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Abstract
Purpose To develop and validate an integrated model for discriminating tumor recurrence from radiation necrosis in
glioma patients.
Methods Data from 160 pathologically confirmed glioma patients were analyzed. The diagnostic model was developed in a
primary cohort (n = 112). Textural features were extracted from postoperative 18F-fluorodeoxyglucose (18F-FDG) positron
emission tomography (PET), 11C-methionine (11C-MET) PET, and magnetic resonance images. The least absolute shrinkage
and selection operator regression model was used for feature selection and radiomics signature building. Multivariable logistic
regression analysis was used to develop a model for predicting tumor recurrence. The radiomics signature, quantitative PET
parameters, and clinical risk factors were incorporated in the model. The clinical value of the model was then assessed in an
independent validation cohort using the remaining 48 glioma patients.
Results The integrated model consisting of 15 selected features was significantly associated with postoperative tumor
recurrence (p < 0.001 for both primary and validation cohorts). Predictors contained in the individualized diagnosis
model included the radiomics signature, the mean of tumor-background ratio (TBR) of 18F-FDG, maximum of TBR
of 11C-MET PET, and patient age. The integrated model demonstrated good discrimination, with an area under the
curve (AUC) of 0.988, with a 95% confidence interval (CI) of 0.975–1.000. Application in the validation cohort
showed good differentiation (AUC of 0.914 and 95% CI of 0.881–0.945). Decision curve analysis showed that the
integrated diagnosis model was clinically useful.
Conclusions Our developed model could be used to assist the postoperative individualized diagnosis of tumor recurrence in
patients with gliomas.
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Introduction

Glioma is the most common and aggressive malignant brain
tumor in adults [1]. The accurate identification of tumor re-
currence in patients with gliomas is crucial for selecting treat-
ment strategies to provide better therapeutic management.
Early and accurate postoperative knowledge of tumor recur-
rence can provide valuable information for determining adju-
vant therapies.

Previous studies revealed that 18F-fluorodeoxyglucose
(18F-FDG) [2, 3], 11C-methionine (11C-MET) [4], 18F-
fluoroethyl-L-tyrosine (18F-FET) [5, 6], and 11C-choline [7]
PET, along with MRI, can differentiate between tumor recur-
rence and radiation necrosis with various levels of diagnostic
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efficiencies [8, 9]. However, conventional hybrid PET/
MRI studies did not fully perform deep mining of the
intrinsic features of the images, which could be further
investigated using advanced methodology in a larger
cohort [8–11].

Radiomics has attracted increased attention in recent
years as it has the potential to improve the accuracy of
recurrence predictions in oncology [12–15]. The appli-
cation of radiomics enables parallel investigation of
multiple imaging features and enables high-throughput
mining of quantitative image features from standard-of-
care medical imaging to improve diagnostic, classifica-
tion, prognostic, and predictive accuracy, providing a
powerful tool in modern medicine [12, 16–18].
Therefore, the aim of this study was to develop and
validate an integrated model that incorporated features
from PET (with both 18F-FDG and 11C-MET) and MRI
images, along with clinical risk factors for individual
discriminating tumor recurrence from radiation necrosis
in glioma patients.

Materials and methods

Patients

For this retrospective analysis, ethical approval was obtained,
and the informed consent requirement was waived by our
institutional reviewing board. Selection of the cohort followed
an evaluation of the institutional database in Beijing Tiantan
Hospital for medical records from April 2015 to March 2018
to identify patients with cerebral gliomas who underwent sur-
gical resection. The inclusion and exclusion criteria are as
follows: inclusion criteria: (1) patients who underwent surgery
for cerebral gliomas, (2) pathologically confirmed cerebral
gliomas, (3) postoperative MRI (including contrast-enhanced
T1-weighted imaging) and PET (including both 18F-FDG and
11C-MET PET) were performed (the time between MRI and
PETscans was less than 2 weeks), (4) postoperative radiother-
apy received with or without chemotherapy, and (5) interview
or telephone follow-up information available; exclusion
criteria: (1) preoperative central nervous system disease of
other kinds, (2) unknown histological grade, and (3) loss of
contact post-operation/patient did not return for postoperative
procedures. Those patients who satisfied each inclusion or
exclusion criterion were identified for the whole cohort and
were further assigned to either the primary cohort or validation
cohort randomly.

