the accumulation of 

reactive oxygen species; both these processes contribute to neurotoxicity and neuronal death 

[57, 232].

Exposure to toxic concentrations of lead similarly causes neurodegeneration. Lead primarily 

accumulates in astroglia, where it down-regulates expression of EAAT-2 glutamate 

transporter, increases astroglial production of vascular endothelial growth factor, and impairs 

astroglia-associated water homeostasis by increasing the water permeability of aquaporin 4 

[85]. Arguably, these mechanisms contribute to cytotoxic and vascular brain oedema 

observed in patients with lead poisoning.

Aluminium toxic encephalopathy is manifested by cognitive impairments, speech 

alterations, seizures and flapping wrist tremor (asterixis). Treatment of cultured astrocytes 

with aluminium led to swelling, destruction of the cytoskeleton, reduction in gap junctional 

connectivity, inhibition of glutamate uptake and increased astroglial apoptosis. Loss of 

astroglial glutamate uptake triggered neuronal death in neuronal–glial co-cultures [198, 

199].

The main symptom of acute manganese neurotoxicity is an acute psychosis, whereas chronic 

manganese poisoning leads to parkinsonism. Astrocytes possess the high capacity 

manganese transport system; treatment of primary cultured astrocytes with manganese 

suppresses glutamate uptake and promotes apoptosis [57].

7.5.2 Hyperammonemia and Hepatic Encephalopathy

Increase in blood ammonium accompanies several diseases. The most frequent cause of 

hyperammonemia is, however, associated with an acute or chronic liver failure (the liver 

being the main organ for ammonia clearance). Hyperammonemia affects the brain and 

triggers a condition generally known as hepatic encephalopathy, manifested by cognitive and 

behavioural impairment; symptoms include confusion, forgetfulness, irritability and 

alterations of consciousness, such as lethargy and somnolence. Severe hyperammonemia 

provokes brain oedema, coma and death [31, 35, 73]. In the CNS ammonia is detoxified by 

glutamine synthetase localised exclusively in astrocytes; this enzyme catabolises ammonium 

reaction with glutamate and produces glutamine [3, 143, 175]. This reaction is central for 

glutamate-glutamine shuttle; it also fixes ammonium, which is liberated during 

physiological neuronal activity [126]. Ammonium overload occludes this pathway and 

blocks glutamine synthetase hence causing major disturbances of glutamatergic and 

GABAergic (as glutamate is the precursor to GABA) neurotransmission, which underlie all 

the symptoms outlined above [31, 35].
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Hyperammonemia also affects homeostatic astroglial functions. Exposure of astrocytes to 

ammonium results in a down-regulation of expression of inward rectifying Kir4.1 channels, 

an event mediated through astrocytic NMDA receptors by a yet uncharacterised mechanism. 

Decrease in the density of Kir4.1 channels, in turn, affects astroglial K+ buffering which may 

impair neuronal excitability [144, 166]. Exposure of astrocytes to ammonium also produces 

aberrant Ca2+ signalling by increasing expression of Ca2+-permeable TRPC1 channels, up-

regulating expression of Cav1.2 voltage-gated Ca2+ channels and facilitating Ca2+ release 

from the intercellular stores [86, 119, 223]. Increased Ca2+ load of astroglial cytosol, in turn, 

triggers the exocytotic secretion of glutamate which further exacerbates excitotoxic damage 

of the nervous tissue [82, 139]. Finally, increased ammonium compromises astroglial 

transport of Na+ and H+ which contributes to aberrant pH regulation in the CNS [105, 106]. 

All these molecular changes result in impaired synaptic transmission, synaptic plasticity and 

cognitive capabilities [45].

7.6 Astrogliopathology in Stroke

A disruption of the blood flow results either from a blood vessel rupture (that causes a 

haemorrhage), or by a restriction of blood supply to the brain or parts of the brain, because 

of a vascular occlusion (thrombosis or embolism), or to a systemic decrease in blood supply 

(resulting, for example, from a heart failure). This status is generally referred to as brain 

ischaemia. As a consequence, brain ischaemia can be either global, or focal, the latter 

corresponding to a stroke.

