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Humanmalaria is a pathogenic diseasemainly caused by Plasmodium falciparum, whichwas responsible for
about 405,000 deaths globally in the year 2018. To date, several vaccine candidates have been evaluated for
prevention, which failed to produce optimal output at various preclinical/clinical stages. This study is
based on designing of polypeptide vaccines (PVs) against human malaria that cover almost all stages of
life-cycle of Plasmodium and for the same 5 genome derived predicted antigenic proteins (GDPAP) have
been used. For the development of a multi-immune inducer, 15 PVs were initially designed using T-cell
epitope ensemble, which covered N99% human population as well as linear B-cell epitopes with or without
adjuvants. The immune simulation of PVs showed higher levels of T-cell and B-cell activities compared to
positive and negative vaccine controls. Furthermore, in silico cloning of PVs and codon optimization
followed by enhanced expression within Lactococcus lactis host system was also explored. Although, the
study has sound theoretical and in silico findings, the in vitro/in vivo evaluation seems imperative to
warrant the immunogenicity and safety of PVs towards management of P. falciparum infection in the
future.

© 2020 Published by Elsevier B.V.
1. Introduction

World Health Organization has documented almost 405,000 deaths
including 228million infections globally towards humanmalaria disease
[1]. Five diverse species of Plasmodium, i.e., P. falciparum, P. vivax,
P. malariae, P. ovale, as well as P. knowlesi are culprit for the disease
outbreak in which P. falciparum has stood first for lethality. About 99.7
and 62.8% disease cases were documented merely for P. falciparum (Pf)
in African as well as South-East Asia realms, respectively, which further
supports the above fact [2]. In recent findings, P. vivax has also been
found capable to develop severe malaria amongst populations living in
sub-tropical countries [3]. The only preferred option is cost intensive
chemotherapy for human malaria [4,5]. The reason being the fact that
currently, none of cutting-edge effective human malaria vaccine is
gh),
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accessible, which can provide protection towards most of the world-
wide population together with endemic regions. On the other hand,
the exhaustive research from decades has led to development of total
44 malaria vaccine candidates together with 19 subunit, 10 DNA, 10
recombinant vector, 1 recombinant protein as well as 4 live/attenuated
vaccine preparations, of which, merely 7 vaccines are revealed for
human host (http://www.violinet.org/). Most of these vaccines are
either single or multi-antigens derived from various life-cycle stages of
the parasites P. falciparum, P. vivax, P. yoelii, P. berghei and P. chabaudi
[6,7]. For instance, Pf vaccine combination involves multi-antigens
namely MSP1, MSP2 and RESA derived from blood-stage [8], while
NYVAC-Pf7 includes antigens CS, SSP2, LSA1, MSP1, AMA1, SERA as
well as Pfs25 from multi-stage of pathogenic life-cycle [9]. Besides
these, P. falciparum reticulocyte-binding homologue 5 (PfRH5) was also
reported as good antigen for development of malaria vaccine [10,11]
that elicits human monoclonal antibody in vaccine trial [12]. Most of
the aforesaid vaccines were found to elicit immune responses, but
unfortunately, failed to clear phase-III clinical trial owing to rapidwaning
of vaccine efficacy due to geographical antigenic variation and human
leukocyte antigen (HLA) allelic diversity [3,13–15]. Apart from these,
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apoptosis of infected erythrocytes and their inability to express
HLA class I molecules on cell surface that assists in avoiding
cytotoxic T lymphocytes (CTL) response is also another aspect
[16–18]. Thus, there is pressing need towards the development of
innovative vaccines using reverse vaccinology together with
immunoinformatics that can target majority of the stages of
parasite's life-cycle including species level conservation so as to
cover the world-wide human population [19].

In last two decades, the reverse vaccinology strategy has been
extensively exploited by world-wide research groups for genome-
wide screening of vaccine antigens against several pathogens like
Neisseria meningitides serogroup B, P. falciparum, Leishmania and
so on [20–24]. It has been synergistically progressive with onset of
immunoinformatics, which is another cost-effective and quicker strategy
towards prediction of B- as well as T-cell epitopes present on antigenic
proteins and targeted population coverage analysis [25–29]. In recent
years, the aforementioned strategies have been used very frequently
in designing of novel vaccines by various researchers against different
diseases like Dengue [30], Schistosomiasis [31], Fascioliasis [32],
Encephalitis [33], Lassa fever [34], Neonatal meningitis [35] and H7N9
influenza A [36]. Furthermore, Toll-like receptors (TLRs), e.g., TLR-2,
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designing of multi-epitope based oral vaccine against human malaria.
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polypeptide vaccines (PVs) utilizing predicted B- and/or T-cell epitopes
sourced from 5 genome derived predicted antigenic proteins (GDPAP)
assembled together with specific linkers and adjuvants towards
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2. Methodology
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development of innovative PVs is presented in Fig. 1 with following
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of test PVs, positive as well as negative polypeptide vaccine controls
using chimeric technique, (vi) Tertiary structure prediction
and molecular docking of PVs with TLR2 and TLR4 receptors,
(vii) Characterization of structural and functional properties
viz. secondary structure, physicochemical, adhesion, antigenicity,
allergenicity, solubility and biological activity of leading PVs (viii)
Immune simulation of leading PVs, (ix) Molecular docking of leading
PVs with protective antibodies (IgG1 and IgG3), (x) Molecular
dynamics of leading PVs complexed with TLR2 and TLR4 and (xi) In
silico cloning and expression of potent PVs in Lactococcus lactis etc.
Further, the accomplishment of aforementioned steps required
various bioinformatics tools, which are provided in Table 1.

2.1. Selection of P. falciparum protein sequences

Our previous study revealed five protein sequences of P. falciparum
3D7 genome as promising antigenic adhesion proteins [24].
Therefore, in the present study, these malarial adhesion proteins
viz. circumsporozoite protein (CSP: PF3D7_0304600), surface protein
P113 (P113: PF3D7_1420700), merozoite surface protein 1
(MSP1: PF3D7_0930300), 28 kDa ookinete surface protein (P28:
PF3D7_1030900) and 25 kDa ookinete surface antigen precursor (P25:
PF3D7_1031000) were considered as platform for designing of new
PVs. Further, the BLASTp tool was used to explore homologous
sequences amongst human malaria parasites.

2.2. B-cell epitopes prediction

The presence of linear (16-mer) and conformational B-cell epitopes
were predicted using BCPREDS and DiscoTope tools, respectively.

2.3. Forecast of T-cell epitopes

The linear B- cell epitope sequences (as forecasted in section 2.2)
were used as input for forecast of HLA class I and II restricted T-cell
Table 1
Bioinformatics tools used in the present study for designing of polytope vaccines.

S. no. Prediction/analysis tools Function

1 AllergenFP Allergenicity of peptide
2 ANTIGENpro Protein antigenicity
3 BCPREDS Linear B-cell epitopes
4 CamSol Protein solubility
5 C-ImmSim Immune simulation
6 ClusPro 2.0 Protein-protein docking
7 DeepGOPlus Protein function
8 DiscoTope 2.0 Conformational B-cell epitopes
9 ExPASy-ProtParam Grand average of hydropathicity
10 IEDB-AR Population coverage analysis of epitop
11 IEDB-AR (consensus method) HLA class I epitope

HLA class II epitope
12 IFNepitope IFN-γ inducing peptides
13 IL-10Pred Interleukin-10 inducing
14 IL-4Pred Interleukin-4 inducing peptide
15 iMODS Normal mode analysis
16 JCat Codon optimization
17 ModRefiner High-resolution protein structure refinem
18 PROCHECK Stereochemical quality of a protein struc
19 ning of PVs and codon opti Protein antigenicity prediction
20 Protein-Sol Protein solubility
21 PSIPRED 4.0 Secondary structure
22 RaptorX Protein structure modelling
23 Recombinant protein solubility prediction Protein solubility
24 Secret-AAR Protein antigenicity
25 SOLPro Protein solubility
26 SPAAN Adhesin protein
27 VaxiJen 2.0 Protein antigenicity

N.A: not available; AUC: area under ROC curve; R2: correlation of coefficient.
epitopes through IEDB based consensus strategy with threshold criteria
of binding affinity (IC50) ≤ 500 nM and percentile rank ≤3,
correspondingly.

2.4. Forecast of population coverage and selection of T-cell epitope
ensemble

The IEDB based population coverage tool was exploited towards
the predicted population coverage (PPC) analysis of forecasted T-
cell epitopes with their corresponding HLA binding alleles. Further,
HLA class I as well as II epitope ensemble was developed as
described previously [24]. Finally, HLA class I and II epitope
ensembles were then mapped to forecasted continuous B-cell
epitopes.

