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Abstract 

Background:  Neutrophil gelatinase-associated lipocalin (NGAL) is released from kidney tubular cells under stress as 
well as from neutrophils during inflammation. It has been suggested as a biomarker for acute kidney injury (AKI) in 
critically ill patients with sepsis. To evaluate clinical usefulness of urine NGAL (uNGAL), we post-hoc applied recently 
introduced statistical methods to a sub-cohort of septic patients from the prospective observational Finnish Acute 
Kidney Injury (FINNAKI) study. Accordingly, in 484 adult intensive care unit patients with sepsis by Sepsis-3 criteria, 
we calculated areas under the receiver operating characteristic curves (AUCs) for the first available uNGAL to assess 
discrimination for four outcomes: AKI defined by Kidney Disease: Improving Global Outcomes (KDIGO) criteria, severe 
(KDIGO 2–3) AKI, and renal replacement therapy (RRT) during the first 3 days of intensive care, and mortality at day 90. 
We constructed clinical prediction models for the outcomes and used risk assessment plots and decision curve analy-
sis with predefined threshold probabilities to test whether adding uNGAL to the models improved reclassification or 
decision making in clinical practice.

Results:  Incidences of AKI, severe AKI, RRT, and mortality were 44.8% (217/484), 27.7% (134/484), 9.5% (46/484), and 
28.1% (136/484). Corresponding AUCs for uNGAL were 0.690, 0.728, 0.769, and 0.600. Adding uNGAL to the clinical 
prediction models improved discrimination of AKI, severe AKI, and RRT. However, the net benefits for the new models 
were only 1.4% (severe AKI and RRT) to 2.5% (AKI), and the number of patients needed to be tested per one extra 
true-positive varied from 40 (AKI) to 74 (RRT) at the predefined threshold probabilities.

Conclusions:  The results of the recommended new statistical methods do not support the use of uNGAL in critically 
ill septic patients to predict AKI or clinical outcomes.
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Background
Neutrophil gelatinase-associated lipocalin (NGAL) has 
been studied extensively as a biomarker for detection 
and evolution of acute kidney injury (AKI) as well as out-
come [1, 2]. NGAL is a protein first found in neutrophil 

granules [3], but synthesized in numerous human tissues 
in addition to kidney epithelium—e.g., respiratory tract, 
stomach, and colon. All in  vivo functions of NGAL are 
not plausibly unraveled. It increases rapidly in serum and 
urine not only in conjunction with renal tubular injury, 
but also in bacterial infections, non-infectious systemic 
inflammatory response syndrome, and chronic and sys-
temic diseases without bacterial infection [4]. Conse-
quently, inflammation is considered a confounding factor 
hindering the routine use of NGAL as a biomarker of 
AKI in intensive care patients with sepsis [5–7].
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In a recent meta-analysis, urine NGAL (uNGAL) pre-
dicted septic AKI with an area under the receiver oper-
ating characteristic curve (AUC) of 0.90 [8], but the 
individual studies were rather small, the sample sizes 
varying between 45 and 168. Besides, generalizability of 
the meta-analysis may be questioned since 65% of the 
sepsis patients were from Asia. Furthermore, currently 
used statistical methods have several shortcomings: 
AUCs are not very suitable for evaluating the incremen-
tal value of biomarkers [9] or assessing clinical usefulness 
[10]. Newer reclassification methods may even make use-
less biomarkers appear applicable [11]. Although there 
is obvious need for better tools than urine output and 
serum creatinine for early detection and classification of 
AKI, the existing data on any kidney injury biomarker for 
AKI diagnosis, staging, prognosis, or treatment are inad-
equate [12].

