Skip to main content
. 2020 Apr 22;11:667. doi: 10.3389/fmicb.2020.00667

Table 1.

Performance of the best machine learning classifier and DA considering INH, EMB, RIF, PZA, MDR-TB, and FDR-TB.

DA Best method
Drugs Sensitivity Specificity AUC Feature set + Classifier Sensitivity Specificity AUC
INH 91.15 ± 1.19 98.96 ± 0.25 95.05 ± 0.60 F3 + MLRF 93.76* ± 0.80 97.79 ± 0.35 96.01* ± 0.47
EMB 85.10 ± 1.79 94.91 ± 0.38 90.00 ± 0.97 F1 + MLRF 91.75* ± 1.81 91.58* ± 0.77 91.70* ± 0.75
RIF 91.52 ± 1.34 98.68 ± 0.21 95.10 ± 0.65 F3 + MLRF 93.16* ± 0.80 98.02 ± 0.32 96.00* ± 0.40
PZA 43.21 ± 2.72 98.58 ± 0.23 70.89 ± 1.35 F1 + SLRF 87.27* ± 1.74 90.71* ± 0.72 88.99* ± 0.84
FDR-TB 37.34 ± 3.97 98.59 ± 0.22 67.96 ± 1.99 F1 + MLRF 87.58* ± 2.79 92.98* ± 0.45 90.28* ± 1.23
MDR-TB 89.84 ± 1.34 99.12 ± 0.178 94.48 ± 0.69 F3 + MLRF 93.70* ± 0.76 97.45 ± 0.36 95.58* ± 0.41

Sensitivity, specificity and AUC (mean ± standard error) were reported. The Wilcoxon signed-rank test was used to calculate the p-value of each method compared with the DA and

*

p < 0.01 vs. DA.