2.5. Prediction of cytokine responses

The induction of cytokines response predictions, i.e., IL-4, IL-10 and
IFN-γ were carried out for epitope ensembles using tools IL-4Pred, IL-
10Pred and IFNepitope, correspondingly.

2.6. Designing of multi-epitope PVs

In this study, the new multi-epitope PVs were developed
using the linker EAAAK (L1) at N-terminal with or without
adjuvant following Ali et al. [30] where Cholera toxin B subunit
(A: UniProt accession no. AIE88420.1) and 50S ribosomal L7/
L12 (B: UniProt accession no. P9WHE3) were used as adjuvants
against TLR-2 (PDB ID: 2Z7X) and TLR-4 (PDB ID: 4G8A),
correspondingly. During PVs designing, the epitopes were
coupled with linkers by adopting following strategies: HLA
class I epitopes with GGGS (L2), HLA class II epitopes with
GPGPG (L3), B-cell epitopes with L2 or L3, HLA class I and II
epitope with L3, HLA class II epitope and B-cell epitope with
L3. Also, the adjuvants were coupled with epitopes using linker
Accuracy (%)/AUC/R2 Website

88.00% ddg-pharmfac.net/AllergenFP/
76% http://scratch.proteomics.ics.uci.edu/
0.8 ailab.ist.psu.edu/bcpred/predict.html
0.98 http://www-vendruscolo.ch.cam.ac.uk/camsolmethod.html
N.A http://kraken.iac.rm.cnr.it/C-IMMSIM/?page=1
N.A cluspro.bu.edu/home.php
0.9 http://deepgoplus.bio2vec.net/deepgo/
0.73 www.cbs.dtu.dk/services/DiscoTope/
N.A web.expasy.org/protparam/

es N.A tools.iedb.org/population/
0.86 tools.iedb.org/mhci/
0.85 tools.iedb.org/mhcii/
82.10% crdd.osdd.net/raghava/ifnepitope/
72.30% crdd.osdd.net/raghava/IL-10pred/
64.76% webs.iiitd.edu.in/raghava/il4pred/scan.php
N.A http://imods.chaconlab.org/
N.A http://www.jcat.de/

ent N.A zhanglab.ccmb.med.umich.edu/ModRefiner/
ture N.A servicesn.mbi.ucla.edu/PROCHECK/

75% http://imed.med.ucm.es/Tools/antigenic.html
0.97 https://protein-sol.manchester.ac.uk/
84.20% bioinf.cs.ucl.ac.uk/psipred/
0.89 raptorx.uchicago.edu/
88% http://www.biotech.ou.edu/
N.A http://microbiomics.ibt.unam.mx/tools/aar/
74% http://scratch.proteomics.ics.uci.edu/
97.4% http://www.violinet.org/vaxign/
78.00% www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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L1. The linker L1 was also employed to connect adjuvant with
HLA class I and B-cell epitope [41–45].
2.7. Tertiary structure prediction and molecular docking of PVs with TLR2
and TLR4 receptors

The forecast of tertiary structures of PVs was performed using
RaptorX tool. Further, the refinement as well validation of 3D
structure was carried out by tools ModRefiner and PROCHECK,
respectively. The molecular docking studies of PVs with molecular
complex receptors TLR2-TLR1 (PDB ID: 2Z7X) and TLR4-MD2 (PDB
ID: 4G8A) were performed using ClusPro 2.0 tool. The PVs developed
without and with TLR2 and TLR 4 specific adjuvants that were
docked with receptors TLR2-TLR1 and TLR4-MD2, correspondingly.
The ligands Escherichia coli heat labile enterotoxin type IIB B-
pentamer (C1; PDB ID: 1QB5) and carbohydrate recognition and
neck domains of surfactant protein A (C2; PDB ID: 1R13) were
used as controls for docking with receptors TLR2 and TLR4,
correspondingly [46,47].
2.8. Characterization of structural and functional properties of leading PVs
with positive vaccine controls

The self-assembling protein nanoparticles (SAPN) from P. falciparum
FMP014 (C3) and fusion protein from Staphylococcus aureus (C4) were
selected as positive vaccine controls as detailed previously in Kaba
et al. [48] and Ahmadi et al. [49] for comparative evaluation of several
properties of leading PVs., respectively. The physico-chemical
properties [Grand Average Hydropathy (GRAVY), molecular weight,
isoelectric point (pI) and half-life] were calculated using ExPASy-
ProtParam tool. The antigenic properties were predicted with the
involvement of VaxiJen2.0, ANTIGENpro, Protein antigenicity prediction
by Kolaskar and Tongaonkar and Secret-AAR tools. Further, the
recombinant protein solubility was predicted using tools RPSP,
Protein-Sol, CamSol and SOLPro. The analysis of secondary structure
elements (alpha helix, extended strand and random coil) were
performed using PSIPRED tool. Further, tertiary structure analysis was
carried using tools ModRefiner and PROCHECK. The biological function
and allergenicity were evaluated based on tools DeepGOPlus and
AllergenFP, correspondingly.
2.9. Immune simulation of leading PVs

The best docked complex (in terms of lowest docking energy) PVs
with receptors TLR2 and TLR4 were chosen for immune simulation
study using C-ImmSim tool along with two positive vaccine controls
(C3, C4) as mentioned in section 2.8 and one negative vaccine control
(C5) so as to compare the simulation results. The C5 was designed
using suitable linkers as well as non-binding HLA class I and II epitopes
by applying the same strategies as used in PVs. The non-epitopes were
screened using the criteria of 14 lowest ranking HLA class I (HLA-
A*0201, -B*5301) and 3 lowest ranking HLA class II (HLA-DRB1–0411)
as predicted by IEDB based consensus method, correspondingly in a
randomly selected highly variable erythrocyte membrane protein 1,
(PfEMP1: PF3D7_0617400.1). The C-ImmSim is a simulator of agent-
based model, which forecasts the induction of immune response
(cellular and humoral response) along with forecast of T-cell epitope
as well as B-cell epitope [50]. The default simulation parameters were
chosen except HLA allele, number of antigen (10000) and time steps
[51]. The host HLA alleles (HLA-A*02:01, HLA-B*53:01 and HLA-
DRB1*04:11) were selected based on prevalent alleles associated with
human malaria [52–55]. The time steps 1, 42 and 84 were selected
following Kaba et al. [48].
2.10. Molecular docking of leading PVs and antibodies IgG1 and IgG3

The molecular docking between antibodies IgG1 (PDB ID:
6B5L) as well as IgG3 (PDB ID: 5BK0) with PVs (PV1A/PV3B)
were performed using ClusPro 2.0 tool along with co-
crystallized respective control epitopes NPDPNANPNVD (C6,
IEDB ID: 756359) and NANPNANPNANPNANPNANP (C7, IEDB
ID: 43248) of Pf CSP [56,57].

2.11. Molecular dynamics of leading PVs complexed with TLR2/TLR4

Molecular dynamics of top 2 docked complexes PV1A-TLR2 and
PV3B-TLR4 were performed through iMODS server to explain the
collective protein motion in the internal coordinates through
normal mode analysis (NMA). The NMA in dihedral coordinates
naturally mimics the combined functional motions of protein
molecules modelled as a set of atoms connected by harmonic
springs [58].

2.12. Codon optimization and in silico cloning of leading PVs

The DNA coding sequences of the oral PVs (PV1A and PV3B) were
optimized for elevated protein expression using Java Codon
Adaptation Tool (JCat) involving following options: i) Lactococcus
lactis (strain IL1403) as expression host, ii) avoid rho-independent
transcription terminators, iii) avoid prokaryotic ribosome binding
sites and iv) avoid cleavage sites of restriction enzymes. Further,
for in silico cloning of PV1A and PV3B cDNA (with stop codon)
SnapGene software was used involving insertion at restriction site
of FspI (6006) in plasmid vector pIL1 (Gene bank accession number:
HM021326) [59].

