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Abstract

Recent advances in data analytics and computer-aided diagnostics stimulate the vision of patient-

centric precision healthcare, where treatment plans are customized based on the health records and 

needs of every patient. In physical rehabilitation, the progress in machine learning and the advent 

of affordable and reliable motion capture sensors have been conducive to the development of 

approaches for automated assessment of patient performance and progress toward functional 

recovery. The presented study reviews computational approaches for evaluating patient 

performance in rehabilitation programs using motion capture systems. Such approaches will play 

an important role in supplementing traditional rehabilitation assessment performed by trained 

clinicians, and in assisting patients participating in home-based rehabilitation. The reviewed 

computational methods for exercise evaluation are grouped into three main categories: discrete 

movement score, rule-based, and template-based approaches. The review places an emphasis on 

the application of machine learning methods for movement evaluation in rehabilitation. Related 

work in the literature on data representation, feature engineering, movement segmentation, and 

scoring functions is presented. The study also reviews existing sensors for capturing rehabilitation 

movements and provides an informative listing of pertinent benchmark datasets. The significance 

of this paper is in being the first to provide a comprehensive review of computational methods for 

evaluation of patient performance in rehabilitation programs.
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1. Introduction

Physical rehabilitation is commonly prescribed to benefit patients who suffer from physical 

impairments or disabilities, or need to restore functional abilities after injury or surgery [1]–

[3]. Numerous studies in the literature underline the essential role of physical rehabilitation 

for improved patient outcomes and emphasize the strong correlation between exercise 

intensity and outcomes of rehabilitation programs [4]–[7]. However, rehabilitation treatment 

imposes a substantial economic burden on patients and healthcare systems [8]–[10]. For 

instance, the cost of physical rehabilitation programs in the US in 2007 was about 13.5 

billion dollars based on the Medical Expenditure Panel Survey generated by the US federal 

government [9]. The expenditure was produced by nearly 9 million adults during 

approximately 88 million physical rehabilitation episodes.

In rehabilitation programs, a clinician instructs patients and monitors their performance of 

rehabilitation exercises in a clinical setting. This type of rehabilitation treatment is restricted 

by the availability of trained clinicians and it places demands on patients’ schedules. To 

increase the flexibility of rehabilitation programs, home-based rehabilitation is often 

employed as a supplement to clinic-based programs. In home-based regimens, a clinician 

customizes a personal rehabilitation plan for a patient consisting of a set of recommended 

exercises. Patients then perform the exercises following the given instructions, record their 

daily progress in a logbook, and visit the clinic periodically for progress assessment. Reports 

in the literature indicate more than 90% of rehabilitation programs are executed in an at-

home environment [11]. Nevertheless, a number of medical sources report low levels of 

patient motivation and adherence to the prescribed exercise regimens in home-based 

rehabilitation, leading to prolonged treatment duration and increased healthcare cost [12], 

[13]. Although many factors that reduce patient motivation and engagement in rehabilitation 

training have been identified, the lack of timely feedback and real-time supervision by a 

healthcare professional in an at-home setting is often cited as the most influential factor [14]. 

Poor motivation and supervision promote further risk because patients may perform 

exercises incorrectly as a result of those factors, which increases the risk of re-injury [3], [4], 

[12]. Accordingly, there is a demand for novel tools and equipment to support home-based 

rehabilitation, such as robotic assistive devices [15], exoskeletons, haptic devices [16], and 

virtual gaming environments [17]. With the advent of low-cost motion capture sensors, like 

Microsoft Kinect [18] and Asus Xtion [19], there has been a surge in related biomedical 

applications [20], [21]. VERA (Virtual Exercise Rehabilitation Assistant) [11] and KiReS 

(Kinect Rehabilitation System) [22] are exemplars of such tools, used for support of 

rehabilitation exercises. These systems employ a Kinect sensor to track patient movements, 

where a user interface displays two avatars that perform the prescribed exercise by the 

clinician and the ongoing movements and postures performed by the patient in real-time. 

Such visual feedback assists patients in improving their exercise performance, as well as in 

taking self-corrective action when needed [23]. Furthermore, the recordings of the daily 

exercise sessions can be sent via the internet to the respective clinician, who can assess the 

performance and provide feedback or corrective recommendations.

Likewise, traditional clinical assessment of patient progress is often based on a clinician’s 

visual observation of patient movement or exercise performance [24]. Commonly used tests 

Liao et al. Page 2

Comput Biol Med. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for this purpose may be condition-specific (e.g., FMA [Fugl-Meyer assessment], WMFT 

[Wolf motor function test], the ratio of optimal motion execution [11], [22]), more general 

screening of movement competency or performance (e.g., FMS [Functional Movement 

Screen™]), an evalaution of a specific muscle or joint (e.g., manual muscle test, range of 

motion testing), or a generic evaluation of specific skill of sport performance [25]. Some 

commonly utilized clinical evaluations or screening tools may be more objective and 

quantitative in nature, while others may rely more on a clinician’s intuitive understanding 

and subjective rating of the patient’s performance. Clinical tests/evaluations that are more 

subjective may have issues with the reliability and validity of the evalaution depending on 

the movement, exercise, or task being assessed [25]–[27]. Due to the subjectivity and 

challenge of evaluating many of the exercises and movements, sensors and data analytics 

may support clinical assessment by providing a complementary objective and quantitative 

measure of the quality of patient performance. For example, Oña Simbaña et al. [28] 

reviewed the systems for automated assessment of upper limb motor function using standard 

clinical tests.

To address the challenges associated with home-based and in-clinic rehabilitation programs, 

the development of systems that can reliably capture human movements, automatically 

analyze the recorded data, and evaluate the quality of the movement performance is critical. 

The provision of low-cost sensors with integrated functionality for tracking human motions 

provides an opportunity for the development of such systems. Furthermore, devising 

efficient computational algorithms for modeling and analyzing human motions becomes 

central to solving the problem of rehabilitation evalaution.

With regard to the sensory perception aspect of movement evalaution, obtaining precise 

movement data by motion sensors is crucial. Although a standard vision camera can be used 

as a motion sensor [29], [30], these cameras provide only 2-dimensional information about 

the captured scene and the lack of the third dimension’s information imposes limits on the 

evalaution accuracy. To cope with this deficiency, one alternative is to use optical motion 

tracking systems, which employ a set of markers attached to strategic locations on a 

patient’s body that are tracked by multiple high-resolution cameras [31]. These systems rely 

on computational algorithms to reconstruct the 3-dimensional scene by comparing and 

aligning the images taken by the set of multiple cameras. Although optical trackers are 

highly accurate and reliable, the high cost and need for attaching a set of markers during 

every session render them unsuitable for most cases of rehabilitation evalaution. Recent 

technology for 3-dimensional scene reconstruction based on vison/depth cameras has 

become popular due to the low cost and ease of use. Among the commercial vision/depth 

sensors, Microsoft Kinect [18] has been the preferred choice in most related works. Inertial 

sensors and accelerometers have also been extensively used for motion tracking and 

evaluation [32], due to their low cost and simple principles of operation.