We have previously tested the ability of uNGAL to pre-
dict AKI, renal replacement therapy (RRT), and 90-day 
mortality in a large non-selected cohort of 1042 adult 
intensive care patients [13]. Patients with sepsis com-
prised 46% of the study population. In comparison to 
the previous meta-analysis [8], this is by far the largest 
cohort of septic patients with uNGAL measurements. 
Since we did not report the septic patients separately, 
they could not be included in the meta-analysis [8]. We 
now extended our analyses to evaluate the usefulness of 
uNGAL in predicting AKI, RRT, and 90-day mortality in 
septic patients using more sophisticated statistical meth-
ods: risk assessment plot (RAP) [14] and decision curve 
analysis (DCA) [10]. Accordingly, we tested the hypothe-
sis that uNGAL improves the performance of clinical risk 
models for AKI, RRT, and 90-day mortality in a homoge-
neous and clinically important group of critically ill sep-
tic patients using these new statistical methods. We are 
not aware of a similar detailed analysis of uNGAL or its 
clinical usefulness in the literature.

Methods
Patients
We analyzed the urine of septic patients of this FINNAKI 
NGAL—substudy [13]. The Ethics Committee of the 
Department of Surgery in Helsinki University Hospital 
gave a nationwide approval for the FINNAKI study [15] 
with a deferred consent policy, confirmed by a written 
consent from each patient or his/her proxy.

Data
The patients of the original study [13] were prospectively 
screened for sepsis defined by the American College 
of Chest Physicians/Society of Critical Care Medicine 
(ACCP/SCCM) criteria [16]. To increase the generaliz-
ability of the results, we now reclassified these patients 

using the recent Third International Consensus Defini-
tions for Sepsis and Septic Shock (Sepsis-3) criteria [17]. 
We included patients fulfilling the criteria during the first 
3 days of intensive care.

We defined AKI according to Kidney Disease: Improv-
ing Global Outcomes (KDIGO) criteria including both 
plasma creatinine and urine output criteria [18]. Urine 
output was measured hourly and plasma creatinine 
daily. The last available plasma creatinine value from the 
preceding year up to 1  week before intensive care unit 
(ICU) admission was used as the baseline value. When 
not available, we estimated the baseline creatinine value 
using the Modification of Diet in Renal Disease equa-
tion assuming a glomerular filtration rate of 75  ml/
min/1.73  m2 [19]. We included data on AKI and RRT 
during the first 3 days of ICU stay, choosing the highest 
stage for the final KDIGO stage of each patient for the 
analyses. We obtained 90-day mortality data from the 
Finnish Population Register Centre.

Measurement of uNGAL
The urine samples were collected on ICU admission (0 h), 
at 12 and 24  h, and stored as described elsewhere [13]. 
The person who analyzed the samples in duplicate with 
NGAL ELISA Rapid Kit (BioPorto® Gentofte, Denmark) 
was blinded to patient records. The validated enzyme-
linked immunosorbent assay (ELISA) method has a good 
intra- and inter-assay precision [20] and a measurement 
range of 10–1000  ng/ml. For the analyses, values below 
10 ng/ml were registered as the lowest measurable value 
(10  ng/ml) and values above 1000  ng/ml as the highest 
measurable value (1000  ng/ml). For predictive calcula-
tions, we chose the first available uNGAL measurement 
(0, 12 or 24 h) for each patient.

Statistical analyses
We tested four different outcomes: (1) AKI by original 
KDIGO classification (KDIGO stages 1–3), (2) “severe” 
AKI (KDIGO stages 2–3), (3) RRT, and (4) 90-day mortal-
ity. To simulate clinical decision making, we constructed 
clinical risk models for these outcomes using clinical var-
iables available at the time of ICU admission. We tested 
associations of these variables with the outcomes using 
Mann–Whitney U, Chi square or Fisher’s exact test (with 
a two-sided p value), as appropriate. We conducted mul-
tivariable logistic regression analyses entering variables 
with the strongest associations (shown in Additional 
file 1: Table S1) simultaneously. We restricted the num-
ber of covariates to 1 per 8 dependent endpoints to avoid 
overfitting [21] and imputed missing values (Additional 
file 1: Table S1) as recommended [22]. To ensure that the 
assumptions for multivariable logistic regression were 
met, we checked the correlations between the variables 
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and conducted multiple regression analysis to rule out 
multicollinearity (Additional file  2). We used Hosmer–
Lemeshow test to evaluate model goodness of fit. There-
after, we added uNGAL to the clinical risk models and 
gained new risk models for the four outcomes (Addi-
tional file  3). We calculated AUCs with 95% confidence 
intervals (CIs) for uNGAL alone, for the clinical risk 
models, and for the new risk models including uNGAL. 
To evaluate the predictive value of uNGAL, we calculated 
category-free net reclassification improvement (cfNRI) 
[23] and integrated discrimination improvement (IDI) 
[24], and draw RAPs [14] for each outcome. We describe 
these metrics in detail in Additional file  4: Statistical 
methods.