Treatment and follow-up

Gross total resection (GTR) was defined as there was no vis-
ible contrast enhancement on postoperative MR images

within 48 h of surgery for contrast-enhanced tumors,
or all the abnormal hyperintense changes on preopera-
tive MR images for tumors not demonstrating contrast
enhancement [19]. The postoperative adjuvant treatment
was radiation therapy alone or concomitant temozolo-
mide administration with fractionated radiotherapy,
followed by up to six cycles of adjuvant temozolomide.
Follow-up visit, MRI, and telephone interviews were
conducted periodically after surgery with a minimum
follow-up duration of 3 months after the completion of
chemoradiotherapy. Tumor progression and radiation ne-
crosis were defined according to the criteria in a previ-
ous study [20]. The overall follow-up duration of the
study was 40 months, between May 2015 and
September 2018. Accordingly, 118 patients (73 males
and 45 females, mean age 44.48 ± 10.32 years with a
range of 16 to 66 years) had tumor recurrence, and 42
patients (23 males and 19 females, mean age 44.74 ±
12.13 years with a range of 24 to 74 years) were identified as
having radiation necrosis.

Data assignment and MR and PET imaging

Of the 160 patients, 70% (112 patients) were assigned to the
primary cohort by stratified sampling, including 83 cases of
tumor recurrence and 29 cases of radiation necrosis; the re-
maining 30% (48 patients) were selected for the validation
cohort with 35 cases of tumor recurrence and 13 cases of
radiation necrosis.

MR images were obtained from GE 3.0T scanners
(Genesis Signa and Signa HDe) and Siemens 3.0T scan-
ners (Trio Tim and Verio). Post-contrast images were
acquired immediately after injection of the contrast
agent. The interval between contrast injection and the
start of contrast-enhanced T1-weighted image acquisi-
tion was always 75–85 s. Postoperative MR scans for
determining the extent of resection were performed
within 72 h of this procedure, and the radiological pa-
rameters were maintained in accordance with the preoperative
scans.

18F-FDG and 11C-MET PET images were acquired using a
PET/CTscanner (Elite Discovery, GEHealthcare, USA) using
a 5-mm axial resolution and full-width-at-half-maximum at
the center of the field of view of 4 mm. Imaging data were
reconstructed into 30 axial planes with a slice thickness of
5 mm and a 192 × 192 image matrix. All patients underwent
18F-FDG or 11C-MET PET scans according to the same pro-
tocol. 18F-FDG was intravenously injected at a dose of 3.7
MBq/kg and whole-brain image acquisition was started
60 min later. For 11C-MET PET, 555–740 MBq of 11C-MET
was intravenously injected and whole-brain imaging was
started 10 min later. Subjects were scanned in the supine po-
sition and instructed to remain completely quiet throughout
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the scanning procedure. The scanning times for both 18F-FDG
and 11C-MET PET were 8–10 min. Postoperative PET scans
were performed according to the onset of worsening
symptoms of the patients after operation, and the time
interval between 18F-FDG and 11C-MET PET was at
least 2 days in order to eliminate the potential biologi-
cal radiotracer crossover effect.