Skeletal data extracted from color/depth cameras or inertial sensors are widely used in the 

domain of rehabilitation evaluation. Such data consist of time-ordered sequences of angular 

or position coordinates of the joints in the human body. Full-body skeletal data are highly 

redundant, thus, they are rarely applied directly for modeling and analysis of human 

motions. Consequently, feature engineering via selection of important skeletal dimensions or 
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distances is often employed for extracting relevant information from skeletal data [33]–[35]. 

Another common avenue for feature engineering entails creating new local features for 

representing the motions, based on a set of kinematic parameters that are predefined for an 

exercise, or by employing a functional mapping [36], [37]. Similarly, an often used 

processing step in feature engineering is dimensionality reduction, where unimportant or 

highly correlated dimensions are excluded from the data [38]–[41]. Principal component 

analysis (PCA) and its variants are widely used for dimensionality reduction of movement 

data [42]. Recently, a line of work emerged that uses machine learning models for automated 

extraction of features from collected rehabilitation data [39], [43], [44]. The efficient feature 

engineering of these algorithms produces an improved representation of the raw input data 

for movement evaluation, and it is an important constituent of the pertinent methods.

In this review, we adopted the following taxonomy for the main categories of computational 

methods for evaluation of rehabilitation exercises using motion capture data: discrete 

movement score, rule-based and template-based approaches. Discrete movement score 
approaches [45]–[48] classify individual repetitions of rehabilitation exercises into discrete 

classes, e.g., correct or incorrect. Conventional machine learning classifiers are commonly 

employed for this task, where the outputs are discrete class values of 0 or 1 (i.e., incorrect or 

correct repetition). A shortcoming of these methods is the inability to detect subtle changes 

in patient performance and provide intermediate levels of movement quality (for instance, 

with scores between 0 and 1). Rule-based approaches [36], [49]–[51] utilize a set of rules for 

a considered rehabilitation exercise defined in advance by clinicians or human movement 

experts. The rules are used as a gold standard for evaluating the level of correctness. A 

disadvantage of these approaches is that the rules are exercise-specific, and cannot be reused 

for other exercises. Template-based approaches are based on comparisons of measured 

movements with a template of the movements. The template is typically obtained from 

correct performance of the exercises by healthy subjects. One group of respective 

approaches employs distance functions for calculating a similarity score between patient-

performed repetitions and reference template repetitions: Euclidean, Mahalanobis, and 

dynamic temporal warping distances are the most frequently used functions for this purpose 

[52]–[59]. The benefit of the distance functions is that they are not exercise-specific, and 

thus can be applied for evaluation of new types of exercises. Another line of works exploits 

the ability by probabilistic models with latent variables to encode spatial variability and 

temporal dynamics of human movements [39]–[41], [54], [60]–[62]. For instance, Gaussian 

mixture models [39], [63] and hidden Markov models [61], [62] were used for motion 

modeling, and quality assessment is based on the likelihood that the individual sequences are 

being drawn from a derived model. Whereas the probabilistic models are advantageous in 

handling the variability due to the stochastic character of human movements, models with 

abilities for a hierarchical data representation (such as deep neural networks [64]) can 

produce more reliable outcomes for movement quality evalaution, and better generalize 

across individual patients and musculoskeletal conditions.

In the context of objective evaluation of patient movements in rehabilitation programs, it is 

important to note that a large number of robotic and mechanical devices have been designed 

and are commonly used for quantitative movement evalaution. Accordingly, multiple review 

papers have provided overviews of related works in the literature [15], [65]–[70]. The review 
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of rehabilitation assessment using robotic and mechanical devices is beyond the scope of 

this work, and we place emphasis on quantitative evaluation using computational approaches 

for analysis of movement data collected with motion capture sensors.

This review is organized as follows. Motion sensors for capturing rehabilitation exercises are 

reviewed in Section 2. Section 3 presents the related benchmark datasets for rehabilitation 

movements. Sections 4 discusses feature engineering for movement analysis. Section 5 

details the various approaches for evaluation of patient movements during the performance 

of rehabilitation exercises. Scoring functions used to scale and adjust movement 

performance quantities and movement segmentation are discussed in the ensuing two 

sections. Potential future research directions are presented in Section 8. The final section 

briefly summarizes and concludes the paper.

2. Motion Capture Sensors

In general, a motion sensor is a device, module, or subsystem used to detect physical 

movement within an environment in real-time. Over the last decades, various advanced 

sensors for capturing human movement were developed. Currently, two types of motion 

sensors are widely used for rehabilitation exercise evaluation: optical and inertial sensors. 

Further, the respective optical sensors can be classified into two broad categories: vison/

depth cameras and marker-based motion capture systems.

2.1. Vision/depth Cameras

There are two main types of depth cameras: structured light (SL) and time-of-flight (ToF) 

cameras. The commercial products Kinect v1 and Asus Xtion belong to the former. Kinect 

v2 and Azure Kinect are based on the ToF principle. SL cameras have lower cost, as they are 

simpler to construct. On the other hand, ToF cameras are more expensive, but are less 

affected by light variations, and therefore can be used in an outdoor environment.

Kinect v1——Microsoft launched Kinect for Xbox 360 as a gaming console in 2010, and 

the corresponding hardware version of the device for Windows (called Kinect v1) was 

released in 2012. The sensor includes a vision (RGB) camera, an SL depth camera, multiple 

microphones, and a motorized tilt. The SL camera employs an infrared laser projector 

combined with a monochrome Complementary Metal Oxide Semiconductor (CMOS) sensor 

to provide depth (i.e., range) information. Kinect v1 outputs synchronized 640×480 RGB 

and 320×240 depth images at a frame rate of 30 Hz. The combination of RGB and depth 

streams is often referred to as RGB-D data. Regarding the motion capture capabilities, 

Kinect v1 can provide 3D coordinates for 15 or 20 joints of a moving subject by using either 

OpenNI SDK (Software Development Kit) or Microsoft SDK, respectively. Due to its 

versatility and low price, the device was widely utilized for measuring human movements 

across different applications [20]–[22], [49], [52], [55], [56], [71]–[75].