We also conducted DCAs [10] for the outcomes to 
illustrate the net benefit of adding uNGAL to the clinical 
prediction models. DCA plots net benefit against thresh-
old probability. Net benefit delineates gained new true-
positive results without false-positive results and varies 
according to the chosen threshold probability, that is, the 
probability above which the patient is offered treatment 
(e.g., ICU admission). For example, with threshold prob-
abilities of 0, 1, or 0.1, we would admit all patients, none 
of the patients, or those having a risk of ≥ 10%, respec-
tively. A threshold probability is chosen according to the 
significance of false-negative versus false-positive results. 
Threshold probability of 0.1 means that we consider the 
harm of a false-negative result (denial of necessary ICU 
admission) 9 times (1–0.1/0.1) worse than a false-posi-
tive result (unnecessary ICU admission). For more seri-
ous outcomes, false-negative results are considered more 
harmful and the threshold lowered. Accordingly, for AKI, 
severe AKI, RRT, and 90-day mortality, we prospectively 
chose threshold probabilities of 0.3, 0.2, 0.1, and 0.05, 
respectively. We calculated test trade-offs to determine 
the minimum number of patients to be tested per one 
extra true-positive classification [25]. Finally, we per-
formed a sensitivity analysis excluding patients that did 
not have 0-h urine sample.

We present the data as medians with interquartile 
ranges (IQRs) or absolute numbers (percentage with 95% 
CIs). Statistical analyses were conducted using SPSS 22 
software (SPSS Inc., Chicago, IL, USA), MedCalc Statisti-
cal Software version 18 (MedCalc Software bvba, Ostend, 
Belgium; http://www.medca​lc.org; 2018) and R 3.4.3 (R 
Development Core Team, Vienna, Austria).

Results
We included 484 patients fulfilling the Sepsis-3 defini-
tion (Fig. 1). Table 1 presents the patient characteristics. 
Of AKI patients, 115/217 (53%) developed AKI on day 1, 
87/217 (40%) on day 2, and 15/217 (7%) on day 3. Of 46 
patients treated with RRT during the first 3 days in ICU, 

20 (43%) commenced RRT on the first ICU day, 19 (41%) 
on day 2, and 7 (15%) on day 3. The uNGAL measure-
ment used for prediction of outcomes was the 0-h sam-
ple in 460 (95%) of 484 patients, 12-h sample in 9 (2%), 
and 24-h sample in 15 (3%) patients. The first measured 
uNGAL was below the detection limit in 48 patients 
(10%) and above it in 110 patients (23%).

AUC​
The AUCs for uNGAL predicting AKI, severe AKI, and 
RRT during the 3 first days in ICU, and death by day 90 
are shown in Table 2. Adding uNGAL to the clinical risk 
model yielded statistically significant model improve-
ment for the outcomes AKI, severe AKI, and RRT 
(p < 0.05 for all), but not for 90-day mortality (Table 2).

cfNRI, IDI, and RAP
The combined cfNRI and IDI values indicate that the 
models changed to the right direction when uNGAL was 
added. The model improved most prominently for RRT 
(Table 2, Fig. 2c). RAPs showed variable effects with AKI 
and severe AKI (Fig. 2 a, b), a more sustained effect with 
RRT (Fig. 2c), but negligible improvement in 90-day mor-
tality prediction (Fig. 2d).