Astrogliopathology in stroke is complex and multifaceted, with astrocytes being both 

neuroprotective and neurotoxic [81, 239]. Focal ischaemia results in the infarction of 

nervous tissue creating a zone of pan-necrosis or an infarction core. At this core, all cells, 

neurones, glia and other non-neuronal cells undergo rapid necrosis. The size of the core is 

determined by anatomical location and duration of the ischemic attack. Quite frequently the 

focal ischemia is transient, as the blood flow can be restored when the vessel blockage is 

removed. In this case, restored blood flow results in reperfusion of the damaged area, which 

itself is potentially damaging because of the production of reactive oxygen species and 

secondary ion imbalances.The infarction core is surrounded by the ischemic penumbra, 

which contains viable cells, although with compromised metabolism and function. The 

infarction core is formed rapidly, within minutes to hours after initiation of the stroke. This 

is followed by a much slower process of expansion of the infarction zone through the 

penumbra, which develops over many hours and days. The final neurological deficit is often 

defined by the limits of the infarction expansion, which in turn depends on astroglial 

response.

Astrocytes support neurones in the ischaemic penumbra through several homeostatic 

pathways. First and foremost, astrocytes maintain homeostasis of glutamate in the ischaemic 

zones. They also feed neurones with metabolic substrates such as lactate. Energising 

astroglial mitochondria, for example, increase neuroprotection in the ischaemic context 

[180]. Taming glutamate excitotoxicity, which always follows stroke, almost solely falls 

onto astroglial cells. Down-regulation of expression of the astroglial glutamate transporter 

GLT-1/EAAT1 with siRNA increases the size of the infarct [167], whereas targeted 
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overexpression of GLT-1 in astrocytes limits the infarction volume and alleviates 

neurological deficit [88]. Similarly, stimulation of glutamate uptake with pharmacological 

agents such as tamoxifen or riluzole decreased infarction volume in animal models [227, 

238]. Of note, astroglial glutamate transporters are Na+ dependent, and hence maintenance 

of Na+ transmembrane gradients is critical for glutamate clearance [109]. Another important 

component of astroglia-dependent neuroprotection in the ischaemic penumbra is associated 

with antioxidant defence. Astrocytes are critical for both glutathione and ascorbic acid 

systems, which are the most powerful scavengers of reactive oxygen species [61, 62, 125]. 

Progression of cell death through the ischaemic penumbra is mediated by spreading 

depolarisation, which stresses astroglial ionostatic capacity. Furthermore, astrocytes may 

propagate death signal, triggering distant neuronal death [115, 142].

An important component of astroglial response to stroke is associated with reactive 

astrogliosis. Ischaemic damage to the brain tissue rapidly instigates astroglial activation 

through the release of DAMPs; the severity of astrogliotic remodelling and reactive 

phenotypes depend on the distance to the ischemic core [33]. Astrocytes close to the 

ischaemic core undergo anisomorphic gliosis, form astroglial palisades and produce 

astroglial scar that limits the damage to the nervous tissue. In parallel, distantly to the core 

astrocytes undergo isomorphic, neuroprotective astrogliotic remodelling, which is critically 

important for post-lesion regeneration The main outcome of astrogliosis in the immediate 

vicinity of the necrotic area is the formation of an astroglial scar, whereas more peripheral 

reactive astrocytes are important for post-lesion regeneration [81].