3. Results and discussion

According to VIOLIN database (accessed on June 26, 2019), total
16 vaccines available so far for against P. falciparum from different
life-cycle stages, but they have not succeed to get approval from
FDA, USA for world-wide marketing [60]. The RTS,S/AS01 is the
only world's first European Medicines Agency (EMA) approved
malaria vaccine with partial protection in young children (36.3%)
for use to only Sub-Saharan African region along with severe
adverse effect (24.2%–28.4%) and incurable adverse effect (1.5%–
2.5%) [61,62]. In addition, the efficacy was further declined to
almost zero after 4th year and negative in 5th year [63]. The
aforementioned facts warrant exhaustive efforts/research towards
the development of a more effective PV that can elicit robust
immune response globally. The present study is an extension of
our previous report [24] that exploits 5 homologous antigens
conserved amongst human malaria parasites P. falciparum, P. vivax,
P. ovale and P. malariae (with minimum 38.62% identity recognized
through BLASTp tool) as potential platform for designing of PVs
[64].

3.1. Prediction of B- and T-cell epitopes for screening of epitope ensemble

In recent years, epitope based designing of vaccine is a new strategy
that has been employed by world-wide researchers towards the
development of efficient PVs against numerous diseases such as
leishmaniasis, malaria and so on. In this context, the exploitation of
computational approaches is not only cost-effective for vaccine
development but also diminishes time period and risk of failure in
experimental studies [26,27,65,66]. In this study, 82 continuous B-cell
epitopeswere forecasted from5GDPAPusingBCPREDS (Supplementary
Table S1). These 82 continuous B-cell epitopes were found to possess
total 433 T-cell epitopes including 142 HLA class I epitopes and 291
HLA class II epitopes (Supplementary Table S2). These T-cell epitopes



Fig. 2. The malaria endemic population coverage analysis of combined HLA class I and II
binding epitope ensemble used in designing of PVs obtained by IEDB analysis tool.
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were forecasted from the pool of predicted continuous B-cell epitopes as
the antigen presentation to T-cellswas supposed to bemore efficient if it
is recognized by the B-cell. In addition, an antigen-specific B-cell may
present multiple T-cell epitopes to the immune system and, thus
enhances its ability to be triggered in a specificmanner [67–69]. Further,
based on the PPC analysis an epitope ensemble of 13HLA class I epitopes
with 98.75% and 3 HLA class II epitopes with 56.85% world coverage
were designed using criteria described previously (Table 2) [24].
However, a combined set of 16 HLA class I and II epitope ensemble
revealed human population coverage of highest 99.46% and lowest
Table 2
Details of predicted T-cell epitope ensemble including HLA binding alleles along with their sou

S.
no.

T-cell
epitope
number

T-cell epitopes with start and
end position

B-cell
epitope
number
(Antigen)

Linear B-cell epitopes with
and end position

HLA class I
1 T1 100YTLTAGVCV108 B1 (P28) 98TEYTLTAGVCVPNVCR113

2 T2 421YPNGIVYPL429 B2 (MSP1) 417PKVPYPNGIVYPLPLT432

3 T3 46VLHCEVQCL54 B3 (P113) 45YVLHCEVQCLNGNNEI60
4 T4 90YACKCNLGY98 B4 (P25) 84DGNPVSYACKCNLGYD99

5 T5 1013YFNDDIKQF1021 B5 (MSP1) 1006ILKNNDTYFNDDIKQF1

6 T6 450LMNPHTKEK458 B6 (MSP1) 447YGDLMNPHTKEKINEK4
7 T7 580YRLKENKDY588 B7 (P113) 579YYRLKENKDYDVVSSI59
8 T8 105GVCVPNVCR113 B1(P28) 98TEYTLTAGVCVPNVCR113
9 T9 1104NVLQNFSVF1112 B8 (MSP1) 1097NSLNNPHNVLQNFSVF
10 T10 98TEYTLTAGV106 B1(P28) 98TEYTLTAGVCVPNVCR113
11 T11 1117KEAEIAETE1125 B9 (MSP1) 1115KKKEAEIAETENTLEN1
12 T12 1310GESEDNDEY1318 B10 (MSP1) 1309FGESEDNDEYLDQVVT
13 T13 1120EIAETENTL1128 B9 (MSP1) 1115KKKEAEIAETENTLEN1

HLA class II
14 T14 1350PLAGVYRSLKKQIEK1364 B11

(MSP1)
1350PLAGVYRSLKKQIEKN1

15 T15 1007LKNNDTYFNDDIKQF1021 B5 (MSP1) 1006ILKNNDTYFNDDIKQF1

16 T16 125DPANSLTHTCSCNIG139 B12 (P28) 124VDPANSLTHTCSCNIG13
94.47% for world and South America, respectively (Fig. 2). The
aforementioned criteria involved the screening of cross-presented
epitopes amongst different set of HLA binding alleles in a selected
population with higher PPC and VaxiJen score. The technique of
identifying such ‘promiscuous’ epitopes that cover diverse HLA alleles
of affected population are highly desirable as they could enhance the
vaccine efficacy [51]. Concerning HLA class I epitope ensemble of
P. falciparum, epitopes YTLTAGVCV (T1) and YFNDDIKQF (T5) covered
56.56% and 39.26% of world population were also reported in similar
study conducted by Pritam et al. [24].

3.2. Induction of cytokine responses of epitope ensemble

In case of malaria, adaptive immune system elicits both cellular and
humoral immune responses, which are associated with B and T
lymphocytes, respectively. However, mainly the CD4+ T lymphocytes
(also known as helper T cell (Th), Th1 and Th2) elicit IFN-γ and IL-4,
correspondingly) regulate the malaria infection [68,70]. Besides these,
TLRs are also involved in the activation of different signalling cascade
that ultimately express the genes of pro-inflammatory cytokines like
IFN-γ, etc. [71]. The IFN-γ is associated with depletion of liver-stage
parasites [72,73]. This is also supported by present study, where the
epitopes T2, T7, T8, T10, T11 and T1, T2, T3, T4, T5, T6, T7, T8, T9, T11,
T12, T13, T14, T16 were found to induce the IFN-γ and IL-4 responses,
correspondingly (Supplementary Table S3). Amongst aforementioned
epitopes ensemble, the T14was recorded as one of the potent candidate
to induce IL-10 response that found to suppresses the pathogenic
inflammatory responses concerning control of malaria parasite [74].
rce linear B-cell epitope.

start Predicted
population
coverage (%)

HLA binding alleles

56.56 HLA-A*02:06, HLA-A*02:01, HLA-A*68:02, HLA-C*05:01,
HLA-C*15:02, HLA-C*12:03, HLA-C*14:02

53.84 HLA-A*68:02, HLA-B*07:02, HLA-B*18:01, HLA-B*08:01,
HLA-B*39:01, HLA-B*35:01, HLA-B*53:01, HLA-C*03:03,
HLA-C*14:02, HLA-C*12:03

40.93 HLA-A*02:01, HLA-C*14:02
40.73 HLA-A*01:01, HLA-A*29:02, HLA-B*15:01, HLA-B*35:01,

HLA-C*12:03
021 39.26 HLA-A*23:01, HLA-A*29:02, HLA-C*14:02, HLA-C*07:02,

HLA-C*12:03
62 38.48 HLA-A*03:01, HLA-A*11:01, HLA-A*30:01, HLA-A*31:01
4 33.31 HLA-C*07:01, HLA-C*06:02

25.64 HLA-A*11:01, HLA-A*31:01, HLA-A*68:01
1112 23.15 HLA-A*23:01, HLA-B*15:01, HLA-B*15:02, HLA-B*35:01

19.88 HLA-A*68:02, HLA-B*18:01, HLA-B*40:02, HLA-B*44:02
130 7.81 HLA-B*40:01
1324 6.27 HLA-B*44:03
130 5.82 HLA-A*25:01, HLA-A*68:02

365 41.75 HLA-DRB1*03:08, HLA-DRB1*03:06, HLA-DRB1*03:07,
HLA-DRB1*03:09, HLA-DRB1*03:01, HLA-DRB1*03:05,
HLA-DRB1*07:03, HLA-DRB1*04:05, HLA-DRB1*08:01,
HLA-DRB1*08:17, HLA-DRB1*11:20, HLA-DRB1*08:06,
HLA-DRB1*11:01, HLA-DRB1*11:14, HLA-DRB1*08:13,
HLA-DRB1*11:07, HLA-DRB1*11:21, HLA-DRB1*11:02,
HLA-DRB1*13:21, HLA-DRB1*13:04, HLA-DRB1*13:07,
HLA-DRB1*11:28, HLA-DRB1*13:05, HLA-DRB1*13:23,
HLA-DRB1*13:01, HLA-DRB1*13:27, HLA-DRB1*13:28,
HLA-DRB1*13:22

021 20.03 HLA-DRB1*03:09, HLA-DRB1*03:05, HLA-DRB1*03:01,
HLA-DRB1*04:21, HLA-DRB1*04:02, HLA-DRB1*04:10,
HLA-DRB1*13:04, HLA-DRB3*01:01

9 18.25 HLA-DRB1*07:01, HLA-DRB1*07:03
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Table 3
Order of linkers, epitopes and adjuvants used in designing of 15 polypeptide vaccines and positive as well as negative vaccine controls.