Accordingly, many studies were conducted to verify the validity of Kinect v1 for posture 

measurement or motion capturing in biomedical applications [76]–[83]. The studies by 

Clark et al. [79], [83] were among the earliest works that evaluated the suitability of Kinect 

v1 for biomedical applications by comparing the measurements by Kinect v1 and a Vicon 
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optical tracking system (used as a gold standard). Clark et al. [79] reported that the 

agreement between the Kinect v1 and Vicon ranged from excellent for parameters like gait 

speed, step length, and stride length (Pearson correlation > 0.9) to moderate for other 

parameters like the stride time (Pearson correlation = 0.69). In a similar study [83], the 

authors assessed the reliability of Kinect v1 for postural control in lateral reach, forward 

reach, and single-leg standing balance. The findings indicated that Kinect v1 exhibited 

excellent correlation for almost all measurements (Pearson correlation = 0.96; range, 0.84–

0.99) and can validly be used for evaluating postural changes in a clinical setting. Galna et 

al. [80] studied the accuracy of Kinect v1 for measuring movement symptoms in people with 

Parkinson’s disease and found that Kinect v1 measured the timing of the movements very 

accurately (Intraclass Correlation Coefficient (ICC) > 0.9 and Pearson correlation > 0.9), 

whereas for measuring the spatial characteristic of movements the agreement ranged from 

excellent (for gross movements such as sit-to-stand ICC = 0.989) to poor (for fine 

movements such as hand-clasping ICC = 0.012). Still, the authors reported high correlation 

between the spatial measurements for Kinect and Vicon for all movements (Pearson 

correlation > 0.8). Similarly, Tao et al. [78] estimated the root-mean-squared error (RMSE) 

between the measurements by Kinect v1 and an Optotrak optical tracker for hand reaching 

positions, trunk positions, and elbow angular orientations, and reported RMSE errors of 6.3 

cm (2.5 inch), 9.8 cm (3.9 inch), and 26.7 degrees, respectively. Mishra et al. [81] designed a 

remote home-based rehabilitation program that uses Kinect v1 for motion tracking and 

streams the recorded videos in real-time to a clinic. The viability of the system was 

compared to a Vicon optical tracker. The authors introduced metrics for quantifying the 

angular trunk sway and reported a maximal measurement error of 17.2 degrees in 

anteroposterior (AP) direction and 7.3 degrees in mediolateral (ML) direction. In summary, 

almost all studies for validation of Kinect v1 reported an excellent temporal accuracy, 

whereas the spatial accuracy was high for larger body movements, and moderate to poor for 

more delicate movements. Other important considerations in practical applications of the 

sensor include: the accuracy of the measurements is dependent on the distance from the 

sensor and the selected view point for a particular movement, and limb occlusions during 

movements may impact the measurement accuracy of other body parts.

Kinect v2——Microsoft Kinect for Xbox One, an upgraded version of Kinect v1, was 

released in 2013. The corresponding hardware for Windows with the supporting SDK was 

released in 2014 (known as Kinect v2). Kinect v2 has a similar construction to Kinect v1, 

except that the SL depth sensor is replaced with a ToF depth sensor. The ToF sensor obtains 

the depth information by measuring the time it takes for an infrared laser pulse to travel back 

and forth between the camera and the surrounding objects. Kinect v2 offers an improved 

resolution of 1920×1080 RGB and 512×424 depth images at a frame rate of 30 Hz. The 

open-source Microsoft SDK2 allows extracting the skeletal coordinates of 25 joints. Kinect 

v2 has other advantages over its predecessor; for instance, it can detect objects up to 3 feet 

from the sensor, compared to 6 feet for Kinect v1.

Similarly, the precision of Kinect v2 for motion tracking has been assessed and reported in 

numerous publications [77], [81], [84]–[89]. For example, Napoli et al. [89] reported that the 

sensor can provide accurate joint displacements for a range of clinical tasks with RMSE of 
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3.4 cm (1.3 inch), while lower accuracy was noted when capturing joint angles with RMSE 

of 24.6 degrees. Comparable validation results were reported by Capecci et al. [34], where 

for a set of three rehabilitation exercises an average positional RMSE of 3.3 cm (1.3 inch) 

and an average orientational RMSE of 12.7 degrees were recorded. In [88], Otte et al. 

assessed the validity of Kinect v2 for clinical motion analysis by comparing its accuracy 

against a Vicon system, and concluded that the accuracy of measurements is moderate to 

excellent, where for most clinical parameters there was excellent consistency between the 

two systems. Dolatabadi et al. [85] employed two-group mean differences, i.e., Bland-

Altman Limit of Agreement (LoA), and Intraclass Correlation Coefficient (ICC) between 

Kinect v2 and a GAITRite mat to verify the capacity of Kinect v2 for recording gait. In three 

walking conditions, for all gait parameters the maximum values of the group mean 

differences were 8%, the 95% LoA was less than or equal to 11%, and the ICC ranged 

between 0.9 and 0.98. The comparison results implied that Kinect v2 is capable of 

measuring spatio-temporal gait parameters for objective evaluation. In [81], trunk sway 

measures calculated from 3D joint positions were employed for validation. The performance 

across all trials had the maximum trunk sway error of 12.8 degrees in AP direction and 5.6 

degrees in ML direction. Conclusively, Kinect v2 provided greater accuracy than Kinect v1, 

and most studies reported low measurement errors and adequate motion tracking abilities for 

a number of biomedical applications.

Azure Kinect——The latest generation of Kinect, called Azure Kinect, was released in 

July 2019. As the name suggests, the sensor’s functionality is based on the integration with 

Microsoft’s cloud computing service Azure. The target audience for this generation of the 

sensor is developers and businesses interested in artificial intelligence applications. The 

sensor offers an RGB camera with 3,840×2,160 pixels, a ToF depth camera with 

1,024×1,024 pixels, an inertial measurement unit, and seven microphones. The depth camera 

supports five modes of operation, and the RGB camera offers six modes of operation, each 

with different resolutions and frame rates. Compared to Kinect v2, Azure Kinect is much 

smaller and lighter, the resolution of RGB/depth cameras is doubled and they support 

different modes and color formats, and it also provides inertial data apart from the RGB and 

depth data. More importantly, Azure Kinect is no longer a game peripheral (e.g., for Xbox 

One) but a smart device used primarily by developers with Azure cloud.

Other Vision/Depth sensors——Asus Xtion Pro and Asus Xtion Pro Live both provide 

an SL camera for capturing depth information. Asus Xtion Pro Live houses also a color 

RGB camera and two microphones. The sensors are supported by OpenNI SDK for tracking 

15 body joints. The accuracy of depth data recorded by Asus Xtion is studied in [90], where 

under seven lighting conditions, the reported median error was less than 1.3 cm (0.5 inch). 

Other commercial vision/depth sensors include Intel’s RealSense [91] and Structure Sensor 

[92]. However, they are rarely used exclusively for motion tracking, and almost no efforts 

have been made to verify their accuracy and reliability for this purpose.