Image pre-processing

PET and MR images with different resolutions were
resampled and normalized to the same dimensions and gray-
scale level. The PET and MR images were not resampled
simultaneously, but separately; and the resolution of PET im-
ages and MR images was not used. In order to minimize the
loss of information, we separately perform image group fea-
ture extraction on them. The standardization process is carried
out for the statistical analysis of the omics characteristics. For
all 160 glioma patients, texture analysis was applied to their
MR and PET (18F-FDG and 11C-MET) images using an in-
house texture analysis software, called AnalysisKit (GE
Healthcare, China). Contrast-enhanced T1WI, FLAIR, and
PET (18F-FDG and 11C-MET) data were retrieved from the
institution archive in Beijing Tiantan Hospital for the texture
analysis herein. By using T1 contrast-enhanced (lesion
showed contrast enhancement) or FLAIR (lesion without con-
trast enhancement) MR images as the reference modality of
the delineation, the regions of interest (ROI) of the lesion for
each slice of images were delineated manually by two expe-
rienced neuroradiologists. For each patient, the lesion mask
(ROIs of the lesion) was combined to generate the final ROI
for further texture analysis. The patient information was hid-
den during this process using ITK-SNAP software [21]. The
image biomarker standardization initiative (IBSI) was
regarded as reference and taken into consideration in most of

the data processing, images feature, and biomarker selection
procedure [22].

Two physicians performed ROI delineation for each patient
and obtained two sets of radiomics features. In order to obtain
a relatively stable integrated radiomics-based model, we cal-
culated the relatively stable radiomics by calculating the intra-
class coefficient correlation (ICC) index. A total of 1188 (396
× 3) imaging ensembles were obtained for the three sequences
of FDG, MET, and MR images, and the characteristics
of ICC > 0.8 were retained, which yielded a relative
high inter-observer variability in the segmented tumor
volume.

The texture analysis–based 3D ROIs are reported in the
Supplemental Data (Appendix 1). A flow chart of the analysis
process used in the present study is shown in Fig. 1. All tex-
ture features were standardized and normalized with a regres-
sion model to remove error discrepancies introduced using
different scanning instruments and methods.

Feature selection and radiomics signatures

The least absolute shrinkage and selection operator (LASSO)
method, which is suitable for the regression of high-
dimensional data [23], was used to select the most useful
predictive features from the primary data set. A radiomics
score (rad-score) was calculated for each patient via a linear
combination of selected features that were weighted by their
respective coefficients. For the model with three imaging mo-
dalities (model[FDG+MET+MRI]), the performance of a specific
radiomics signature for predicting tumor recurrence was first
evaluated in the primary cohort and then confirmed in the
validation cohort using an independent t test. Then, we com-
pared the diagnostic efficiency of the radiomics signature be-
tween models with three modalities (model[FDG+MET+MRI])

Fig. 1 Schematic diagram showing the image analysis and model
building processes. The abnormal signal region of 18F-FDG, 11C-MET,
and MRI images was firstly segmented manually, followed by use of a
feature extraction algorithm. Then, selection of image features and

clinical factors was performed. Finally, the radiomics signature and
patient features were applied for diagnostic evaluation to achieve
personalized discrimination of tumor recurrence from radiation necrosis
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and two modalities (model[FDG+MET], model[FDG+MRI], and
model[MET+MRI]).

For all radiomics features, after obtaining 912 (FDG 303;
MET 297; MRI 312) features with high consistency, since the
features do not satisfy the normality, we use Spearman’s rank
correlation coefficient redundancy analysis. The Spearman
correlation coefficient takes a value of 0.9; that is, for all
912 features, a two-two correlation calculation is performed.
When the coefficient r ≥ 0.9, the system will randomly delete
one feature and retain another feature. In the end, there are 354
radiomics features; that is, the dimensions of the entire process
feature range from 912 to 354.

Integrated diagnosis model

The integrated model included patient features (age, gender,
and body height and weight), contrast enhancement (+/−), the
maximum of tumor-background ratio (TBRmax) and the mean
of tumor-background ratio (TBRmean) of both

18F-FDG and
11C-MET PET images, and tumor grade. Patient features and
the radiomics signature were applied to develop an integrated
diagnostic model for tumor recurrence using LASSO binary
logistic regression analysis in the primary cohort. Similarly, an
integrated score (int-score) was calculated for each patient via
a linear combination of selected features that were weighted
by their respective coefficients. Decision curve analysis was
conducted to determine whether the model is clinically useful
by quantifying the net benefits at different threshold probabil-
ities in the validation cohort [24].