S.
no

Type of
polypeptide
vaccine

No. of
amino
acids

Design of polypeptide vaccine/sequence

1 PV1 235 L1-T2-L2-T5-L2-T6-L2-T9-L2-T11-L2-T12-L2-T13-L2-T1-L2-T4-L2-T8-L2-T10-L2-T4-L2-T3-L2-T7-L3-T14-L3-T15-L3-T16-L3
2 PV1A 364 L1-A-L1-T2-L2-T5-L2-T6-L2-T9-L2-T11-L2-T12-L2-T13-L2-T1-L2-T4-L2-T8-L2-T10-L2-T4-L2-T3-L2-T7-L3-T14-L3-T15-L3-T16-L3 (EAAAKMIKLKFGVFFTVLLSSAYANGTPQNITDLCAEYHNTQIHTLNDKIFSYTESL

AGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMANEAAAKYPNGIVYPLGGGSYFNDDIKQFGGGSLMNPHTKEKGGGSNVLQNFSVFGGGSKEAEIAETEGGGSGESEDNDEYG
GGSEIAETENTLGGGSYTLTAGVCVGGGSGVCVPNVCRGGGSTEYTLTAGVGGGSYACKCNLGYGGGSVLHCEVQCLGGGSYRLKENKDYGPGPGPLAGVYRSLKKQIEKGPGPGLKNNDTYFNDDIKQFGPGPGDPANSLTHTCSCNIGGP
GPG)

3 PV1B 370L1-B-L1-T2-L2-T5-L2-T6-L2-T9-L2-T11-L2-T12-L2-T13-L2-T1-L2-T4-L2-T8-L2-T10-L2-T4-L2-T3-L2-T7-L3-T14-L3-T15-L3-T16-L3
4 PV2 299 L1-B2-L3-B5-L3-B6-L3-B8-L3-B9-L3-B10-L3-B9-L3-B1-L3-B4-L3-B3-L3-B7-L3-B11-L3-B5-L3-B13-L3

5 PV2A 428L1-A-L1-B2-L3-B5-L3-B6-L3-B8-L3-B9-L3-B10-L3-B9-L3-B1-L3-B4-L3-B3-L3-B7-L3-B11-L3-B5-L3-B13-L3
6 PV2B 434 L1-B-L1-B2-L3-B5-L3-B6-L3-B8-L3-B9-L3-B10-L3-B9-L3-B1-L3-B4-L3-B3-L3-B7-L3-B11-L3-B5-L3-B13-L3
7 PV3 529 L1-T2-L2-T5-L2-T6-L2-T9-L2-T11-L2-T12-L2-T13-L2-T1-L2-T4-L2-T8-L2-T10-L2-T4-L2-T3-L2-T7-L3-T14-L3-T15-L3-T16-L3-B2-L3-B5-L3-B6-L3-B8-L3-B9-L3-B10-L3-B9-L3-B1-L3-B4-L3-B3-L3-B7-L3-B11-

L3-B5-L3-B13-L3
8 PV3A 658 L1-A-L1-T2-L2-T5-L2-T6-L2-T9-L2-T11-L2-T12-L2-T13-L2-T1-L2-T4-L2-T8-L2-T10-L2-T4-L2-T3-L2-T7-L3-T14-L3-T15-L3-T16-L3-B2-L3-B5-L3-B6-L3-B8-L3-B9-L3-B10-L3-B9-L3-B1-L3-B4-L3-B3-L3-B7-L3-

B11-L3-B5-L3-B13-L3
9 PV3B 664 L1-B-L1-T2-L2-T5-L2-T6-L2-T9-L2-T11-L2-T12-L2-T13-L2-T1-L2-T4-L2-T8-L2-T10-L2-T4-L2-T3-L2-T7-L3-T14-L3-T15-L3-T16-L3-B2-L3-B5-L3-B6-L3-B8-L3-B9-L3-B10-L3-B9-L3-B1-L3-B4-L3-B3-L3-B7-L3-

B11-L3-B5-L3-B13-L3 (EAAAKMAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGAAPAGAAVEAAEEQSEFDVILEAAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLEAAGATVTVKE
AAAKYPNGIVYPLGGGSYFNDDIKQFGGGSLMNPHTKEKGGGSNVLQNFSVFGGGSKEAE
IAETEGGGSGESEDNDEYGGGSEIAETENTLGGGSYTLTAGVCVGGGSGVCVPNVCRGGGSTEYTLTAGVGGGSYACKCNLGYGGGSVLHCEVQCLGGGSYRLKENKDYGPGPGPLAGVYRSLKKQIEKGPGPGLKNNDTYFNDDIKQFGPGP
GDPANSLTHTCSCNIGGPGPGPKVPYPNGIVYPLPLTGPGPGILKNNDTYFNDDIKQFGPGPGYGDLMNPHTKEKINEKGPGPGNSLNNPHNVLQNFSVFGPGPGKKKEAEIAETENTLENGPGPGFGESEDNDEYLDQVVTGPGPGKKKEA
EIAETENTLENGPGPGTEYTLTAGVCVPNVCRGPGPGDGNPVSYACKCNLGYDGPGPGYVLHCEVQCLNGNNEIGPGPGYYRLKENKDYDVVSSIGPGPGPLAGVYRSLKKQIEKNGPGPGILKNNDTYFNDDIKQFGPGPGVDPANSLTHT
CSCNIGGPGPG)

10 PV4 285 L1-B2-L2-B5-L2-B6-L2-B8-L2-B9-L2-B10-L2-B9-L2-B1-L2-B4-L2-B3-L2-B7-L2-B11-L2-B5-L2-B13-L2
11 PV4A 414 L1-A-L1-B2-L2-B5-L2-B6-L2-B8-L2-B9-L2-B10-L2-B9-L2-B1-L2-B4-L2-B3-L2-B7-L2-B11-L2-B5-L2-B13-L2
12 PV4B 420 L1-B-L1-B2-L2-B5-L2-B6-L2-B8-L2-B9-L2-B10-L2-B9-L2-B1-L2-B4-L2-B3-L2-B7-L2-B11-L2-B5-L2-B13-L2
13 PV5 514 L1-T2-L2-T5-L2-T6-L2-T9-L2-T11-L2-T12-L2-T13-L2-T1-L2-T4-L2-T8-L2-T10-L2-T4-L2-T3-L2-T7-L3-T14-L3-T15-L3-T16-L2-B2-L2-B5-L2-B6-L2-B8-L2-B9-L2-B10-L2-B9-L2-B1-L2-B4-L2-B3-L2-B7-L2-B11

-L2-B5-L2-B13-L2
14 PV5A 643 L1-A-L1-T2-L2-T5-L2-T6-L2-T9-L2-T11-L2-T12-L2-T13-L2-T1-L2-T4-L2-T8-L2-T10-L2-T4-L2-T3-L2-T7-L3-T14-L3-T15-L3-T16-L2-B2-L2-B5-L2-B6-L2-B8-L2-B9-L2-B10-L2-B9-L2-B1-L2-B4-L2-B3-L2-B7-L2-

B11-L2-B5-L2-B13-L2
15 PV5B 649 L1-B-L1-T2-L2-T5-L2-T6-L2-T9-L2-T11-L2-T12-L2-T13-L2-T1-L2-T4-L2-T8-L2-T10-L2-T4-L2-T3-L2-T7-L3-T14-L3-T15-L3-T16-L2-B2-L2-B5-L2-B6-L2-B8-L2-B9-L2-B10-L2-B9-L2-B1-L2-B4-L2-B3-L2-B7-L2-

B11-L2-B5-L2-B13-L2
16 C3 212 MGHHHHHHDEEPSDKHIKEYLNKIQNSLSTEWSPCSVTCGNGIQVRIKPGSANKPKDELDYANDIEKKICKMEKCASVFEDLIDYNKAALSKFKEDGSWQTWNAKWDQWSNDWNAWESDWQAWKDDWAEWRALWMGGRLLLRLE