An overview of the main characteristics of the above vision/depth sensors used for motion 

capturing is provided in Table 1.
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2.2. Optical Motion Tracking Systems

Vicon, OptiTrack [93], Optotrak, and PhaseSpace motion capture [94] are the most common 

optical motion capture systems. They employ a set of markers that are attached to predefined 

locations on the human body, while multiple cameras positioned at different viewing angles 

track the markers’ locations during the movements. A dedicated software program utilizes 

trigonometrical relations among the markers in captured images and the locations of the 

cameras to calculate the positions and orientations of the body joints. Many studies 

confirmed the excellent positioning performance of these motion capture systems in both 

static and dynamic tests [95]–[97]. As a result, optical tracking systems are regarded as the 

gold standard for verifying tracking reliability of other motion sensors [76], [98]–[100]. On 

the other hand, their high cost limits their broad applicability for the assessment of patient 

rehabilitation progress.

2.3. Inertial Sensors

A general form of an inertial sensor includes an accelerometer and a gyroscope [101]. 

Integrated devices containing inertial sensors are collectively called inertial measurement 

units (IMUs). It should be noted that inertial sensors described in this review only refer to 

wearable sensors, and inertial data means measurements provided by accelerometers or 

inertial sensors. The accelerometer is a compact device designed to measure non-

gravitational acceleration, which is the rate of change of the sensor’s positional velocity. The 

sensor’s position is typically obtained by first subtracting the earth’s gravity from 

accelerometer measurements and afterward applying double integration. A gyroscope 

records the angular velocity of the sensor, i.e., the rate of change of the sensor’s orientation 

[102]. The measured positions and orientations of wearable inertial sensors are often used 

for analysis of human postures and motions. For the purpose of this study, joint positions 

and angles transformed from inertial sensors are still considered skeleton data, despite its 

sparse representation of the human motions.

Analogously to the previously described sensors, prior research focused on verifying the 

validity of inertial sensors for rehabilitation analysis and evaluation. Chung and Ng [103] 

concluded that accelerometers measure motor reaction times with a large ICC value of 0.74 

(p < 0.001). Yet, the reaction time measured by the accelerometer is on average 8 

milliseconds slower than that detected by the Vicon system. The work by Lugade et al. [104] 

reports that median sensitivities of an algorithm benchmarked on data provided by tri-axial 

accelerometers for activity identification are over 85% accurate in comparison to human 

raters. Fortune et al. [105] studied the ability of accelerometer data to be used for step 

counting. During walking or jogging tests, activity monitoring achieved a high median 

agreement of 92% with an interquartile range of 8%, which outperformed FitBits and a Nike 

Fuelband. The publications [106] and [107] both focus on the validity and reliability of 

inertial sensors for recording trunk movements. The former used the Pearson correlation and 

RMSE as metrics to measure the agreement between inertial and Optotrak measurements. 

The median values of the Pearson correlation exceeded 0.95, and the RMSE had a median 

value of 1 and 1.2 degrees in the AP and ML directions, respectively. In the latter, the 

coefficient of determination (r2) and RMSE were adopted to validate the IMU system. In the 

primary movement direction, the RMSE ranged between 1.1 and 6.8 degrees, and the 
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coefficients of determination were no less than 0.85. Washabaugh et al. [108] used Lin’s 

concordance correlation coefficient (i.e., LCC [101]) and the Pearson correlation coefficient 

to evaluate IMU’s validity for capturing spatiotemporal gait metrics. The authors concluded 

that inertial sensors provided accurate measurements for the respective study, however the 

degree of accuracy and reliability relied on several factors, such as the sensor position and 

movement speed. The validation studies in the literature generally agree that inertial sensors 

provide sufficiently accurate and fast movement data for rehabilitation analysis and 

evaluation.

2.4. Other Sensors

Other devices and sensors have been used in several works for rehabilitation evaluation. For 

instance, although standard vision cameras do not provide sufficient accuracy for motion 

capture, they can be employed to acquire facial expressions for pain detection [109], [110]. 

In [44], sequences of pressure maps were generated by a pressure-sensitive bedsheet to 

identify bed rehabilitation exercise. Teague et al. [111] performed joint health evaluation by 

sensing acoustical emissions from the knee using three types of microphones. And, in [112], 

thermal infrared images of patients were recorded by a medical infrared camera system and 

a quantitative evaluation of pain-related thermal dysfunction was obtained by analyzing the 

distribution of the skin temperature.

3. Datasets

A large number of publicly available datasets related to general human movements collected 

with healthy subjects are available for analysis [113]–[116]. The datasets are extensively 

used for benchmarking algorithms for action recognition, gesture recognition, or pose 

estimation. On the other hand, collecting large data sets of rehabilitation exercise data from 

patients suffering from an impairment or injury is more challenging due to privacy and 

safety concerns. Consequently, only a few public datasets for rehabilitation evaluation 

currently exist, and their main attributes are summarized in Table 2. The table lists the 

referenced publications, used sensors, data modality, number of subjects performing the 

exercises, number of exercises, and data availability.

Taylor et al.—

For the dataset collected by Taylor et al. [45], experimental data is obtained from 9 subjects 

performing 3 exercises: standing hamstring curl, reverse hip abduction, and lying straight leg 

raise. Five inertial sensors (accelerometers) are positioned on the thigh and shin of both legs 

and the waist to measure the 3-axis acceleration of the corresponding body part. Each 

exercise is repeated by each subject 10 times, both on the left and right sides, respectively. 

The acquired data is manually segmented into the individual repetitions of each exercise.

PAMAP2—

Physical Activity Monitoring Dataset (PAMAP2) [117], [118] was designed for activity 

recognition and estimation of exercise intensity (which involves light, moderate, or vigorous 

intensity of effort). It consists of 3,850,505 instances, recorded by 3 inertial sensors and a 

heart rate (HR) monitor. The sampling frequency of the inertial sensors and HR monitor are 
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100 Hz and 9 Hz, respectively. The data collection involved 9 subjects (8 males and 1 

female) performing 18 different physical activities. The duration of each activity is between 

1 and 3 minutes.

SPHERE-Staircase2014—

This dataset [119] consists of 48 video sequences captured by an Asus Xtion camera, 

whereas the associated skeleton data is obtained with OpenNI SDK. The activities include 

walking upstairs in normal or abnormal gaits. There is a total of 12 persons completing this 

process. The abnormal gaits include freezing of gait and using a leading leg (left or right 

leg). A qualified clinician manually labeled each frame as normal or abnormal performance. 

The data is provided in the form of skeleton time-series.

HPTE dataset—

Home-based Physical Therapy Exercises (HPTE) dataset by Ar and Akgul [71] contains 240 

color/ depth video streams captured with Kinect v1. Although the RGB and depth videos 

collected by the Kinect sensor are 640×480 pixels, they are stored as 256 gray-level images 

in 320×240 pixels size. Five volunteers were tasked to perform eight exercises, where each 

subject performed an exercise 6 times consecutively, resulting in 30 repetitions per exercise. 