7.7 Metabolic Disorders

7.7.1 Congenital Glutamine Deficiency with Glutamine Synthetase Mutations

Congenital glutamine synthetase deficiency, a rather rare recessive inborn disease, results 

from mutations to the gene GLUL that encodes astroglia-specific glutamine synthetase, thus, 

this disorder can be considered as a specific astrogliopathy. This disease is characterised by 

pronounced malformation of the brain with severe white matter deficiency and abnormal 

gyri formation. Functionally, this deficiency is manifested as epileptic encephalopathy. The 

deficit in glutamine synthetase in the liver promotes chronic hyperammonemia. In addition, 

levels of glutamine are reduced in the brain as well as in other organism fluids. The disease 

results in prenatal malformation of various organs and is generally incompatible with life. 

Most of the infants die shortly after birth. The leading pathophysiological mechanism is 

associated with impaired ability of astrocytes to produce glutamine, which affects excitatory 

and inhibitory transmission; in addition, deficient glutamine synthetase cannot properly 

detoxify ammonium [195].

7.7.2 Pyruvate Carboxylase Deficiency

Pyruvate carboxylase is an enzyme of gluconeogenesis and it also contributes to anaplerotic 

metabolic pathways (i.e. producing intermediates for metabolic chains such as the Krebs 

cycle). In the CNS, pyruvate carboxylase is predominantly expressed in astrocytes. Pyruvate 

carboxylase deficiency is an autosomal recessive disease associated with impaired 

metabolism. The symptoms include retardation of mental development, recurrent seizures 
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and metabolic acidosis [127]. There are three clinically distinct forms: type A, or the 

infantile form, in which children die in the early years; type B, or the severe neonatal form, 

with many neurological signs including pyramidal symptoms, in which babies die within 3 

months after birth; type C or the benign form, which is characterised by mild neurological 

developmental deficits. The cellular pathogenesis remains largely unknown, but it is 

probably linked to reduced astroglial homeostatic function, such as glutamate buffering and 

regulation of angiogenesis [57]

7.7.3 Niemann–Pick Type C Disease

Niemann–Pick disease type C is a progressive neurodegenerative disease associated with 

hepatosplenomegaly. It is characterised as an autosomal recessive lysosomal storage disease, 

which results from loss-of-function mutations of genes encoding NPC-1 or NPC-2 proteins 

[176]. These proteins are localised in astroglial perisynaptic processes and may be involved 

in the regulation of cholesterol transport and, hence, synaptogenesis or synaptic maintenance 

[153]. Astroglia-specific genetic deletion of Npc1 from mice resulted in reduced neuronal 

cholesterol, which was associated with decreased neuronal and glial death and three times 

increase in the life span [237]. There is also evidence of a possible contribution for NPC-1 

protein in calcium homeostasis and signalling.

7.7.4 Aceruloplasminemia

The enzyme ceruloplasmin (also known as ferroxidase) is a part of iron metabolism. In the 

CNS this enzyme is expressed almost exclusively in perivascular astrocytes. Ceruloplasmin 

is an important component of protection of the nervous tissue against iron-associated lipid 

peroxidation and formation of hydroxyl radicals. Mutation of the ceruloplasmin gene with 

loss-of-function causes the autosomal recessive disease known as aceruloplasminemia, 

which can be defined as an inherited neurodegenerative disorder with systemic iron-overload 

syndrome [138]. This disease is characterised by primary lesions to astrocytes, which affects 

their morphology and results in an appearance of foamy spheroid bodies at the vascular 

endfeet [147]. Aceruloplasminemia is also associated with neuronal death and the 

appearance of iron deposition.

7.8 Alexander Disease

Alexander disease (AxD), named after William Stewart Alexander, a neuropathologist who 

described it for the first time [4], is a rare, chronic and usually fatal neurodegenerative 

disorder. Clinically, AxD may be defined as a severe leukodystrophy; pathophysiologically, 

it is a primary genetic astrogliopathology [131]. The AxD results from a dominant gain-of-

function mutation of the gene encoding GFAP. This leads to astroglial pathology that, in 

turn, results in a severe damage to the developing white matter. The histopathological 

hallmark of AxD is an accumulation of protein aggregates, known as Rosenthal fibres, 

around astroglial nuclei and endfeet [131]. AxD is subclassified into: (i) Type I, 

characterised with an early onset and severe mental and physical disabilities, 

megalencephaly, seizures, spasticity, difficulty speaking and swallowing, and (ii) Type II, 

with a later onset and somewhat different and milder clinical manifestations with normal 

development and head size, with rare occurrence of seizures, but with ataxia, visual and 
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autonomic abnormalities, troubles in sleeping patterns, hyperreflexia, difficulty speaking and 

swallowing [160].