RIRHENRMVLEALEALARFVANLSMRLALMVLSFLRNESRGGSGNA
NPNANPNANPNANPNANPNANP

17 C4 468 IRTKGTIAGQYRVYSEEGANKSGLAWPSAFKVQLQLPDNEVAQISDYYPRNSIDTKEYMSTLTYGFNGNVTGDDTGKIGGLIGANVSIGHTLKYVQPDFKAAALFMKTRNGSMKAADNFLDPNKASSLLSSGFSPDFATVITMDRKASKQQTN
AAAMKKLVPLLLALLLLVAACGTGGKQSSDKSNGKLKVVTTNSILYDMAKNVGGDNVDIHSIVAAADVKPIYLNGEEGNKDKQDPHAWLSLDNGIKYVKTIQQTFIAAAITPGYIWEINTEKQGTPEQMRQAIEFVKKHKLKHLLVETSAAAH
TVQAGESLNIIASRYGVSVDQL
MAANNLRGYLIMPNQTLAAATPTATTGSNGNASSFNHQNLYTAGQCTWYVFDRRAQAGSPISTYWSDAKYWAGNAANDGYQVNNTPSVGSIMQSTPGPYGHVAYVERVNGDGSILISEMNYTYGPYNMNYRTIPASEVSS

18 C5 248 EAAA
KPDNRDKKEGGGGSEKCRGKNKDGGGSPPKRNKRQPGGGSTKAPEKKKEGGGSEEVNGEKDNGGGSEWNKENKNNGGGSTASSEKGKDGGGSGFCRERKKRGGGSPKPPKRNKRGGGSPKRNKRQPKGGGSKCRGKNKDKGGGSPE
KQLAGGKGGGSAKKQALGRSGGGSKDCASCKKKGPGP
GPAELPKPPKRNKRQPGPGPGAPPKQEEKGGCEPASGPGPGKAPPKQEEKGGCEPAGPGPG

Linkers (L1, L2 and L3), adjuvant (A and B), T-cell epitopes (T1-T16), and B-cell epitopes (B1-B13).
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3.3. Design of PVs for malaria

Linear B-cell epitopes is linked to antibody generation, where
identification of such epitopes using traditional approaches is not
only costly but also time consuming with involvement of difficult
processes [75]. In order to overcome aforementioned issues, the
present study involved the prediction of T-cell epitopes using linear
B-cell epitopes as input instead of whole antigen so as to minimize
not only the size of PV but also elicit both cellular (T-cell epitope)
as well as humoral (B-cell epitope) immune responses. Further,
the non toxic nature of adjuvants A and B also helps in production
of several cytokines (e.g., INF-γ, TNF-α, IL-2, IL-4, IL-6, IL-12)
through induction of dendritic cell, B-cell, macrophage and T-cell,
which ultimately boost the concentration of the antibodies reported
in several studies linked to various disease causing agents including
human rotavirus, HIV, Helicobacter pylori, Influenza virus [76–79].
Therefore, 15 PVs were designed through epitope ensemble of T-
cell epitopes and/or linear B-cell epitopes having epitope ensemble
with different linkers as well as adjuvants, which are responsible for
the activation of TLR2 and TLR4 receptors pertaining to malaria.
Initially, five non-adjuvant PVs (PV1-PV5) were designed followed
by incorporation of TLR2 and TLR4 binding specific adjuvants that
resulted into respective design of 10 adjuvant PVs, i.e., PV1A-PV5A
and PV1B-PV5B (Table 3). Further, EAAAK linker was incorporated
at N-terminal of PVs as it is stiff and prevents the assembly of
adjuvant with other vaccine domain [80,81]. Although, the
adjuvants are found to enhance the immunogenicity of vaccines
but they may cause toxicity/adverse reaction. Therefore, we have
designed 5 PVs without adjuvants, where the designing of PV1
Fig. 3. Schematic diagram of polypeptide vaccines PV1A (a) and PV3B (b) inwhich adjuvant, T-
having only T-cell epitopes (HLA class I and II) and they were joined
together by using linker L2 and L3. Likewise, in PV2, we have
exploited merely linear B-cell epitopes attached together with
linker L3. Similarly in PV3, both T- and B- cell epitopes were joined
with linkers L2 and L3 while, in PV4, we have exploited merely linear
B- cell epitopes attached together with linker L2. Amongst these two
linkers, L3 is a universal linker, which can enhance the proteasome
processing along with immunogenicity, while L2 is a flexible linker
that can stimulate better immune response [42,77,82]. As
exemplary vaccine is found to induce multi-immune response (B-
and T-cell immune response), therefore in the designing of further
PVs both the T- and B- cell epitopes were used so as to elicit
humoral/cellular response [83]. The PV3 and PV5 were differing
from each other with respect to linkers L3 and L2, respectively
used for joining continuous B-cell epitopes. However, in case of
designing a negative polypeptide vaccine control, linkers L2 and
L3 were employed to connect non-HLA class I and II T-cell epitopes
(Table 3). Fig. 3 (a, b) depicts the exemplar design of PV1 and PV3
with adjuvants A and B i.e., PV1A and PV3B. The advantage of
using linkers and adjuvants used in the present study for designing
of multi-epitope malaria PVs have been also revealed by several
contemporary researchers against other diseases [36,84,85] to
enhance the antigen processing and presentation ability as well as
immunogenicity. Also, the cost effective Cholera toxin B subunit
adjuvant is cytokines inducer (Th1 and Th2 response), which
increases the antibody titration [86]. Thus, the use of both T-cell
and B-cell epitopes together with linkers and adjuvants can
increase the potential of PVs towards induction of multi immune
responses.
cell epitopes (HLA class I and II), B-cell epitopes and linkers are shown in different colours.
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Table 4
Details of molecular docking energies of polypeptide vaccines with their respectivemodel
number.

S.
no.

Name of polypeptide
vaccine/control

ClusPro 2.0 docking energy
(Kcal/mol)

Model
number

TLR2 receptor
1 C1 −685.9 M1
2 PV1 −1153.1 M2
3 PV1A −1275.5 M3
4 PV2 −1117.1 M4
5 PV2A −1214.2 M5
6 PV3 N.A N.A
7 PV3A −1081.3 M6
8 PV4 −1180.9 M7
9 PV4A −1115.7 M8
10 PV5 −1047.4 M9
11 PV5A N.A N.A

TLR4 receptor
12 C2 −794.9 M10
13 PV1 −1070.7 M11
14 PV1B −1111.1 M12
15 PV2 −1117.9 M13
16 PV2B −1139.7 M14
17 PV3 N.A N.A
18 PV3B −1269.2 M15
19 PV4 −1166.7 M16
20 PV4B N.A N.A
21 PV5 −1076.5 M17
22 PV5B −835.8 M18

N.A-not available.
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3.4. Molecular docking of PVs with receptors TLR2 and TLR4

The TLRs, especially the surface one, viz. TLR2 as well as TLR4 are
available not only on the immune cells, but also on epithelial cells
M1

M10

Fig. 4.Dockingmodel of controls (C1, C2) and polypeptide vaccines. Themodels M1 (TLR2-TLR
MD2-PV3B) are polypeptide vaccines. In case of models M1 and M2, the TLR1, TLR2 and ligand
M10 andM11, TLR4, MD and ligands (C2 and PV3B) are shown in blue, green and red colour, re
and fibroblasts that recognizes PAMPs and bridge the innate as
well as adaptive immunity of the host by regulating the balance
between Th1 and Th2 type of responses [87–90]. For example, the
merozoites stage of P. falciparum releases
glycosylphosphatidylinositol (GPI) anchored surface antigens,
which act as ligands recognized by both TLR1-TLR2 heterodimers
and TLR4 homodimers of host immune cells. Such events indeed
results in decreasing the parasitic load from host by triggering
the production of various pro-and anti-inflammatory cytokines as
well as antibody isotype switching [38–40,91,92,]. Thus, for
enhanced protection, selection of respective TLR2 and 4 mucosal
protein adjuvant A (CTB) and B (50s ribosomal L7/L12) in designed
PVs could be the good choice against P. falciparum [77,78,86,93].
Even combining two distinct TLR agonists into an adjuvanted
subunit vaccine have showed synergetic protective efficacy
[94,95]. Altogether, these facts led to the hypothesis of using both
TLR2 and 4 receptors agonists A and B, respectively in the designed
PVs and subsequently docking experiment was performed to reveal
the possible association amongst PVs and TLR [96,97]. For
molecular docking, the tertiary structures of 15 PVs were predicted
that revealed N80% of amino acids in favoured regions. Overall 22
docking studies were carried out using ClusPro2.0 tool including
control C1 and C2 against receptors TLR2 and TLR4, respectively
(Table 4). This resulted into total 18 docked models, i.e., M1 to
M18 including 16 PVs and 2 controls. It is quite interesting to
note that the PVs designed without adjuvants were also able to
interact (dock) with TLR2 and TLR4 (having good energy scores)
over control except PV3. Therefore, they might be capable to elicit
innate immunity [98–100], which are in well agreement with
earlier studies regarding the rapid production of IFN-γ [101,102].
Amongst 15 designed PVs, PV3, PV5A and PV4B were not able to
dock by ClusPro tool with their respective receptors. So, a total 12
M2

M11

1-C1) andM10 (TLR4-MD2-C2) are controls whileM2 (TLR1-TLR2-PV1A) andM11 (TLR4-
s (C1 and PV1A) are shown in green, blue and red colour, respectively whereas in models
spectively.