Decision curve analysis (DCA) and net benefit
At the pre-defined threshold probability of 0.3, there was 
a 2.5% (95% CI 0.2–4.6%) net benefit of adding uNGAL 
to the clinical AKI risk model (Fig.  3a). For severe AKI 
(threshold probability of 0.2) and RRT (threshold prob-
ability of 0.1), net benefits were 1.4% (0.4–4.1%, Fig. 3b) 
and 1.4% (0.1–2.8%, Fig. 3c), respectively. 90-day mortal-
ity prediction did not improve at threshold probability of 
0.05 (Fig. 3d). The test trade-offs (minimum patient num-
bers to be tested for one extra true-positive, reciprocal 
of net benefit) were 40 for AKI, 71 for severe AKI, and 
74 for RRT. Repeating the analyses excluding those 24 
patients who did not have the 0-h sample did not change 
the results (see Additional file 5).

Discussion
In this extended statistical analysis comprising 484 criti-
cally ill septic patients, we found that uNGAL alone pre-
dicts AKI poorly—not better than a clinical prediction 
model using data on ICU admission. Adding uNGAL to 
the clinical prediction model improved the prediction of 
AKI, severe AKI, and RRT slightly, but the magnitude of 
the improvement is not clinically meaningful. These find-
ings profoundly contradict the conclusions of the cur-
rent meta-analysis and do not support the usefulness of 
uNGAL in critically ill septic patients.

http://www.medcalc.org
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AUCs for uNGAL
In this study of sepsis patients, the first available uNGAL 
obtained in the ICU presented an AUC of 0.690 for AKI, 
resembling the AUC of 0.733 for the highest uNGAL of 
the first 24 h in 1042 non-selected ICU patients from the 
FINNAKI study [13]. Our result is in disagreement with 
the pooled AUC (0.90) of the 12 studies included in a 
recent meta-analysis evaluating performance of NGAL 
in septic patients [8]. Importantly, the individual stud-
ies in the meta-analysis by Zhang et al. [8] were small—
the largest one enrolled 168 patients. Generalizability of 
the meta-analysis may be questioned since nearly two-
thirds of a total of 1263 included study patients were 
from one country, China. Besides, two of the included 
studies (228 patients) were conducted in the emergency 
department—not in the ICU. Disease severity and preva-
lence of comorbidities like chronic kidney disease in the 
study population may differ from ours. According to 
the Quality Assessment of Diagnostic Accuracy Stud-
ies 2 (QUADAS-2) criteria, the risk of bias was not dealt 
properly in the majority of the individual studies [8]. Of 
the included studies, our results were comparable to the 
Danish study by Hjortrup and colleagues [26], which may 
result from similarities in case mix and care representing 

current clinical practice in high-income countries. In the 
present sepsis cohort, corresponding the original FIN-
NAKI NGAL—substudy [13], the point estimate AUC for 
uNGAL seemed to be best for prediction of RRT (AUC 
0.769). However, according to our results, uNGAL alone 
is not adequate to predict AKI, RRT, or 90-day mortality 
in septic patients.

Improvement of the clinical prediction model
Based on IDI values, adding uNGAL to clinical reference 
models resulted in improved prediction of the outcomes. 
IDI and cfNRI values are somewhat difficult to inter-
pret, but RAPs illustrate these metrics in patients with 
and without the event revealing model improvement or 
worsening across different risks of the event. The curves 
showed that model improvement varied depending on 
the risk of the event.

Clinical usefulness of uNGAL
The widely used and easily interpreted AUC plots the 
true-positive rate (sensitivity) against the false-positive 
rate (1 – specificity) giving us consecutive cut-offs for the 
predicted risk. To guide decision making in clinical prac-
tice, a cut-off for a biomarker (or a decision threshold) is 

Fig. 1  Study flowchart
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needed to divide patients to low- and high-risk groups, 
but such a value is not always reported in biomarker 
studies [8]. AUC enables comparison of the overall per-
formance of different tests for the same condition but 
does not tell us the ability of a marker to add value to a 
pre-existing risk prediction model or, if such is lacking, to 
clinical judgment.