Astrocytes in AxD demonstrate reactive morphology. These glial cells also remodel their 

biochemistry and secretome. In particular, astrocytes start to release pro-inflammatory 

factors TNF-α and IL-1β. In addition, astrocytes in AxD have reduced expression of 

glutamate plasmalemmal transporters, decreased activity of proteasomes, increased 

autophagy and increased activity of stress-activated protein kinase/c-Jun N-terminal kinase 

(JNK) pathway [131]. Multiple mechanisms by which pathological mutation of GFAP 

affects cellular functions have been considered. These include: (i) mutated GFAP through 

positive feedback loop inhibits proteasome function which activates JNK, and activated JNK 

directly further inhibits proteasome [204]; (ii) mutated GFAP inactivates one or more 

proteins by degradation of the Rosenthal fibres, where fragments of the small stress proteins, 

HSP27, αB crystalline, the 20S proteasome subunit, p-JNK, p62 and plectin, have been 

detected [131]. So far the AxD remains incurable, although several therapeutic strategies 

aimed at reducing GFAP expression are in development.

7.9 Neurodevelopmental Disorders

7.9.1 Autism Spectrum Disorders (ASD)

The class of autistics spectrum disorders (ASD) embraces numerous pathological conditions 

of heterogeneous clinical presentation and pathophysiology. They all, however, are 

manifested by deficits in social interactions and restrictive patterns of behaviours. Some of 

the autistic diseases are associated with intellectual deficits [162]. The underlying 

mechanism of ASDs is most likely associated with malformation of neuronal networks and 

aberrant neurotransmission in embryonic development caused by environmental and/or 

intrinsic factors [42, 80, 130, 174]. Formation of neuronal ensembles, synaptogenesis and 

synaptic elimination all critically depend on the performance of the astroglial cradle, which 

controls birth, life and death of synapses [213]. Astrocytes are responsible for 

neuroprotection and detoxification of harmful agents, including reactive oxygen species 

(through secreting antioxidants such as glutathione and ascorbic acid [30, 229]). Astrocytes 

tame excitotoxicity through glutamate uptake and they also control neurotransmitters 

catabolism and supply of neurotransmitter precursors [214]. In parallel, astrocytes are the 

main target for neurotoxic factors, such as heavy metals, which are linked to the aetiology of 

ASD [234]. Astrogliopathology in ASD has not been investigated in great details; there are 

some indications for astrogliosis [234], increased expression of connexin 43 and decreased 

expression of aquaporin 4 [71].

7.9.2 Down Syndrome

Down syndrome (DS), which is linked to the trisomy of chromosome 21, is characterised by 

mental retardation. In DS, the density of astrocytes is significantly reduced in the cortex 

[102] with decreased ability to properly support synaptogenesis and neuronal maturation 

[44].

Verkhratsky et al. Page 13

Adv Exp Med Biol. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7.9.3 Fragile X Syndrome

Expression of Fragile X mental retardation protein (FXMRP) causes a specific form of a 

neurodevelopmental disease manifested in ASD symptoms and mental disability, Fragile X 

syndrome that is also known as Martin–Bell syndrome or Escalante’s syndrome [107]. 

Expression of FXMRP in astrocytes weakens their homeostatic function and neuroprotection 

in the in vitro experiments. Co-culturing healthy neurones with astrocytes harbouring 

FXMRP leads to abnormal neuronal dendritic morphology and reduced synaptic 

connectivity. In contrast, co-culturing FXMRP expressing neurones with healthy astrocytes 

prevents the development of abnormal dendritic morphology [97, 98].