Image of Fig. 4
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potential PVs with 16 docked models were obtained for TLR2-TLR1
(M2-M9) and TLR4-MD2 (M11-M18). The docking energy of
control models M1 (−685.9 Kcal/mol) and M10 (−794.9 Kcal/
mol) for complexes TLR2-TLR1-C1 and TLR4-MD2-C2 were found
higher over designed potential PVs, which indicates that all the
docked PVs have formed stronger immunological complexes over
control ligands. Amongst the designed PVs without adjuvants
(PV1, PV2, PV4 and PV5), PV4 showed the lowest docking energies
−1180.9 Kcal/mol and −1166.7 Kcal/mol with respect to TLR2 and
TLR4 receptors, correspondingly. These clearly indicated that the
PVs without adjuvants have interacting domain to induce innate
immune system. This is in agreement with the recent study
where human TLR4-derived self-assembling peptide nanoparticles
have been used as non toxic vaccine adjuvant with filarial antigenic
protein to induce the immunological responses in mice [103].
Besides these, the linker L2 has been utilized in the designing of PV1A,
PV3B and PV4, which can provide better flexibility during interaction as
compare to L1 and L3. Amongst the two adjuvants used in designing of
PVs, average docking score of PVs (PV1, PV2 and PV3) involving cholera
toxin B subunit was lower (−1190.3 Kcal/mol) compare to PVs (PV1,
PV2 and PV3) involving 50S ribosomal L7/L12 (−1173.3 Kcal/mol)
(Table 4). However, based on overall docking score, PV1A (−1275.5)
and PV3B (−1269.2) against receptors TLR2 and TLR4, respectively
were selected as leading PVs for further structural and functional analysis
(Fig. 4).
Fig. 5. Predicted secondary structural elements (H: helix, E:beta strand, C: coil) of PV1A (
3.5. Comparative evaluation of structural and functional properties of
leading PVs with positive as well as negative vaccine controls

The negative GRAVY values of both PVs PV1A (−0.377) and PV3B
(−0.479)were pointing towards their hydrophilic nature (that exposed
on outer surface) and, therefore may elicit elevated humoral immune
response [93]. Generally, in vitro protein stability is determined by
instability index b40. Considering this, the present study depicted
PV1A and PV3B as stable proteins with their corresponding instability
index values of 36.35 and 26.22. However, in vivo half-life of PV1A and
PV3B showed N10 h and, therefore reflecting the stabilities of these
two PVs, which might enhance the durability as well as strength of
immune response [104,105]. The leading PVs, i.e., PV1A and PV3B
were predicted as probable antigens in this study using several
antigenicity forecasting tools viz. VaxiJen, ANTIGENpro, protein
antigenicity prediction and Secret-AAR including SPAN at default
threshold values. Nevertheless, non-allergenicity of PV1A and PV3B
were forecasted by AllergenFP tool at threshold value N0.8. Also, the
secondary structure analysis (SSA) of a protein is beneficial for
understanding its folding, stability as well as function [106–110]. In
this context, the present study revealed alpha helices of 31.31 and
25.75%, β-strands of 9.89 and 16.71% and coils of 58.79 and 57.53% for
PV1A and PV3B, respectively (Fig. 5). The predicted tertiary structures
of PV1A and PV3B were refined by ModRefiner tool in which the
Ramachandran plot exhibited respective favoured regions of 92.3 and
a) and PV3B (b) by PSIPRED. The bar chart represents the percentage of confidence.

Image of Fig. 5


Fig. 6. Evaluation of three dimensional models of PV1A (a) and PV3B (b) using Ramachandran plot. The glycine amino acids are represented by black triangles while other amino acids of
polypeptide vaccines are displayed in black squares.
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91.4% as well as allowed regions of 6 and 5.7%. These values indicated
high quality and stability of refined protein structure model based on
Ramachandran plot as described previously [111] (Fig. 6). Further,
PV1A and PV3B were forecasted to possess respective 8 and 18 linear
as well as 104 and 315 discontinuous B cell epitopes at default
thresholds (Supplementary Table S4). These leading PVs were also
predicted to be involved in multi-organism process as well as cell
adhesion and immune system process, respectively, as predicted by
DeepGOPlus tool, which is based on deep convolutional neural network
model and Gene Ontology (GO) scheme. The overall structural and
functional analysis of leading PVs showed comparatively similar
properties over positive vaccine controls C3 and C4 (Table 5). Thus,
the leading polypeptide vaccines PV1A and PV3B have the capability
to induce both humoral aswell as cellular immune responses. However,
the orally administered polypeptide vaccines suffer from the poor
stability, insolubility, weak bioavailability and low immunogenicity
due to acidic environment of the upper GI-tract and inefficient delivery
Table 5
Comparative evaluation of structural and functional properties of positive vaccine controls (C3

Properties Parameter/tools Value/Score/Probability

C3

Physicochemical Molecular weight 2.44 kDa
Isoelectric point (pI) 6.24
Instability index (II) 28
GRAVY −0.88

Antigenicity VaxiJen 0.65
ANTIGENpro 0.67
Protein antigenicity
prediction

0.99

Secret-AAR 42.6
Adhesion SPAAN 0.32
Recombinant protein
solubility

RPSP 0.1
Protein-Sol 0.53
CamSol 2.00
SOLPro In soluble (0.54)

Secondary structure
stability

alpha helix 9.9%
β-strands 25.94%
coils 64.15%

Protein function DeepGOPlus Killing of cells of other organism and reg
of cell processes
to the mucosa-associated lymphoid tissue. Therefore, genetically
engineered L. lactis expression host can be used for production and
delivery of vaccine antigens due to several advantageous properties
viz. easy and safe production as well as storage, survival in gastric
environment and self-adjuvanticity [112,113].

3.6. Immune simulation of leading PVs

In the course of humanmalaria infection, pro-inflammatory (TNF-α,
IFN-γ and IL-12) and anti-inflammatory (IL-4 and IL-10) cytokineswere
produced by Th1 and Th2 cells, respectively [114]. In addition, cytotoxic
T lymphocyte, natural killer cells and macrophages were activated by
elicitation of IL-4, which helps to control pathogen effect [115,116].
Even, the most successful vaccine candidate of malaria, RTS,S was
reported to elicit IFN-γ, IL-2, IgG titers, and activation of CD4+ T cell
responses [72,117]. In this background, the present study involved the
immune simulations of PV1A and PV3B using C-ImmSim tool along
, C4) and leading polypeptide vaccines (PV1A and PV3B).

C4 PV1A PV3B

5.05 kDa 3.79 kDa 6.80 kDa
8.67 5.72 4.75
22.78 36.35 26.22
−0.32 −0.38 −0.48
0.67 0.56 0.46
0.94 0.94 0.90
1.02 1.01 1.01

27.59 33.18 31.67
0.82 0.76 0.45
100 0.0 99.9
0.28 0.48 0.75
0.34 0.74 1.56
In soluble (0.78) Soluble (0.87) Soluble (0.98)
20.29% 31.31% 25.75%
31.83% 9.89% 16.71%
47.86% 58.79% 57.53%

ulation Molecular and
biological process

Multi-organism
process

Immune system process and
cell adhesion

Image of Fig. 6


Table 6
Details of immune simulation results of positive controls (C3 and C4) and leading PVs (PV1A, PV3B).