Cross-validation

To improve the performance of the integrated model, a tenfold
cross-validation of the model was carried out in the study. A
lot of features were improved in the regularized L1 logistic
regression with penalty term. As expressed in the following
equation,

L wð Þ ¼ 1

m
∑
m

i¼1
ln 1þ exp β � x ið Þ

� �� �
−y ið Þ β � x ið Þ

� �h i
þ λ

1

2
βk k1

‖β‖1 was the penalty term, also expressed as ‖β‖1 = |β1| +
|β2| +… + |βp|. L(w) was the loss function.

For better performance of the integrated model, the best λ
was obtained during the cross-validation procedure. Five in-
dependent sub-cohorts were divided in the training cohort,
and four of which were applied for the model fitting; the other
one sub-group was applied for the validation cohort. With 5
times repetition, each sub-group was treated as validation co-
hort. And finally, the λ was gained in the cross-validation set.
And the results were displayed with such regularized L1 lo-
gistic regression [25]. The cross-validation procedure was car-
ried out using R Studio software (version 1.2.1335).

Statistical analysis

Statistical analysis was performed using R Studio soft-
ware (version 1.2.1335) [26]. LASSO binary logistic
regression was performed using the “glmnet” package.
Multivariate binary logistic regression and diagnosis
modeling were performed using the “stats” package.
Decision curve analysis was performed using the
“DecisionCurve” function.

The differences in patient features between patients with
tumor recurrence and radiation necrosis in both the primary
and validation cohorts were assessed by the independent
sample t test or Mann-Whitney test according to the
data distribution type. The chi-squared test was used
to compare the significance of the differences between
categorical variables. The same statistical analysis was
performed to assess the difference between the two co-
horts, where the tumor recurrence and radiation necrosis
groups were evaluated separately. The diagnostic perfor-
mance of models was evaluated using the receiver op-
erating characteristic (ROC) curve. The statistical signif-
icance levels were all two-sided; the statistical significance
was set at p < 0.05.

Results

Clinical characteristics

From April 2015 to March 2018, there are 1562 patients
with cerebral gliomas who underwent surgical resection
in our institute. In total, 160 patients were identified for
the whole cohort in the present study according to the
inclusion and exclusion criteria, and were further
assigned to either the primary cohort or validation co-
hort randomly (Fig. 2). The characteristics of the pa-
tients in the primary and validation cohorts are shown
in Table 1. The rate of tumor recurrence in the primary
and validation cohorts was 74.1% and 72.9%, respec-
tively; this difference was not significant (p = 0.875).
In addition, there were no significant differences in the
patient features between the primary and validation co-
horts, either within the tumor recurrence cohort or in
the radiation necrosis cohort (Supplemental Tables 1-3).
The difference between the rad-scores of the tumor recurrence
and radiation necrosis patients in the primary cohort was sig-
nificant (p < 0.001), which was also confirmed in the valida-
tion cohort (p < 0.001).

Representative MRI and PET images indicating the
features of tumor recurrence and radiation necrosis are
shown in Fig. 3. Of the texture features, 396 features
were reduced to 20 potential features considering 112
patients in the primary cohorts (Supplemental Figure 1A).
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Calculation of the rad-score was performed using the formula
shown as follows:

Radiomics score (rad-score) calculation

Rad score ¼ −1:161464−0:111113

�Quantile0:025−0:187241� RMS−0:154078

�ClusterProminence AllDirection offset4 SD

þ0:007201� ClusterShade angle0 offset7þ 0:266849

�ClusterShade angle135 offset7þ 0:202809

�Correlation AllDirection offset4 SDþ 0:150674

�Correlation angle135 offset4−0:119975

�Correlation angle45 offset7−0:014077

�HaralickCorrelation AllDirection offset4 SD

þ0:137885� Inertia AllDirection offset7 SD

−0:048716� LongRunHighGreyLevelEmphasis angle135 offset7

þ0:222189� ShortRunLowGreyLevelEmphasis angle90 offset7

−0:025067� RelativeDeviation−0:254328� stdDeviation

þ0:102539� GLCMEnergy angle45 offset7þ 0:014467

�HaralickCorrelation AllDirection offset1 SDþ 0:111329

�HaralickCorrelation AllDirection offset7 SD−0:112513

�Sphericity−0:211177� Correlation angle135 offset7

þ0:074150� HaralickCorrelation AllDirection offset7 SD

Diagnostic performance of radiomics signature

With a differential diagnosis threshold value of 0.710 for tumor
recurrence and radiation necrosis, the model[FDG+MET+MRI]

yielded an AUC of 0.932 (95%CI, 0.887–0.986) in the primary
cohort and 0.910 (95% CI, 0.855–0.973) in the validation co-
hort (Fig. 4a, b). In clinical diagnostic practice, this model dem-
onstrated good diagnostic performance in distinguishing tumor
recurrence in both primary and validation cohorts (Fig. 5a, b).

In addition, we further investigated and compared other three
types of models using two of the three imaging modalities, i.e.,
model[FDG+MET], model[FDG+MRI], and model[MET+MRI]. The re-
sults of evaluation of the diagnostic performance by ROC anal-
ysis are presented in Table 2. The diagnostic accuracy of
model[FDG+MET+MRI] (AUC = 0.932; 95% CI = 0.887–0.986)
was significantly higher than that of model[MET+MRI] (AUC =
0.811; 95% CI = 0.711–0.912). However, although the AUC of
model[FDG+MET+MRI] was higher than those of the other two
types of models (model[FDG+MET]: AUC = 0.898; 95% CI =
0.841–0.955 and model[FDG+MRI]: AUC = 0.891; 95% CI =
0.823–0.958), the differences were not statistically significant.
In addition, the diagnostic performance of the models based on
18F-FDG, 11C-MET, and MRI, respectively, is provided in
Table 3.

Integrated diagnosis model

Combined with clinical characteristics, we further developed
an integrated diagnosis model by logistic regression. Finally,
the age, TBRmean of

18F-FDGPET, TBRmax of
11C-MET PET,

and other 12 textual features were shown to be significant
contributors for discriminating tumor recurrence from radia-
tion necrosis (Supplemental Figure 1B). These features were
included in the integrated score (int-score) calculation, along
with the int-score distribution (Fig. 6).

Integrated score (int-score) calculation

Int−score ¼ 1:55460−0:06206� ageþ 0:11767� TBRmean

þ1:17543� TBRmax þ 0:13864

�ClusterProminence AllDirection offset4 SD−0:24507

�ClusterShade angle135 offfset7−0:19557

�InverseDifferenceMoment AllDirection offset4 SD−0:18425

�InverseDifferenceMoment AllDirection offset7 SD−0:11953

�InverseDifferenceMoment angle135 offset4−0:16515

�ShortRunEmphasis AllDirection offset4 SD−0:01222

�ClusterProminence angle45 offset7−0:29295

�HaralickCorrelation AllDirection offset7 SDþ 0:20089

�ShortRunHighGreyLevelEmphasis AllDirection offset1 SD

þ0:03032� Quantile0:025þ 0:12080

�Correlation angle45 offset7þ 0:02933

�ShortRunHighGreyLevelEmphasis AllDirection offset4 SD

Fig. 2 Flow chart of the selection of patients with cerebral gliomas who
underwent surgical resection from April 2015 to March 2018. Based on
the inclusion and exclusion criteria, a total of 160 glioma patients were
enrolled in this study as the whole cohort and were further distributed
randomly to either the primary cohort or validation cohort to explore and
verify the discrimination performance of the model between tumor
recurrence and radiation necrosis
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The difference in the int-score values between the tumor
recurrence and radiation necrosis patients in the primary co-
hort was significant (p < 0.001), which was then confirmed in
the validation cohort (p < 0.001). Patients with tumor

recurrence generally had higher int-score values in both the
primary and validation cohorts (Table 1).