We used DCA graph [10], which illustrates the net 
benefit of a model in a range of different threshold 
probabilities of the event. DCA enables the compari-
son of the clinical and the new model including NGAL. 
DCA graphs, especially of AKI and severe AKI, show 

that the increase of net benefit after adding uNGAL to 
the clinical risk model varies over the range of clini-
cally relevant threshold probabilities. The clinician 
chooses the optimal threshold probability, balancing 
between the harm of a false-positive and a false-nega-
tive classification. We chose decreasing threshold along 
with increasing severity of the event. Test trade-offs 
between 40 (for AKI) and 74 (for RRT), indicating min-
imum patient numbers to be tested for one extra true-
positive, are hardly acceptable as no specific preventive 
or curative treatment for AKI exists and the criteria for 
RRT initiation are still under investigation [27].

Table 1  Characteristics of 484 critically ill sepsis patients

Data available (of 484) N (%) or median [IQR]

Age (years) 484 65 [54–75]

Gender (male) 484 310 (64)

Baseline serum/plasma creatinine (µmol/l) 338 78 [62–95]

Co-morbidity

 Chronic obstructive pulmonary disease 476 51 (11)

 Hypertension 484 255 (53)

 Atherosclerosis 484 64 (13)

 Diabetes 484 117 (24)

 Systolic heart failure 484 64 (13)

 Chronic kidney disease 484 35 (7)

Admission type

 Emergency 482 465 (96)

 Surgical 484 123 (25)

Diagnostic group (APACHE II) 484

 Respiratory tract, non-operative 109 (23)

 Cardiovascular, non-operative 65 (13)

 Sepsis 64 (13)

 Gastrointestinal tract, operative 63 (13)

 Gastrointestinal tract, non-operative 36 (7)

 Neurological, non-operative 26 (5)

 Metabolic 23 (5)

 Cardiovascular, operative 23 (5)

 Other (< 4% each) 75 (15)

Other

 Need for vasopressor (in first 3 ICU days) 484 359 (74)

 Highest lactate (day of admission, mmol/l) 484 1.9 [1.4–2.9]

 Highest creatinine (day of admission, µmol/l) 476 88 [63–140]

 Cumulative diuresis (first 24 h, ml) 482 2042 [1300–2953]

 SOFA (highest score, points) 484 8 [6–11]

 SAPS II score (points) 484 40 [32–53]

 Mechanical ventilation 484 342 (71)

 Emergency surgery (< 1 week) 482 118 (24)

 Length of stay ICU (days) 484 4.0 [2.2–7.6]

 Length of stay hospital (days) 483 12 [7–21]
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Limitations and strengths
Some obvious limitations of the present study need to 
be considered. First, as this was a post-hoc analysis of 
a subgroup of septic patients from a larger FINNAKI 
NGAL study [13], we were not able to influence sam-
ple size. Thus our results, especially the predictive value 
of uNGAL for RRT, must be interpreted with caution 
due to small number of events. Furthermore, varying 
clinical practice in the use of RRT in different coun-
tries diminishes the generalizability of our findings. 
However, to the best of our knowledge, this is the larg-
est multicenter cohort of consecutive intensive care 
patients studying uNGAL in sepsis. Second, although 
the study patients were originally screened using 
the former ACCP/SCCM criteria for sepsis, we now 

included only those with sepsis according to the recent 
Sepsis-3 definition. This may have led to exclusion of 
patients fulfilling Sepsis-3 criteria but not the former 
criteria. Third, some patients may have had existing 
AKI already at the time of measurement, a problem in 
all predictive biomarker studies. We performed a sen-
sitivity analysis excluding those 24 patients that did 
not have a 0-h urine sample but this did not change 
the results. Fourth, we did not normalize uNGAL for 
urinary creatinine [28]. Finally, the purpose of the 
presented clinical risk models was to enable evalua-
tion of the incremental value of uNGAL, that is, what 
uNGAL adds on clinical reasoning. Importantly, no 
model should be used in clinical practice before inde-
pendent external validation. Even though the results of 