Types of immune response C3 C4 PV1A PV3B

Antigen count (Ist dose) Decreases to zero count after
5th day of injection

Decreases to zero count after
5th day of injection

Decreases to zero count after
5th day of injection

Decreases to zero count after
5th day of injection

Antigen count
(IInd and IIIrd dose)

Decreases to zero after 2nd
day of injection

Decreases to zero after 2nd
day of injection

Decreases to zero after 2nd
day of injection

Decreases to zero after 2nd
day of injection

Antibody titers (IgG + IgM and
IgG1 + IgG2)

Elicited high level of antibody
titers

Elicited high level of antibody
titers

Elicited high level of antibody
titers

Elicited high level of antibody
titers

Total B cell population per state at end of
IIIrd dose (cells per mm3)

~ 3000 ~ 2700 ~ 2800 ~ 2700

Active B cell population at end of IIIrd dose
(cells per mm3)

~ 2900 ~ 2700 ~ 2700 ~ 2500

Plasma B lymphocytes at end of IIIrd dose
(IgG1)

~ 550 ~ 550 ~ 550 ~ 500

IFN-γ (ng/ml) ~ 7.2 × 105 ~ 7.4 × 105 ~ 6.9 × 105 ~ 6 × 105

TGF-β (ng/ml) ~ 9.2 × 105 ~ 6.5 × 105 ~ 8.9 × 105 ~ 1.1 × 106

IL-2 (ng/ml) ~ 2 × 106 ~ 2.1 × 106 ~ 1.8 × 106 ~ 1.5 × 106

IL-10 (ng/ml) ~ 9 × 104 ~ 9 × 104 ~ 9 × 104 ~ 9 × 104

IL-12 (ng/ml) ~ 9 × 104 ~ 11 × 104 ~ 9 × 104 ~ 8 × 104

Memory T-helper lymphocytes count (cells
per mm3)

~ 7000 ~ 7100 ~ 6300 ~ 5200

Active T-cytotoxic lymphocytes population
per state (cells per mm3)

~ 900 ~ 1100 ~ 1100 ~ 1100

Active macrophages (cells per mm3) ~ 90 ~ 90 ~ 80 ~ 80
Macrophages presenting (cells per mm3) ~ 110 ~ 145 ~ 100 ~ 90
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with the positive vaccine controls (C3, C4) (Table 6). The C3 is a self-
assembling polypeptide nanoparticle (SAPN) based P. falciparum
malaria vaccine candidate that elicit IFN-γ, TNF-α, IL-4, IL-10 and IgG
antibody titers in mice [48,118]. The C4 is a novel fusion protein of
Staphylococcus aureus that indicated a high titer of specific antibodies
(IgG1 and IgG2a) responses and decrease the viable cell counts through
elicitation of mixture of Th1, Th2, and Th17 immune responses. The
simulation results were displayed no alteration in antigen level as well
as immunogenic responses except generation of IFN-γ against negative
control (C5). While the positive vaccine controls as well as PV1A/PV3B
showed drastic decrease in antigen counts that ultimately reached to
zero after 5th day of injection (Supplementary Fig. 1). Besides these,
they were also involved in the elicitation of B lymphocytes, cytotoxic T
lymphocytes, helper T lymphocytes and macrophages responses that
lead to generation of cytokines (IFN-γ, TGF-β, IL-2, IL-10 and IL-12) as
well as antibody titration (IgG + IgM and IgG1 + IgG2).

The generation of high level of IgM under study pointing towards
better primary immune response as well as decrease in antigen level
with enhancement in B cell population with antibodies (IgM,
IgG1 + IgG2 and IgG + IgM), which further reflecting good secondary
and tertiary immune responses. These results agreewellwith the earlier
finding of Shey et al. [66]. Utilizing similar in silico approach, the leading
PVs designed and characterized in the present study was compared
with the wet lab experimental data of Kaba et al. [48] and Ahmadi
et al. [49] (Table 6). The predicted result of immune simulation indicated
the elicitation ofmacrophages, B and T lymphocytes for the production of
cytokines (IFN-γ, TGF-β, IL-2, IL-10 and IL-12) as well as antibodies
(IgG + IgM and IgG1 + IgG2) against proposed top two PVs, which
seems to be similar observations obtained by aforementioned research
group in mice. Fig. 7 summarizes the comparative account on immune
simulations of C3, C4 with one of leading PVs (PV1A) having higher
potential to induce protective immune responses that might be owing
to use of Cholera toxin B subunit adjuvant. Therefore, designing strategy
used in PV1A/PV3B could be highly effective in stimulation immune
responses. Moreover, validity of immunoinformatics tools for
prediction of epitopes, protective immune response analysis,
constructing chimeric multi-epitope vaccine, assessment of vaccine
safety as well as efficacy and immunization modelling have been
exercised in the last five years with N500 literatures in the PMC
database that assisted in the preclinical and clinical studies of several
vaccine project including Hepatitis B Virus, Dengue, Schistosoma
haematobium, Treponema pallidum, S. aureus, Trypanosoma cruzi,
Helicobacter pylori, Middle East Respiratory Syndrome Coronavirus,
Zika virus [26,45,119,120]. Therefore, the use of bioinformatics
tools for prediction of antigenicity, epitopes and molecular
interaction are convenient and adequate approach in vaccine design
and development [47,84,121].

3.7. Molecular docking of leading PVs with antibodies IgG1 and IgG3

When an antigen interacts with antibody it induces the humoral
immune response and helps in clearance of pathogen. The IgG
antibodies (named in order of decreasing abundance IgG1, IgG2,
IgG3, and IgG4) are one of the most abundant pathogens
neutralizing molecules found in human serum. These antibodies
share N90% amino acid sequence identity but each subclass has
exclusive effector properties including half-life, epitope binding,
immunological complex formation, complement activation,
triggering of effector cells and placental transport. Moreover, the
IgG profile of a given individual is determined by their inherited
allotypes that can potentially influence the clinical manifestation
of the immune response [122]. However, broadly neutralizing
antibodies (bNAbs) have been found in a rare population of
patients that control the infection [123–125]. These bNAbs tend to
target different conserved antigenic regions exposed on the outer surfaces
of a pathogen across the circulating strains. Here, in the present study, a
protein-protein global docking method (ClusPro server) was used to
reveal the shape complementarity between PVs (as ligands) and the
interacting domains of antibodies IgG1 and IgG3 (as the receptors) to
eliminate the need of a long term exposure ofmalaria patients to selected
antigen mimetics PV1A and PV3B involving the epitopes (B1, B4 and B5)
of P. falciparum strains. These antibodies could be considered as bNAbs if
they found with a well detectable neutralization activity in wet lab
experimental studies [126–130]. Furthermore, the respective source
proteins P28, P25 and MSP1of epitopes B1, B4 and B5 have been
characterized as leading vaccine candidates [130,131]. Also, the
antibodies IgG1 and IgG3 have been found associated with human
malaria protection [132,133]. Thus, a structure based vaccinology
approach could be exploited to predict the probability of potent
PVs that might be able to block infection even more effectively
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[134]. These data lead to provoke the molecular interaction
studies of leading PVs (PV1A as well as PV3B) along with co-
crystallized control epitopes towards antibodies IgG1 and IgG3
(Table 7 and Fig. 8 B1- B6). For IgG1 and IgG3 antibody the
obtained lowest score for molecular docking of IgG1 and IgG3
control was −449.4 and − 630.9, correspondingly. The obtained
ClusPro docking energies and PatchDock scores of PV1A and
PV3B against both antibody receptors IgG1 and IgG3 were
found lower as compared to their respective controls C6 and
C7 (Table 7). Besides these, PV1A showed hydrogen bond
C3 C4

A B

D E

G H

Fig. 7. Immune simulation results of positive vaccine controls C3 (A, D, G, J, M) a
interaction through amino acids Leu-9, Val-13, Phe-15 and Lys-
326, Asp-329 of B5 epitope with antibody receptors IgG1 and IgG3,
correspondingly. Moreover, PV3B exhibited similar interaction
with IgG1 and IgG3 through Gly-255, Gly-280 and Gly-525 of B1,
Leu-551 of B4, respectively [135].

3.8. Molecular dynamics of the PV1A/PV3B -TLR2/TLR4 complexes

Molecular dynamics study is crucially for evaluating the stability of
the protein-protein complex, which can be determined by comparing
PV1A

C

F

I

nd C4 (B, E, H, K, N) along with test polypeptide vaccine PV1A (C, F, I, L, O).
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Fig. 7 (continued).
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necessary protein dynamics to their normal modes [136]. The NMA
allowed the demonstration of docked protein-protein complexmobility
and stabilization. Fig. 9(a, b) showed the 3D interaction model of
respective polypeptide vaccines PV1A and PV3B complexed with TLR2
and TLR4. The direction of each amino acid residue was given by arrows
and the length of the arrow corresponded to the degree of mobility. It
also provided the profiles of deformability (c, d), mobility (e, f),
eigenvalue (g, h), variancemap (i, j), covariancematrix (k, l) and elastic
network (m, n). The value of NMA-B-factors (mobility) indicated the
relative amplitude of the atomic displacements around the equilibrium
confirmation. While the deformability calculated the gradient of the
atomic displacements summed over all modes at every atomic position.
High values are expected in flexible regions such as hinges or linkers
between domains, whereas low values usually correspond to rigid
parts. The obtained higher and lower values of maximummobility and
deformability for PV3B (2.038E+02, 1.088E−06) indicated towards
Table 7
Molecular docking details of ClusPro docking energy and PatchDock score of PV1A and
PV3B as well as controls C6 and C7 towards antibodies IgG1 and IgG3.