Notably, the integrated model yielded the largest AUC of
0.988 (95% CI, 0.975–1.000) in the primary cohort and 0.914

Fig. 3 Representative MRI and PET images showing features of tumor
recurrence and radiation necrosis, including images from T1-weighted
(T1WI), T2-weighted (T2WI), and contrast-enhanced T1W1 MRI, 18F-

fluorodeoxyglucose (18F-FDG) and 11C-methionine (11C-MET) PET, and
pathological analyses

Table 1 Summary of the patient data in the primary and validation cohorts (n = 160) used in the study

Primary cohort (n = 112) Validation cohort (n = 48)

Tumor recurrence Radiation necrosis p* Tumor recurrence Radiation necrosis p*

Age, mean ± SD (years) 43.87 ± 9.90 46.45 ± 11.61 0.251 45.94 ± 11.26 40.92 ± 12.84 0.193

Gender, no. (%) 0.878 0.571

Male 50 (60.2) 17 (58.6) 22 (62.9) 7 (53.8)

Female 33 (39.8) 12 (41.4) 13 (37.1) 6 (46.2)

MRI contrast enhancement 0.095 0.323

Yes 76 (91.6) 23 (79.3) 32 (91.4) 10 (76.9)

No 7 (8.4) 6 (20.7) 3 (8.6) 3 (23.1)
18F-FDG uptake

TBRmax 4.15 ± 2.41 2.28 ± 2.29 < 0.001 4.53 ± 2.96 2.32 ± 1.16 0.012

TBRmean 2.83 ± 1.38 1.54 ± 1.21 < 0.001 3.04 ± 1.75 1.63 ± 0.73 0.008
11C-methionine uptake

TBRmax 4.17 ± 2.62 1.74 ± 1.05 < 0.001 4.15 ± 1.53 2.05 ± 2.14 < 0.001

TBRmean 2.81 ± 2.12 1.23 ± 0.62 < 0.001 2.65 ± 1.07 1.33 ± 1.06 < 0.001

WHO grade, no. (%) 0.292 0.828

II 38 (45.8) 18 (62.1) 11 (31.4) 5 (38.4)

III 21 (25.3) 6 (20.7) 14 (40.0) 4 (30.8)

IV 24 (28.9) 5 (17.2) 10 (28.6) 4 (30.8)

Radiomics score, mean ± SD 1.49 ± 0.52 0.19 ± 0.78 < 0.001 1.46 ± 0.55 0.43 ± 0.68 < 0.001

Integrated score, mean ± SD 2.27 ± 1.53 − 0.52 ± 0.95 < 0.001 2.20 ± 1.18 −0.09 ± 1.76 < 0.001

*p values were derived from the univariable association analysis between clinical variables

SD, standard deviation; MRI, magnetic resonance imaging; FDG, fluorodeoxyglucose; TBR, tumor-to-background ratio
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(95% CI, 0.881–0.945) in the validation cohort (Fig. 4c, d).
With a threshold of 0.712, the integrated model demonstrated
better diagnostic performance between prediction and obser-
vation than that of the model[FDG+MET+MRI] (Fig. 5c, d).
Compared with the predictive models derived only from tex-
tural features, the integrated model was significantly better at
distinguishing postoperative tumor recurrence from radiation
necrosis in patients with gliomas.

The decision curve for the integrated diagnosis model is
compared with those of the other models (based only on
radiomics signatures) in Fig. 7. The decision curve analysis
showed that if the threshold probability of the patients was >
0.15, performing tumor recurrence diagnosis using the inte-
grated diagnostic model added more benefit than either the
treat-all-patients scheme or the treat-none scheme; with the
optimal threshold of 0.741, the patients would receive the
most benefit from clinical treatment.

Discussion

In the present study, we developed and validated a radiomics
signature–based diagnostic model for individualized discrim-
ination of postoperative glioma recurrence from radiation

necrosis. Incorporating the clinical factors and radiomics sig-
natures into an integrated model could provide better assis-
tance for the postoperative diagnosis of tumor recurrence.