Table 2  Model improvement with urine NGAL added to the clinical risk models for the endpoints

95% confidence intervals are shown in parentheses. aA Hosmer–Lemeshow goodness of fit was used to test calibration of the models. “New” refers to the classification 
model that includes the new biomarker and “old” refers to the classification model that does not

cfNRI = cfNRIevents + cfNRInonevents; IS, integrated sensitivity; IP, integrated 1-specificity; IDI = (ISnew – ISold) – (IPnew – IPold)

AKI Severe AKI (KDIGO 2–3) RRT​ 90-day mortality

Goodness of fita (clinical risk model) 0.406 0.400 0.973 0.365

Goodness of fita (new model including 
uNGAL)

0.395 0.338 0.749 0.990

Events (n) 217 134 46 136

Nonevents (n) 267 350 438 348

AUC​

 uNGAL alone 0.690 (0.647 to 0.731) 0.728 (0.686 to 0.767) 0.769 (0.729 to 0.806) 0.600 (0.555 to 0.644)

 Clinical risk model 0.717 (0.670 to 0.764) 0.759 (0.710 to 0.809) 0.724 (0.643 to 0.805) 0.797 (0.754 to 0.840)

 New risk model (uNGAL added) 0.749 (0.704 to 0.794) 0.799 (0.755 to 0.843) 0.824 (0.761 to 0.886) 0.804 (0.762 to 0.846)

 Difference, p (clinical model vs new 
model)

0.017 0.011 0.005 0.27

Category-free NRI (%)

 cfNRIevents 1.38 (− 12 to 14.77) 22.39 (6.11 to 38.67) 47.83 (21.91 to 73.74) − 4.41 (− 21.06 to 12.23)

 cfNRInonevents 48.69 (38.25 to 59.13) 49.14 (39.99 to 58.29) 46.58 (38.54 to 54.62) 34.48 (24.67 to 44.3)

 cfNRI 50.07 (33.01 to 67.13) 71.53 (52.88 to 90.19) 94.4 (67.16 to 121.65) 30.07 (10.71 to 49.43)

IDI and summary statistics

 IDIevents 0.0248 (0.0099 to 0.0398) 0.0398 (0.0185 to 0.061) 0.0615 (0.0361 to 0.0868) 0.0115 (− 0.0003 to 0.0233)

 IDInonevents 0.0202 (0.0092 to 0.0312) 0.0152 (0.0049 to 0.0256) 0.0065 (− 0.0007 to 0.0136) 0.0045 (− 0.0008 to 0.0099)

 IDI 0.045 (0.0264 to 0.0637) 0.055 (0.0317 to 0.0782) 0.0679 (0.0413 to 0.0945) 0.016 (0.0032 to 0.0289)

 ISold 0.5263 (0.5006 to 0.5519) 0.408 (0.3711 to 0.4449) 0.1947 (0.1344 to 0.255) 0.4509 (0.4112 to 0.4905)

 ISnew 0.5511 (0.5226 to 0.5796) 0.4476 (0.4083 to 0.487) 0.2557 (0.1917 to 0.3197) 0.4623 (0.4214 to 0.5032)

 IPold 0.3849 (0.3651 to 0.4048) 0.2267 (0.2111 to 0.2422) 0.0846 (0.0781 to 0.0911) 0.2146 (0.1968 to 0.2325)

 IPnew 0.3648 (0.3425 to 0.3871) 0.2115 (0.1937 to 0.2293) 0.0782 (0.0693 to 0.0871) 0.2102 (0.192 to 0.2283)
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Hosmer–Lemeshow goodness of fit test and restricting 
the number of variables in the models did not support 
overfitting, it cannot be ruled out.