The duration of each repetition is between 15 and 30 seconds.

dataELEMENT—

Created by Cuellar et al. [72] and collected with Kinect v1, dataELEMENT includes 

movements by 10 healthy subjects performing 5 exercises, where each exercise was repeated 

10 times. The recorded data comprises absolute angles of joints or bones with respect to an 

underlying 3D base coordinate system, and relative angles between the bones that share a 

joint. Kinect 3D Active—The dataset was created by Leightley et al. [120], [121] and it 

contains over 225,000 frames of depth and skeleton data recorded with Kinect v2 in a lab-

based indoor environment. The dataset includes the subjects’ personal information and the 

tracking states of all joints (i.e., ‘tracked’, ‘not tracked’, and ‘inferred’ states). Fifty-four 

participants (32 men and 22 women) participated in the data collection, and they were 

required to take standardized tests, including Short Physical Performance Battery (SPPB) 

[122], Timed-Up-and-Go (TUG) [123], vertical jump, and balance tests.

UI-PRMD—

University of Idaho – Physical Rehabilitation Movement Dataset (UI-PRMD) created by 

Vakanski et al. [124] consists of 10 exercises that are widely applied in physical 

rehabilitation programs: deep squat, hurdle step, inline lunge, side lunge, sit to stand, 

standing active straight leg raise, standing shoulder abduction, standing shoulder extension, 

standing shoulder internal-external rotation, and standing shoulder scaption. Ten healthy 

subjects performed each exercise 10 times in a correct and incorrect manner. Two sensors 

were employed for collecting the data: a Vicon optical tracking system and Kinect v2. The 

Vicon system provided positions and orientation angles for 39 joints, whereas Kinect 

measured the positions and orientation angles for 22 joints of the exercise movements.
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KIMORE—

KInect-based MOvement Rehabilitation dataset (or KIMORE) by Capecci et al. [125] was 

collected with Kinect v2, and involves 78 subjects performing 5 exercises that are clinically 

recognized for low back pain physiotherapy. The exercises are: lifting the arms, lateral tilt of 

the trunk with arms in extension, trunk rotation, pelvis rotations on the transverse plane, and 

squatting. The enrolled population consisted of 44 healthy subjects and 34 patients with 

chronic motor disabilities. For each exercise, clinicians defined rules for extracting features 

from the raw data, with the corresponding features provided in the dataset. Additionally, the 

clinical scores derived from a clinical questionnaire [126] for evaluating the subjects’ 

movement performance are included in the dataset.

4. Feature Engineering

Feature engineering is the process of creating features from raw data in order to improve the 

performance of a computational method. In rehabilitation evaluation, the recorded data from 

motion capture sensors are often in the form of high-dimensional time-series sequences of 

the joints’ locations and/or orientations. Such data is exceedingly redundant and correlated 

(e.g., the wrist displacements are highly correlated to the elbow displacements), and they are 

rarely applied directly for modeling and analysis of rehabilitation movements. Accordingly, 

feature engineering via selection of important joints or limb distances to extract lower-

dimensional representations from the raw data is often applied as a data processing step in 

rehabilitation evaluation. In general, feature engineering involves feature extraction and 

feature selection. Feature extraction refers to generating new features from raw input data by 

a functional mapping. The mapping can be determined manually by experts, or it can be 

learned from existing data representations. Feature selection entails selecting the most 

important features among existing and/or extracted features. The set of newly selected 

features is a subset of the original features. Efficient feature engineering produces an 

improved representation of the input data for the underlying task.

In many related works, feature engineering is performed manually based on authors’ 

understanding of human movements [33]–[37], [54], [97], [98], [126], [127]. For example, 

in [34], underarm angles and Euclidean distance between the elbows were used to describe 

the lifting of the arms. Similar, for squatting evaluation, knee angles and Euclidean distance 

between the ankles were extracted as clinical features. Jung et al. [37] proposed a set of 

distinctive features obtained from experimental data, consisting of mean speed, reaction 

time, duration, peak velocity, maximum velocity, distance error, direction error, and path 

length ratio. For assessing upper body movement after stroke, the range of motion, 

movement speed, symmetry ratio among body sides, and vertical distance were adopted as 

movement performance indicators in [35]. Yu and Xiong [128] selected eight bone vectors 

as important features to an algorithm for producing quality scores in support of home-based 

rehabilitation.

Although the approaches based on manual feature selection benefit from the authors’ 

intuitive understanding of the most important attributes for particular motions, creating 

features manually requires domain-knowledge and is time-consuming.
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Automated feature engineering to some degree can obviate the need for manual feature 

engineering. PCA is one of the most popular approaches for this task. It uses an orthogonal 

transformation to project measured correlated variables into linearly uncorrelated variables. 

Jun et al. [47] applied PCA on raw motion data consisting of joint positions for 

dimensionality reduction. However, PCA is not suited to identify the nonlinear structure of 

data [129], and therefore feature engineering based on nonlinear mapping has been studied 

extensively. Huang et al. [44] employed two types of nonlinear manifold learning—Local 

Linear Embedding and Isomap— for reducing the dimensionality of images. Another 

manifold-based approach using diffusion maps was employed for dimensionality reduction 

of skeletal data by Paiement et al. [40]. This method can find meaningful geometric 

descriptions of the data and has robustness to noise (Coifman and Lafon [38]). The nonlinear 

transformation of inputs by autoencoder neural networks has been used for dimensionality 

reduction of skeletal data [39]. Similarly, Crabbe et al. [43] proposed a CNN-based 

algorithm to extract a low-dimensional pose representation from depth images.

In many prior works, feature engineering has been realized in two or three consecutive steps. 

Researchers typically first define new features from the raw data and then apply automated 

feature engineering to simplify these features. For instance, several time-domain and 

frequency-domain features were extracted from inertial data in [130], and afterward PCA 

was applied to reduce the overall number of features for training. Houmanfar et al. [53] first 

derived statistical features from motion sequences, and after that, Least Absolute Shrinkage 

and Selection Operator (LASSO) was utilized to select five most relevant features. In [41], 

Tao et al. first constructed four possible feature descriptors by the geometry of the human 

body, and afterward, extracted the final features for each descriptor by using the method 

described in [40].

Manual feature selection is very common in movement data analysis and evaluation, since 

human understanding of the importance of specific features of the rehabilitation exercises 

provides excellent leverage toward the design and initialization of computational methods. 

Nevertheless, human movements are very complex, resulting in high-dimensional data with 

intricate temporal and spatial dependencies between the joint positions and orientations, and 

involve numerous constraints between the joints which are difficult to accurately encode or 

define manually. We hold that the approaches for automated feature engineering offer more 

powerful means for learning the underlying correlations and constraints in movement data 

than the approaches for manual feature selection. In this respect, deep learning models are 

the most compelling approaches for feature engineering at present, because of the ability to 

automatically learn spatio-temporal features at multiple levels of abstraction in high-

dimensional data.