The accurate differentiation between tumor recurrence and
radiation necrosis in postoperative follow-up is crucial for
decision-making regarding further clinical treatment, and has
been investigated in many studies by comparing quantitative
imaging parameters and advanced imaging processing
methods [27–30]. To improve the diagnostic efficiency, the
synergetic effect of multiparametric PET and MRI parameters
was highlighted in previous studies. This indicates that the
integrated 18F-FET or 18F-FDG PET/MRI analysis could as-
sist in the management of glioma patients by timely and con-
clusive recognition of true tumor recurrence [9, 10, 31]. Being
embedded in clinical practice, radiomics could provide a com-
prehensive quantification of imaging information. Papp et al.
[32] proposed that survival prediction could be improved
using computer-supported predictive models considering
in vivo, ex vivo, and patient features.

Our integrated model demonstrated adequate discrimina-
tion between tumor recurrence and radiation necrosis in both
primary and validation cohorts. As the difference between
AUC values of the primary and validation cohorts was not
statistically significant, we propose that the integrated model

Fig. 4 Sensitivity versus 1-
specificity for the primary (a) and
validation (b) cohorts using the
diagnosis model based only on
radiomics signatures and primary
(c) and validation (d) cohorts for
the integrated diagnosis model
with both clinical features and
radiomics signatures. The area
under the curve (AUC) values are
given, along with the threshold
(sensitivity, specificity) for each
case
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was robust for diagnosis and could be applied in the validation
cohort. This suggests that multidimensional individual infor-
mation might be a more promising approach for improving

clinical management of glioma patients [33, 34]. Clinical phy-
sicians and radiologists could use our integrated diagnostic
model (with radiomics signatures and clinical variables

Fig. 5 Diagnostic performance
for the model based on only
radiomics signature derived from
18F-FDG, 11C-MET, and MRI.
Radiomics score for the primary
(a) and validation (b) cohorts.
Integrated score for the primary
(c) and validation (d) cohorts. The
diagrams show the differentiation
ability of each model in terms of
the agreement between the
predicted risk and observed
outcomes of tumor recurrence.
The dotted line represents the
threshold for tumor recurrence
diagnosis: 0.895 and 0.905 for the
radiomics score and integrated
score, respectively

Table 2 Diagnostic performance
of textural features in models with
two imaging modalities

Modalities 18F-FDG + 11C-MET 18F-FDG + MRI 11C-MET + MRI

Cohort Primary Validation Primary Validation Primary Validation

AUC 0.898 0.891 0.891 0.863 0.811 0.806

Accuracy 0.813 0.792 0.857 0.812 0.759 0.688

Sensitivity 0.781 0.750 0.854 0.833 0.780 0.722

Specificity 0.900 0.917 0.867 0.750 0.700 0.583

Threshold 0.749 0.711 0.740

Feature number 13 15 17

18 F-FDG, 18 F-fluorodeoxyglucose; 11 C-MET, 11 C-methionine; MRI, magnetic resonance imaging; AUC, area
under the curve
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available postoperatively) to perform an individualized diag-
nosis of the risk of glioma recurrence, which follows the cur-
rent trend of personalized medicine [16, 35].

The proposed use of the integrated diagnostic model
is assisting clinical decision-making for postoperative
glioma patients during the follow-up process. However,
the recurrence diagnosis could not provide a specific
level of discrimination, which is necessary for clinical
practice [36, 37]. The decision curve analysis used to

assess whether the radiomics-based integrated model
could assist clinical treatment decisions provides further
information about clinical consequences based on
threshold probability, and quantifies the net benefit
[35, 36].

