Skip to main content
. 2020 Apr 29;18:115. doi: 10.1186/s12955-020-01368-2

Table 3.

Goodness of fit results from validation analysis

Validation method (3-fold)
Pooled sample (N = 141)
Mean utility RMSE MAE Ab
diff < 0.03
Ab
diff < 0.05
Observed 0.6619
Model 1
 OLS 0.6624 0.2220 0.1783 9.9 16.2
 GLM 0.6153 0.2220 0.1916 3.5 9.2
 CLAD 0.6925 0.2240 0.1730 12.7 19.7
 MFP 0.7164 0.2288 0.1713 12.7 18.3
 MM 0.7254 0.2309 0.1717 12.0 20.4
 BETA 0.7246 0.2378 0.1775 10.6 16.2
Model 2
 OLS 0.6696 0.2187 0.1738 8.5 16.2
 GLM 0.6711 0.2197 0.1740 9.2 15.5
 CLAD 0.7304 0.2316 0.1710 7.0 21.8
 MFP 0.7224 0.2268 0.1684 11.3 16.9
 MM 0.7313 0.2292 0.1688 11.3 16.9
 BETA 0.7286 0.2355 0.1761 4.9 12.0
Model 3
 OLS 0.6671 0.2153 0.1711 12.0 17.6
 GLM 0.6671 0.2153 0.1711 12.0 17.6
 CLAD 0.7173 0.2268 0.1700 11.3 14.8
 MFP 0.7086 0.2204 0.1676 13.4 20.4
 MM 0.7177 0.2229 0.1689 9.2 16.9
 BETA 0.7347 0.2318 0.1740 11.3 16.9
Indirect mapping
 OLOGIT 0.6498 0.2353 0.1935 8.5 12.7

Dependant variable: EQ-5D-5 L utility score; Independent variables: Model 1 - MLHF total score; Model 2 – MLHF domain scores; Model 3 – MLHF item scores (Item 04, 17 and 21).

Abs diff. < 0.03 (0.05)% - proportion of predicted utilities whose absolute values deviate from the mean of the observed utility values by less than 0.03 (0.05); RMSE – Root Mean Square Error; MAE – Mean Absolute Error.

OLS - Ordinary least square; GLM - Generalized linear modelling; CLAD - Censored least absolute deviations; MFP - Multivariable fractional polynomials; MM - Robust MM estimator; BETA - Mixture beta regression model; OLOGIT ordered logit (indirect response mapping).