The reader is referred to Table 3 for a complete list of publications based on the sensors, data 

representation modalities, selected features, and pertinent tasks.

5. Evaluation Methods

Successful motion quality evaluation in rehabilitation programs depends on efficient 

quantification of the level of performance of rehabilitation exercises from measured motion 
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data. The approaches for evaluating rehabilitation exercises can generally be categorized 

into: discrete movement score approaches, rule-based approaches, and template-based 

approaches. A summary of the approaches, advantages/disadvantages, and referenced works 

for each category is provided in Table 4.

5.1. Discrete Movement Score Approaches

This category of approaches classifies individual exercise repetitions into several discrete 

classes. Most often, the discrete classes are: correct and incorrect movements. Thus, the 

outputs are typically binary class values of 0 or 1 (i.e., incorrect vs correct repetition). 

Adaboost classifier [45],k-nearest neighbors [48], Bayesian classifier [71], and an ensemble 

of multi-layer perceptron neural networks [37] have been used to distinguish between the 

two classes. For instance, in [47] k-nearest neighbors classifier was applied for exercise 

classification after filtering the data noise and applying dimensionality reduction through 

PCA. The approach achieved 95.6% classification accuracy. Similarly, machine learning 

classification was applied in prior research for movement classification into score categories 

for standards clinical tests [28]; e.g., Support Vector Machines (SVM) [131], random forest 

[132], and artificial neural networks [133] were used for automated FMA, naïve Bayes 

classifier [134] was implemented for WMFT, and random forest [135] was used for 

Functional Ability Scale (FAS) evaluation. Furthermore, Um et al. [46] utilized an ensemble 

of convolutional neural networks to detect Parkinson’s disease states in data collected with a 

wrist-worn wearable sensor, where the states were defined as: OFF state with Parkinson’s 

syndrome symptoms, DYS state with dyskinetic symptoms, and ON state with no salient 

Parkinson’s syndrome or dyskinetic symptoms observed. The studies employing discrete 

movement scores have reported high accuracy in distinguishing correct from incorrect 

movement sequences. In spite of that, a shared shortcoming of the approaches is the lack of 

ability to monitor continuous changes in movement quality, or quantify the progress of 

patient performance over the duration of the rehabilitation program. Subsequently, discrete 

movement score category is less relevant to the development of systems for quantifying the 

rehabilitation performance.

5.2. Rule-Based Approaches

The class of rule-based approaches utilizes a set of rules for a considered rehabilitation 

exercise that is defined in advance by clinicians or human movement experts. The rules are 

used as a gold standard for assessing the level of correctness of the movements. Whereas a 

smaller number of rules, such as relative angles or distances, may be sufficient for 

representation of simpler movements, a more comprehensive set of rules is needed to 

describe more complicated exercises. For instance, the quality of sit-to-stand and squat 

exercises was measured by the knees and ankles angles in [50]. Similarly, in [49], three 

types of kinematic rules were defined to model rehabilitation exercises: rules for dynamic 

movement, rules for static postures, and rules for movement invariance. Afterward, fuzzy 

logic was applied to generate a single final score that represents the quality of the 

rehabilitation exercise. Exploring rule-based approaches for rehabilitation exercises is a 

valuable option for simpler exercises, however, it becomes increasingly more difficult to 

extract reliable features and obtain an objective evaluation for more complex types of 

rehabilitation exercises. In addition, these approaches lack flexibility and capacity for 

Liao et al. Page 13

Comput Biol Med. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



generalization to new exercises, since a different set of rules is required to be selected for 

each individual exercise.

5.3. Template-Based Approaches

In template-based approaches, patients’ exercise performance is evaluated based on the 

difference between training motion sequences executed by the patients and template motion 

sequences. For example, the training sequences may be captured during a patient’s practice, 

and the template sequences can be reference movements performed either by healthy 

subjects, clinicians, or by patients under a clinician’s supervision. The metrics used to 

measure motion similarity in template-based approaches can be classified into two 

categories: distance functions, and probability density functions.

a) Distance Functions—Several distance function-based approaches have been used 

for movement evaluation. In [52], Euclidean distance between reference template positions 

and velocities and the user’s positions and velocities were employed for calculating the 

motion similarity. Such an approach provided immediate feedback to the users performing 

the exercises via the position and velocity errors. Houmanfar et al. [53] measured the level 

of correctness of rehabilitation exercises performed by patients, by computing a 

Mahalanobis distance between the patient-performed repetitions and the mean value of a set 

of repetitions completed by a group of healthy subjects (used as the ground truth). 

Furthermore, the authors used the derived distance measure for the individual repetitions to 

develop additional metrics for quantifying the quality of a set of repetitions, a set of 

exercises, and for tracking patients’ progress over a period of time consisting of several 

sessions. The progress of a group of 18 patients was monitored during a hospital stay 

ranging from 4 to 12 days, and it was found that the calculated progress scores correlated 

well with the physiotherapist’s evaluation of the patients’ performance.

To formulate distance functions, let’s assume the notation X = {x(1),x(2),⋯x(L)} and Y = 

{y(1),y(2),⋯y(L)}for two motion sequences, where x(t) and y(t) are the joint measurement 

vectors at time t. The measurements at a particular time moment are multi-dimensional 

vectors denoted x(t) = x1
(t), x2

(t), ⋯, xD
(t)  and y(t) = y1

(t), y2
(t), ⋯, yD

(t) , where D is the 

dimensionality of the data. Euclidean distance between two sequences X and Y is defined by 

dE(X , Y ) = ∑t = 1
L x(t) − y(t) = ∑t = 1

L ∑d = 1
D xd

(t) − yd
(t) 2

. Similar, Mahalanobis distance 

between two sequences X and Y is dM(X , Y ) = ∑t = 1
L x(t) − y(t) V −1 x(t) − y(t) T  where V is 

the covariance matrix of the data. In fact, the Euclidean distance is a special case of the 

Mahalanobis distance when the covariance matrix is an identity matrix.

The main limitation of the Euclidean distance or its variants is the requirement for the 

compared motion sequences to have the same length. This drawback is overcome with the 

dynamic time warping (DTW) distance [136]. The DTW distance is the most commonly 

adopted for measuring motion dissimilarity between training sequences and reference 

template sequences [54]–[57], [128], [137]–[141]. For two univariate time series x = 

(x1,x2,⋯,xm) and y = (y1,y2,⋯,yn), a time warping path is a sequence W = (w1,w2,⋯,wk), 

max(m,n) ≤ k < m + n – 1 where the element wk = (i,j) indicates the matching relationship xi 
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and yj. The DTW distance between two sequences X and Y is 

dDTW (x, y) = maxW ∑k = 1
K δk(i, j) , where δk(i,j) = |xi −yj| or (xi – yj)2

The DTW distance has been applied to a broad range of features extracted in movement 

data. For example, Saraee et al. [137] used the DTW distance and speed ratio of key body 

joints for an exercise to directly evaluate the quality of performance with respect to reference 

template sequences. In [138] and [123], movement quality scores were derived by scaling 

the DTW distance values in the [0, 1] range. In the former, the DTW distance errors were 

scaled by the lower bound and upper bound, based on a scoring function introduced in [142]. 