Performance differences in between single modalities
revealed that the diagnostic model based on only 18F-
FDG PET image features had higher AUC that sug-
gested a better differential diagnosis performance,

Table 3 Diagnostic performance
of textural features in single-
modality model

Modalities 18F-FDG PET 11C-MET PET MRI

Cohort Primary Validation Primary Validation Primary Validation

AUC 0.868 0.810 0.767 0.750 0.699 0.622

Accuracy 0.784 0.714 0.721 0.735 0.694 0.691

Sensitivity 0.744 0.694 0.732 0.750 0.683 0.628

Specificity 0.897 0.769 0.690 0.692 0.744 0.651

Threshold 0.782 0.755 0.739

Feature number 8 5 5

18 F-FDG, 18 F-fluorodeoxyglucose; 11 C-MET, 11 C-methionine; MRI, magnetic resonance imaging; AUC, area
under the curve

Fig. 6 Integrated scores (int-
score) distribution for all patients
in the primary (a) and validation
(b) cohorts, where the tumor re-
currence (red bar) and radiation
necrosis (green bar) confirmed by
pathological results are indicated
in different colors
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followed by models based on 11C-MET and MRI in
turn. Furthermore, when the combined differentiation
power of two-modality models was considered, the
model[FDG+MET] still yielded a superior differential abil-
ity for tumor recurrence, compared with the model[FDG+
MRI] and model[MET+MRI]. As the most widely used ra-
diotracer in clinical practice, 18F-FDG biological metab-
olism may incorporate more invisible image information
of lesions compared with 11C-MET and MRI in the
present study, which could potentially strengthen the
crucial role of clinical utility of 18F-FDG PET. This
information would be useful for clinicians to help opti-
mize future diagnostic protocols for gliomas.

The repeatability radiomics model is of an important
issue that could be affected by several factors, and im-
age segmentation approaches are a common influencing
factor. In our study, the ROIs were delineated manually
that may not be favored in radiomics models. Although
automated segmentation solutions may provide better
support for the repeatability of radiomics results, ac-
counting for clinical information not present in the im-
ages is beyond the capabilities of the automated meth-
od. In addition, the method to be chosen also depends
on tumor type, involvement of neighboring structures,
and image features [38]. Therefore, there is a need for
active radiologist involvement in the segmentation pro-
cess for both automated and semi-automated methods;
moreover, automatically generated contours can be used
only as a starting point for lesion delineation by the
physician who may decide to modify them according
to his/her knowledge [39].

The histological grade of the gliomas has been re-
ported to be a predictor of patient prognosis [40–42].
Unexpectedly, the addition of the histologic grade to
our integrated discrimination model did not improve
the diagnostic performance, which may be attributed to
the int roduc t ion of sampl ing bias due to the
heterogenicity of glioma tissue, which may decrease
the accuracy of the model. Therefore, the use of the
radiomics signature, age, and uptake parameters of
PET are recommended for tumor recurrence diagnosis
with satisfactory discrimination.

Although IDH1 mutation has remained an indepen-
dent favorable prognostic molecular marker for gliomas,
and is more objective and reliable than clinical criteria
[43, 44], all malignant gliomas with various molecular
characteristics have the possibility of recurrence after
operation. In the present study, the integrated model
could yield higher accuracy in tumor recurrence evalu-
ation without the assistance of glioma-related molecular
markers. Furthermore, it is speculated that the inclusion
of molecular markers into the model may further en-
hance its diagnosis power.

There are some limitations in the present study. First,
the sample size was relatively small for radiomics anal-
ysis, and further studies are required to verify the cur-
rent findings. Second, the radiation necrosis group was
relatively small for analysis, and the diagnostic thresh-
olds of the integrated model may be cohort-specific; the
results shall be carefully interpreted. Third, genetic char-
acteristics, such as IDH1 mutations, were not available
for the whole cohort. In addition, the whole cohort was
not divided by tumor histologic type for further stratifi-
cation. However, our integrated diagnostic model is ex-
pected to assist and facilitate individualized postopera-
tive discrimination of tumor recurrence from radiation
necrosis in glioma patients.

Conclusion

In conclusion, this paper presents an integrated model that
incorporates both patient features and radiomics signature.
The model presented can be conveniently used to facilitate
postoperative individualized discrimination of tumor recur-
rence in glioma patients.
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