7.9.4 Costello Syndrome

Costello syndrome (named so after its discoverer Jack Costello [48]) belongs to the family 

of the so-called RASopathies (where RAS stands for rat sarcoma) characterised by aberrant 

Ras signalling [205]. In this pathology, astroglial cells expressing a mutated HRAS (Harvey 

rat sarcoma viral oncogene homolog) gene demonstrate hyperactive Ras signalling, which 

accelerates differentiation and maturation of astrocytes, and leads to astroglial hypertrophy. 

This is also associated with pathological extracellular matrix and abnormal formation of 

neuronal networks that in turn causes cognitive and behavioural abnormalities [112].

7.10 Major Neuropsychiatric Diseases

7.10.1 Schizophrenia

In schizophrenia the wide spectrum of astroglial abnormalities is present. Conceptually, 

schizophrenia is associated with astroglial asthenia, atrophy, loss of homeostatic capabilities 

and arguably pathological remodelling, while reactive changes are not characteristic. 

Decrease in astroglial numbers, as well as dystrophic or swollen astroglial profiles, appear in 

various brain regions, including cortical and hippocampal structures [69, 163, 181, 226]. 

Astrocytes derived from human induced pluripotent stem cells obtained from schizophrenic 

patients and injected into mice, demonstrated atrophic morphology and loss of homeostatic 

functions [230].

Astrocytes in schizophrenia are characterised by a significant down-regulation of expression 

of several astroglia-specific molecules such as deiodinase type II, aquaporin-4, S100β, 

glutamine synthetase, plasmalemmal glutamate transporters and thrombospondin. These 

changes were the most prominent in the deep layers of the anterior cingulate gyrus, 

suggesting that a subset of astrocytes localised to specific cortical layers can be affected 

[231]. In the prefrontal cortex and hippocampus, a decrease in the expression of EAAT1/2 

plasmalemmal glutamate transporters has been detected [16, 17, 146, 185], which may be 

linked to abnormalities in glutamatergic transmission. Genetic deletion of EAAT1 glutamate 

transporter promoted appearance of schizophrenia-like phenotypes manifested by locomotor 

hyperactivity and abnormal social behaviour [103, 104]. Astrocytes from rodent 

phencyclidine model of schizophrenia demonstrated a decrease in the expression of 

plasmalemmal cystine–glutamate exchanger Sxc− [12], which modulates extrasynaptic 

concentration of glutamate and contributes to the biosynthesis of glutathione. Astrocytes 

may promote aberrant neurotransmission through synthesis and release of kynurenic acid 
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that acts as an endogenous inhibitor of the NMDA receptor glycine binding site; kynurenic 

acid also blocks acetylcholine nicotinic receptors. The astroglial production of kynurenic 

acid is significantly up-regulated following brain infection with Toxoplasma gondii, which 

increases the risk of schizophrenia [183].

7.10.2 Mood Disorders

Astrogliopathology seems to be rather prominent in mood disorders [165, 178, 218]. The 

total number of glial cells and of astrocytes, in particular, is decreased in the orbitofrontal 

area and anterior cingulate, prefrontal, entorhinal and subgenual cortices, as well as the 

amygdala of the brains obtained from patients with major depression or bipolar disorder. 

[26, 49, 50, 149, 164]. In animals subjected to chronic stress, which instigates depressive 

phenotypes, GFAP expression and number of GFAP positive cells were reduced [28, 55]. 

Similarly, in models of attention deficit disorder and depression other astroglial markers, 

including aquaporin 4, astroglial connexins, astroglial plasmalemmal glutamate transporters 

and glutamine synthetase were all down-regulated [14, 21, 184].