The latter used a sigmoid function to map the DTW distance error into the required range. 

The publication [55] used a Euclidean norm of the DTW difference for evaluating exercise 

movements. In [57], the DTW distance was calculated for a set of selected features, and 

afterward, an adaptive neuro-fuzzy algorithm was used for calculating the overall quality of 

the practice sequences. Likewise, the study by Yurtman and Barshan [139] introduced a 

multi-template multi-match DTW algorithm to measure the similarity between training 

sequences and previously recorded template sequences.

Other distance functions have also been reported in the literature. For instance, a distance 

function similar to the Hausdorff distance and was proposed to measure the similarity 

between two exercise sequences [44]. Concretely, the distance between two sequences X and 

Y was defined as d(X,Y) = s(X,Y) + s(Y,X), where 

s(X, Y) = 1
L ∑i = 1

L min1 ≤ j ≤ L‖x(i) − y(i)‖. Similarly, the coefficient of cross-correlation [143] 

between two skeleton sequences was used to measure motion similarity; for two motion 

sequences X and Y consisting of N data points, the coefficient of cross correlation [144] is 

defined by: rxy(k) =
cxy(k)

cxx(0)cyy(0) , where cxx(0)=Σi = 1
N xi − x 2, cyy(0) = Σi = 1

N yi − y 2, cxy(k)

=

∑i = 1
N − k xi − x yi + k − y +

∑N − k + i
N xi − x yi − N + k − y , k = 1, 2, ⋯, N

∑i = 1
N xi − x yi − y , k = 0

, 

and k is an index indicating a time shift of one sequence with respect to the other. Another 

distance metric used for this purpose is the deep metric [145], which, differently from the 

Euclidean distance and DTW, can capture contextual information and semantic relationship 

between two motion sequences. The deep metric is defined as the Euclidean distance in an 

embedding space f, i.e., the distance between two motion sequences X and Y is dL(X,Y) = 

‖f(X) − f(Y)‖.

The studies in the literature based on evaluation using distance functions reported a high 

correlation between patient’s performance and clinicians’ evaluation. For instance, DTW-

based evaluation achieved high posture monitoring accuracy (91.9%) and exercise 

monitoring accuracy (95.2%) in comparison to clinicians’ annotated rehabilitation data [55], 

high correlation with the Brunnstrom stages of recovery (86% at p<0.001) [138], and high 

predictive score accuracy (80%) [57] in comparison to clinical evaluation. The DTW 

distance is especially suitable for rehabilitation evaluation, since it can compensate for the 

variability and time-shift in movement sequences. Conclusively, the main advantage of the 

distance function approaches is that they are not exercise-specific, and hence can be applied 
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for evaluation of new types of exercises. However, the distance functions also have 

shortcomings, because they do not attempt to derive a model of the rehabilitation data, and 

the distances are calculated at the level of the individual time-steps in the raw measurements.

b) Probability Density Functions—A body of research work utilizes probability 

density functions to model and evaluate rehabilitation exercises, due to the abilities of 

probabilistic models for handling the stochastic variability of human movement. For 

instance, the log-likelihood of individual sequences drawn from a trained Gaussian mixture 

model has been used for movement quality evaluation [146], [146]. Discrete hidden Markov 

models (HMM) were implemented for analysis and segmentation of human motion data for 

rehabilitation exercises [53], [147]. In [148], an approach based on hidden semi-Markov 

models (HSMM) was applied to evaluate five different rehabilitation exercises and provide 

an evaluation score [61], [62]. The requirement for segmenting the exercises into individual 

repetitions by discrete HMM or HSMM was overcome in [40], [41] by employing a 

continuous HMM.

GMM Log-likelihood:  A Gaussian mixture model (GMM) with K Gaussian densities has 

the form P(x) = ∑k = 1
K πkφ x|μk, Σk , where φ x|μk, ∑k  is the kth Gaussian function with 

mean μk and covariance matrix ∑k, and πk denotes mixing coefficients satisfying the 

constraint ∑k = 1
K πk = 1. GMM is trained by maximizing the log-likelihood of the template 

sequences (e.g., which can be collected from a group of healthy subjects), which for a 

sequence Y is defined by L(Y) = − log ∏t = 1
L P y(t) = − ∑t = 1

T log ∑k = 1
K πkφ y(t) |μk, Σk . 

The deviation between the motion sequences X and Y is dG(X, Y) = 1
L |L(X) − L(Y)|.

HMM Log-likelihood:  Hidden Markov model (HMM) has M possible states denoted S = 

{s1,s2,⋯,sM} where the state at time t is qt ∈ S. The likelihood of a sequence Y is calculated 

as P(Y) = ∑q1, q2, …, qL ∈ S πq1P y(1) | q1 ∏t = 2
L P y(t) | qt P qt | qt − 1 , where πq1 is the initial 

state distribution, P(y(t)|qt) is the probability that the observation y(t) is seen if in state qt, and 

P(qt|qt−1)is the transition probability from state qt−1 to state qt. The deviation between the 

motion sequences X and Y is calculated by dH(X, Y) = 1
L logP(X)

P(Y) .

Employing a probability density function approach, Capecci et al. [62] produced one of the 

most complete recent works on rehabilitation evaluation, where the authors asked two 

clinicians to score a set of movements, and used the scores as a gold reference standard for 

validating an HSMM-based approach. The research reported a high correlation between the 

HSMM-generated and the clinicians’ movement scores (Pearson correlation coefficient of 

0.62, p < 0.01). Furthermore, in comparison to a DTW-based evaluation (Pearson correlation 

coefficient of 0.56, p < 0.01), the probabilistic HSMM model demonstrated better 

correlation with the clinicians’ scores. In this work, a Kinect v2 sensor was used for motion 

capturing, and the authors indicated lower tracking errors for the upper body in comparison 

to the lower body. Similar results have been reported by other researchers, noting high 

correlation between machine learning-based and physiotherapist-based evaluation [53].
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Utilizing probabilistic approaches for exercise evaluation is advantageous in comparison to 

all other evaluation methods, because they employ statistical probability distributions to 

handle the random variability of human movements. The ability to model the stochastic 

variations in performing the same exercise both by the same subject and across different 

subjects is essential for efficient movement modeling and evaluation. One shortcoming of 

the probabilistic models is that the movements are represented at a single level of movement 

abstraction, and it is difficult to implement probabilistic modeling at multiple levels of 

movement abstraction.

