Skip to main content
. 2020 Mar 2;58(5):1031–1045. doi: 10.1007/s11517-020-02147-3

Table 3.

Classification results of 5 DCNN classifiers trained on 256 × 256 patch size for each cross validation in 3 different testing folds

Classification results for 4 classes
Index (avg. on 4 classes) Fold #1 Fold #2 Fold #3 Average
VGG19 Recall 0.61 0.83 0.51 0.65
Precision 0.61 0.84 0.51 0.66
F1-Score 0.61 0.83 0.50 0.65
MCC 0.17 0.56 − 0.05 0.23
MobileNetV2 Recall 0.86 0.85 0.87 0.86
Precision 0.85 0.85 0.87 0.86
F1-Score 0.85 0.85 0.87 0.86
MCC 0.67 0.66 0.68 0.67
ResNet50 Recall 0.84 0.86 0.60 0.77
Precision 0.85 0.86 0.64 0.78
F1-Score 0.84 0.86 0.60 0.58
MCC 0.65 0.68 0.10 0.36
InceptionV3 Recall 0.87 0.87 0.87 0.87
Precision 0.86 0.87 0.87 0.87
F1-Score 0.87 0.87 0.87 0.87
MCC 0.69 0.69 0.70 0.70
GoogLeNet Recall 0.99 0.98 0.98 0.98
Precision 0.98 0.98 0.99 0.98
F1-Score 0.98 0.99 0.99 0.98
MCC 0.97 0.96 0.97 0.97