Ablation of astrocytes in the medial prefrontal cortex of mice with the neuroglial toxin L-α-

aminoadipic acid triggered an emergence of a depressive phenotype similar to that induced 

by chronic stress [13]. Exposure to chronic stress led to a down-regulation of astroglial 

expression of connexin 43 along with the reduction of gap junctional coupling in astrocytic 

syncytia. Pharmacological inhibition of astroglial connexon-based channels in the prefrontal 

cortex induced depressive behaviour manifested by anhedonia [201]. A similar phenotype 

was observed after inhibition of astroglial plasmalemmal glutamate transporters [18]. 

Chronic treatment with antidepressants directly affected astroglia, by increasing expression 

of a variety of receptors and transporters responsible for CNS homeostasis and limiting 

glutamate release [53, 60, 123, 171]. In conclusion, mood disorders are associated with 

astroglial degen eration and astroglial asthenia, which compromise brain homeostatic 

reserve and arguably synaptic transmission.

7.10.3 Addictive Disorders

Various nosological forms of addictive disorders are associated with astrogliopathies. Post-

mortem analysis of the human brain samples revealed both astroglial reactivity with 

astroglial degeneration, and astroglial cell death with astroglial atrophy [9, 36, 72, 134, 145, 

200, 225]. In the animal models of addiction with cocaine, methamphetamine and morphine, 

astroglial activation and increase in GFAP expression have been identified [25, 76, 84, 194]. 

In contrast, in the model of chronic alcoholism a decrease in GFAP expression and 

morphological atrophy of astrocytes were detected [75, 172]. In post-mortem tissues isolated 

from alcoholic sufferers, both hypertrophic GFAP positive astrocytes as well as areas with 

decreased GFAP expression and decreased density of astrocytes were described [52, 133].

The number of astrocytes is decreased in the prefrontal cortex of alcoholics [135]. A similar 

decrease in astroglial density and GFAP expression was detected in the prelimbic cortex of 

ethanol-preferring chronically alcoholic rats [133]. Additionally, a decrease in astrocyte 

density was observed in response to acute binge drinking in male (but not female) adult rats 

[111]. Ablation of astroglia with L-α-aminoadipic acid or uncoupling astroglial syncytia 
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using a pharmacological inhibitor of connexin channels in the prefrontal cortex increases 

alcohol preference [132].

Addictive disorders are linked to astroglial plasmalemmal glutamate transport. Expression of 

EAAT2 as well as Sxc− glutamate transporters is decreased in the context of alcoholism. 

Incidentally, total extracellular glutamate increases most likely due to an imbalance between 

glutamate uptake (EAAT2) and release (Sxc−) [141, 169, 170]. Increase in the expression of 

EAAT2 by treatment with β-lactam antibiotic ceftriaxone decreased alcohol dependence 

[161, 179].

7.11 Epilepsy

In epilepsy, astrocytes undergo substantial pathological remodelling, which greatly affects 

their homeostatic capabilities and is linked to pathophysiology of this disease. In particular, 

the epileptic astroglial phenotype includes changes (mutations and/or expression levels) in 

ion channels, receptors and transporters [19, 196]. Abnormal electrophysiological 

characteristics have been observed in astrocytes isolated from patients with mesial temporal 

lobe epilepsy and associated sclerosis. These astrocytes, in addition, have severe impairment 

of intercellular coupling [19]. Astrocytes in sclerotic tissue up-regulated the expression of 

GFAP, suggesting thus their activation. Decrease in K+ buffering seems to be the dominant 

feature of astroglial remodelling in epileptic brains, which results in an increase of 

extracellular K+ concentration [124, 140]. Such an increase in extracellular K+ can be 

sufficient to instigate seizures [206]. Abnormal astroglial K+ buffering, at least in part, is 

linked to a significant down-regulation of inward rectifier Kir4.1 channels. Here, decreases 

in Kir4.1 current density and protein content have been found in astrocytes from the human 

sclerotic CA1 hippocampal area [24, 93, 94]. Genetic deletion of KCNJ10 gene encoding 