Our study has also some strength. To simulate clini-
cal applicability and to perform a fair comparison, we 
limited the variables for the clinical risk models to 
those available on ICU admission. We performed an 
extended statistical analysis to scrutinize clinical use-
fulness of a suggested AKI biomarker using the most 
recently proposed statistical methods including vari-
able weighing of false-negatives and false-positives as 

recommended [25, 29, 30]. We consider our detailed 
analysis of 484 patients adds significantly on existing 
combined uNGAL data from 1263 septic patients [8].

Conclusions
We conclude that in critically ill adult sepsis patients, the 
performance of uNGAL alone was inadequate in predict-
ing AKI, RRT, and 90-day mortality. The detailed statis-
tical analyses do not support the clinical usefulness of 
uNGAL in this patient population.

Fig. 2  Risk assessment plots showing model enhancement in a AKI, b severe (KDIGO 2–3) AKI, c RRT, and d 90-day mortality. Dashed lines (baseline 
model) represent clinical risk models and solid lines represent new risk models with uNGAL. The gray areas between the solid and the dashed 
lines represent IDIevents (area between black lines) and IDInonevents (area between red lines). a Visually estimated from the curves, adding uNGAL to 
the clinical risk model improves separation of patients who will develop AKI when the risk of the event is more than ≈ 45%, and discrimination of 
patients who will not develop AKI when the risk of the event is less than ≈ 50%. b With severe AKI, uNGAL added to the clinical risk model improves 
distinguishing KDIGO 2–3 patients when the risk of the event (= severe AKI) is more than ≈ 25% and helps separating those with KDIGO stage 0–1 
when the risk of the event is less than ≈ 30%. c Adding uNGAL to the clinical risk model improves the performance for assigning individuals that will 
end up with RRT when the risk of the event is lower than ≈ 40%, and enhances discrimination of those not ending up with RRT when the risk of the 
event is lower than ≈ 10%. d Corresponding statistics in Table 2, RAPs for the clinical 90-day mortality risk model and for the new model with uNGAL 
added illustrate that uNGAL offers only minimal enhancement separating those who will die by day 90 when the risk of the event is > 40%
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and Septic Shock; ICU: Intensive care unit; ELISA: Enzyme-linked immunosorb-
ent assay; CI: Confidence interval; cfNRI: Category-free net reclassification 
improvement; IDI: Integrated discrimination improvement; IQR: Interquartile 
range; QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies 2; 
APACHE II: Physiologic data including Acute Physiology and Chronic Health 
Evaluation II; SAPS II: Simplified Acute Physiology Score; SOFA: Sequential 
Organ Failure Assessment.

Fig. 3  Decision curve analysis for a AKI, b severe (KDIGO 2–3), AKI, c RRT, and d 90-day mortality. Dashed black lines (baseline model) represent 
clinical risk models and dashed red lines represent new models with uNGAL. Black solid line: assume no patient has the outcome. Gray solid line: 
assume all patients have the outcome. a As the new model curve runs higher than the baseline curve, DCA shows a net benefit (NB) in identifying 
patients who will develop AKI at threshold probabilities of ≈ 0.25–0.35. The magnitude of the NB is 2.5% (95% CI 0.2–4.6%) at the predefined 
threshold probability of 0.30. However, at a threshold probability of 0.4, there is no NB at all. Note that if the models do not diverge from the gray 
line of “all expected positive”, neither of them adds anything to the strategy of expecting all to be positive at that threshold probability and should 
not be used. b With severe AKI, there is a 1.4% (95% CI 0.4–4.1%) NB at a threshold probability of 0.2. As with AKI, the NB does not persist within the 
area of clinically relevant threshold probabilities. c Adding uNGAL to the clinical RRT risk model gives a NB of 1.4% (95% CI 0.1–2.8%) in identifying 
patients who will end up in RRT at a threshold probability of 0.10. Note that at a threshold probability of ≈ 0.35 the curves intersect. d Decision 
curves for the clinical 90-day mortality risk model and for the clinical model including uNGAL do not diverge at a risk threshold of 0.05 thus showing 
no NB for adding uNGAL to the clinical risk model

https://doi.org/10.1186/s13613-020-00667-7
https://doi.org/10.1186/s13613-020-00667-7
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