Model
number

Receptor
(antibody)

Ligand
(PV/control)

ClusPro 2.0 docking
energy (Kcal/mol)

PatchDock
Score

B1 IgG1 C6 −449.4 6482
B2 PV1A −918.8 18,294
B3 PV3B −929.0 18,512
B4 IgG3 C7 −630.9 7834
B5 PV1A −1058.5 22,930
B6 PV3B −1025.1 19,814
more flexible regions compare to PV1A (3.443E+01, 4.740E−06). The
eigenvalue associated to each normal mode represented the motion
stiffness. Lower the eigenvalue, easier the deformation i.e., lower energy
is required to deform the complex structure. The respective eigenvalues
for PV1A and PV3B complexed with TLR2 and TLR4 were found 1.064E
−06 and 7.498E−09 that indicated the greater stability of complex
PV1A-TLR2. The individual and cumulative variances associated to each
normal mode were inversely related to the eigenvalue. The covariance
matrix indicated the coupling between pairs of residues, i.e. whether
they experience correlated (red), uncorrelated (white) or anti-
correlated (blue) motions whereas elastic network graph characterizes
pairs of atoms connected by springs and each dot in the graph
represented one spring between the corresponding pair of atoms [137].

3.9. Codon optimization, in silico cloning and expression of PV1A and PV3B

The sequence length of obtained cDNA for PV1A and PV3B were
1092 bp and 1992 bp, correspondingly. The Codon Adaptation Index
(CAI) values for PV1A and PV3B were 0.9857 and 0.9584, respectively.
For reliable optimization of codon, CAI value should lie between 0.9
and 1.0 [138]. However, the GC content of improved DNA sequence of
PV1A and PV3B were found 42.12% and 43.12%, which are lying in the
optimal range (30% to 70%) that could be easily expressed in any
suitable expression host [139]. Although, P. falciparum antigens could
be expressed in E. coli but require the codon harmonization (reduction
of amino acid misincorporation) to improve the immunogenicity
[140]. In the present study, the solubilization probability of recombinant
proteins (PV1A and PV3B) to be expressed in E. coli revealed by
bioinformatics tools RPSP, Protein-Sol, CamSol and SOLPro was lower
compare to positive vaccine controls (C3, C4) that indicated to look for

Image of Fig. 7
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Fig. 8. Visualization of docking models of C6 (B1), PV1A (B2), PV3B (B3) against antibody IgG1 and C7 (B4), PV1A (B5), PV3B (B6) against antibody IgG3. The respective colours of heavy
and light chains of IgG1 and IgG3 are shown in cyan and red as well as magenta and blue.
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alternative expression host (Table 5). Additionally, L. lactis was used as
expression host alternative to E. coli due to following advantageous
properties i) generally recognized as safe (GRAS) microorganism ii) lack
of outer membrane (iii) insignificant extracellular proteolysis activity
(iv) free of endotoxins (v) no lipo-polysaccharide contamination (vii)
accommodates cysteine-rich proteins (vii) accessibility of both inducible
and constitutive genetic control systems (viii) able to express prone-to-
aggregate and/or difficult-to-purify proteins (ix) presentation to the
host immune system in the context of micro-particles to avoids the
immunotolerance, which is normally provoked by oral delivery of soluble
antigens (x) exhibits similar codon bias to P. falciparum, which makes it
efficient protein expression and secretion system to outer surface that
could easily interact with host immune system [113,141–143]. In recent
years, several wet lab studies have confirmed the utilization of L. lactis
as an expression host to produce properly folded, pure and stable
chimeric and/or single antigenic proteins of many pathogens that elicited
high levels of functional antibodies/cytokines including P. falciparum
[144–148], Mycobacterium bovis [149], Mycobacterium tuberculosis
[150], Helicobacter pylori [151], Polish avian H5H1 influenza [152],
cancer [153] and Staphylococcus aureus [154]. Moreover, L. lactis-
mediated delivery of DNA vaccines also lead to the expression of
post-translationally modified antigens by host cells resulting in
presentation of conformationally restricted epitopes to the immune
system for induction of both cellular and humoral immune responses
[112].

Also, with the aforementioned properties, the last two decades
witnesses the use of genetically engineered L. lactis system as effective
oral based vaccine vehicles for delivering antigens of viruses, bacteria
and parasites to elicit both systemic and mucosal immunity
[155–158]. Finally, the size of PV1A and PV3B recombinant DNA
(obtained after insertion of cDNA into pIL1 expression vector) was
observed as 7477 bp and 8377 bp, respectively which lies inside the
ORF and could be translated into respective protein sequences with
four additional amino acids (MCKC) at the N-terminus (Fig. 10).
Therefore, an ideal multi-epitope polypeptide vaccine should compose
of a series of epitopes and/ or adjuvants that can elicit simultaneous
and strong innate and adaptive (humoral and cellular) immune
responses involving T- and B-cells responses against a targeted
pathogen of malaria. In contrast to traditional killed/live attenuated or
single-epitope vaccines, multi-epitope vaccines have distinctive
properties such as involvement of numerous HLA-restricted epitopes
derived from different antigens of various Plasmodium species/strains
that can be recognized by various T-cells, bringing of additional
components with adjuvant capability to enhance the immunogenicity
as well as long-lasting immunity and reduction of unnecessary parts
that can trigger the pathogenicity/adverse effects. Well-designed
multi-epitope vaccines with such advantages should become powerful
prophylactic and therapeutic agents against malaria infections.
However, the present problems in the field of multi-epitope vaccine
design include the selection of appropriate candidate antigens and
systematic arrangement of their immunodominant epitopes for
effective oral delivery through virus-like particles and SAPN. The
present study successfully utilized the immunoinformatics tools for
prediction of suitable epitope ensemble of target proteins for designing
a multi-epitope malaria oral vaccine.

4. Conclusion

Surprisingly, so far no licensed malaria vaccine is available in the
market to protectworld-wide human populations regardless of decades
of research. One of the major bottlenecks of malaria vaccine
development is immune escape mechanism of pathogen through
antigenic variation and/or HLA diversity. The designed PVs (PV1A and
PV3B) under present study may overcome the aforementioned issues

Image of Fig. 8


Fig. 9.Molecular dynamics simulation of respective polypeptide vaccines (PV1AandPV3B) complexedwith TLR2 and TLR4 (a, b), deformability (c, d), eigenvalue (e, f), variancemap (g, h),
correlation matrix (i, j) and elastic network model (k, l). Coloured bars showed the individual (red) and cumulative (green) variances in the correlation matrix. In the elastic network
graph, dots are coloured according to their stiffness, the darker greys indicate stiffer springs and vice versa (m, n).
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as they possess both B- and T-cell epitopes derived from 5 antigenic
proteins that involve multi -stages of pathogen life-cycle with world-
wide human population coverage (99.46%). Moreover, these PVs have
the higher potential to elicit both innate (TLR2 and TLR4) and adaptive
(cellular and humoral) immune responses. However, this warrants
further experimental validation so as to evaluate their efficacy in the
preclinical studies.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ijbiomac.2020.04.191.
Author statement

Manisha Pritam: Performed the experiments and analyzed the
results.

Garima Singh: Involved in analyzing the results.
Suchit Swaroop: Involved in study design.
AkhileshKumar Singh: Involved in designing of study and revision of

the manuscript.
Brijesh Pandey: Contributed substantially in review and editing of
revised manuscript.

Satarudra Prakash Singh: Involved in designing of study, analyzing
results and finalized the manuscript.

Funding

This study was self-financed and did not receive any grant from
funding agency.

Declaration of competing interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Authors would like to acknowledge Amity Institute of Biotechnology,
Amity University Uttar Pradesh, Lucknow for providing laboratory
workspace.

https://doi.org/10.1016/j.ijbiomac.2020.04.191
https://doi.org/10.1016/j.ijbiomac.2020.04.191
Image of Fig. 9
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