Kir4.1 channel specifically from astroglia resulted in impaired K+ buffering, depolarisation 

of astrocytes, motor impairments and early death [59]. Other studies confirmed this finding 

by demonstrating that deletion of Kir4.1 channels induces epileptiform symptoms in animals 

[196]. Mutations of KCNJ10 gene in humans are associated with the development of 

SeSAME syndrome (also called EAST syndrome), an autosomal recessive disorder 

characterised by epilepsy, ataxia, sensorineural deafness, wasting renal tubulopathy, mental 

retardation and electrolyte imbalance [22, 182]. Whether the modifications of Na+/K+ 

ATPase (NKA), another critical component of astroglial K+ buffering (NKA is primarily 

responsible for K+ uptake, whereas Kir4.1 channels for K+ release and shuttling back to 

neurones [29, 114]) contribute to SeSAME, it remains to be explored. One of the forms of 

migraine, the familial hemiplegic migraine type 2, is however associated with loss-of-

function mutation of astroglial specific α2 subunits of NKA [39]. Considering fundamental 

similarities of pathogenesis of migraine and epilepsy we may expect some abnormalities of 

astroglial NKA in the later pathology.

Epileptic astrocytes also demonstrate compromised glutamate uptake and homeostasis [51]. 

Deletion of the astroglial EAAT2 glutamate transporter results in an epileptiform phenotype 

with lethal spontaneous seizures, increased susceptibility to acute cortical injury and 

seizures after administration of sub-convulsive doses of pentylenetetrazole [202]. Similarly, 

seizures and epileptiform phenotype were triggered by pharmacological inhibition of EAAT 
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by intracerebroventricular injections of DL-threo-beta-benzyloxyaspartate [58]. Down-

regulation of glutamine synthetase was also linked to epilepsy through affecting inhibition in 

neuronal networks [151]. Animals subjected to long-lasting pharmacological blockade of 

glutamine synthetase demonstrated seizures [20, 224], whereas levels of glutamine 

synthetase were found to be significantly decreased in the human hippocampus and 

amygdala of patients with temporal lobe epilepsy [64]. Finally, loss-of-function mutations of 

glutamine synthetase induced severe seizures [87]. Astrocytes can also contribute to 

pathogenesis of epilepsy through anomalous adenosine homeostasis, resulting from modified 

expression of the astroglia-specific adenosine kinase, which is the key enzyme for adenosine 

turnover in the CNS [10, 23]. Expression of adenosine kinase is high in tissues from subjects 

with pharmacologically refractory temporal lobe epilepsy [10, 11, 128]. Increase in 

expression and activity of adenosine kinase diminishes the availability of adenosine, thus 

increasing neuronal network excitability and increasing probability of seizures [117, 118].

7.12 Epilogue

Since the inception of neurobiology, we have had a conceptual roller coaster ride in regards 

to the role of neuroglia in pathology of the brain. Two centuries ago our founding fathers of 

gliology had a clear vision on the active role of glia, i.e. glia is more than putty and has 

prominent roles in pathophysiology of the brain. Awkwardly, the twentieth century brought a 

different view where starring role has been solely played by neurones. This dominant 

neurono-centric approach has been challenged by the resurgence of neurogliopathology in 

the past 20 years. While we here presented the astrocyte-centric view of the brain pathology, 

we surely support the notion that it is the interaction between neurones and glia that 

underlies physiology and pathology of the brain. These two major cellular constituents 

interact, so that perturbing one will affect the other. Thus, only intellectually acceptable 

approaches to grapple with the management of the brain diseases will be those that have 

gestalt assets.
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Fig. 7.1. 
Principles of astrogliopathology. Astrocytes undergo several types of morpho-functional 

changes in the brain pathology (see text for details). AD, Alzheimer’s disease; ALS, 

amyotrophic lateral sclerosis; FTD, fronto-temporal dementia
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