6. Movement Segmentation

The objective of exercise segmentation is to extract individual repetitions from a continuous 

motion sequence of an exercise. Movement segmentation is an important step for evaluation 

of physical rehabilitation exercises, because most of the existing evaluation approaches are 

based on quantifying the quality of individual repetitions of an exercise. Consequently, after 

a patient’s movements are recorded with a motion capture sensor (and the patient performed 

multiple repetitions of the exercise), it is first required to segment the motion data into the 

instances of the individual repetitions, and only afterward is the evaluation technique applied 

to produce a quality score for the individual repetitions. The overall quality of the exercise is 

usually calculated by averaging over the performance scores of the individual repetitions 

[148].

Although in many studies the motion sequences are segmented manually, such an approach 

is not conducive to the realization of fully automated evaluation of rehabilitation exercises. 

Existing approaches for automated motion segmentation are broadly classified into two 

categories: (1) approaches that model the common characteristics shared by segment points, 

and (2) approaches that learn a segment pattern from a template library. In the first class, 

kinematic zero crossing (KZC) methods are frequently used to perform exercise 

segmentation. These methods determine segments based on zero crossings for the velocity 

[61], [62] or acceleration [149] of joint trajectories. Distance functions, such as Euclidean 

distance [150], Mahalanobis distance [151], and DTW distance [152] have also been used 

for this purpose, where segments are extracted at the points having the value of the distance 

function greater than a pre-selected threshold. Lee et al. [153] introduced a deep learning-

based approach for segmentation of time-series, in which an autoencoder network extracted 

representative features from input data, and the peaks in a distance function calculated from 

the features were selected as breakpoints for segmentation purpose. These methods rely on 

domain-specific knowledge of the underlying data to select discriminative features for 

segmentation purpose, and do not offer a mechanism to reject false positives. Thus, further 

post-processing is often necessary. For instance, in [148] the segment candidates were first 

selected by velocity zero crossing, and then the final breakpoints were identified from the 

segment candidates using an HMM.

The second class of approaches employs machine learning methodology to discover latent 

patterns from template libraries. HMM is often selected for segmentation of movement data, 

where each segment is treated as a hidden state, and the Viterbi algorithm is used to recover 

the state sequence [154]. Using regression-based techniques, a piecewise linear function was 
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applied to fit the template data, and segmentation was performed when the difference 

between the data and the regression line was greater than a given threshold [155]. Traditional 

classifier methods (such as SVM) were also used for movement segmentation. In [148], all 

data points of motion sequences were assumed to be either segment points or non-segment 

points, and a trained SVM model was utilized to classify the points and segment the motion 

data.

7. Scoring Functions

Scoring functions are often used to convert the output values of movement evaluation 

algorithms to a meaningful performance score limited within a certain range [33], [37], [61], 

[62], [72], [126], [128], [138], [156], [157]. Concretely, it is important that the approaches 

for movement evaluation generate quality scores that are understandable and interpretable 

both by patients and medical professionals. For instance, quality scores that range from 0 to 

100, or from 0 to 1, are easy to understand, record, and compare. On the other hand, the 

outputs of the quantitative algorithms described in Section 5 may be spread within a small or 

a large range of values, or they may even be negative numbers. Scoring functions are 

mathematical functions that map the outputs of the various approaches for movement 

evaluation to a convenient range of values that is meaningful to the end-users, and are 

therefore an important component of these systems. Scoring functions are also central to the 

validation and comparison of different approaches. Let X = (x1,x2,⋯,xm) and Y = 

(y1,y2,⋯,yn) denote the template and candidate training sequence, respectively. In [156], the 

dissimilarity between two motion sequences was converted to a performance score using the 

following formula: S(X , Y )=1 −
dDTW (X, Y )

maximum distance , where maximum distance is the DTW 

distance between the reference movement and the practice movement captured when the 

user was not moving at all. Zhang et al. [138] proposed a more complex score function 

based on constructed lower and upper bounds of the DTW distance. Concretely, the score 

function is S(X , Y ) = 1 −
ddtw(X , Y ) − dlb(X , Y )
dub(X , Y ) − dlb(xX , Y ) , with dlb(X , Y )= max

|First(X) − First(Y )|
|Last(X) − Last(Y )|
|max(X) − max(Y )|
|min(X) − min(Y )|

 and 

dub(X , Y ) = max(m, n) ⋅ max |max(X) − min(Y )|
|min(X) − max(Y )|. In [128], the performance score function was 

defined as S(X , Y ) = 1 −
dDTW (X , Y )

90 × 8 × s , where s is the length of the optimal path and 8 

represents the eight bone vectors extracted from raw motion data.

A score function on the basis of membership functions was introduced in [72]. Specifically, 

the score function is given by S(X , Y ) = 1
T ∑t = 1

T Pscore(t), with 

Pscore(t) = ∑i = 1
N rifi xi(t) − yi(t) , ∑i = 1

n ri = 1, where N is the number of features, T is the 

length of motion sequences X and Y which have been aligned using DTW, and fi is a 

Gaussian-shape function. In [61] and [62], a score function was derived using the log-

likelihood of a trained HSMM. The total score for the ith subject is 

scorei = CEmax − CEmin ×
logLi − logLmin

logLmax − logLmin
+ CEmin, where CEmax, CEmin are the 

Liao et al. Page 18

Comput Biol Med. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maximum and minimum scores of clinical evaluation and log Lmax, log Lmin are maximum 

and minimum values of the log-likelihood.

In contrast to these template-based score functions, Capecci et al. introduced the following 

two target-based score functions in [33] and [126], respectively: 

score(input) =
0 if Δ − | target − input | < 0
30
Δ (Δ − | target − input | )otℎerwise,and score(input) = 1 + input‐target

Δ
−1

where input denotes the extracted features, the target is the designed clinical goal to achieve 

and Δ stands for the admitted tolerance.

Different from the above scoring functions, Jung et al. [37] designed a function on the basis 

of classifiers. The reaching evaluation score of a session i was defined as 

 scorei = ∑f = 1
8 OLf

i , ∑f = 1
8 ORf

i , where OLf
i  and ORf

i  are the sub-classifier outputs for the 

left and right sides, respectively. The maximal score of [8, 8] corresponds to the subjects 

performed the experimental task perfectly with either the left or right side, whereas the 

minimal score of [1, 1] indicates the opposite.

The choice of a scoring function depends on the method used for movement evaluation. 

Researchers have paid less attention to the scoring function component of the systems for 

rehabilitation evaluation, and there is a lack of studies that perform a comprehensive 

evaluation of the various scoring functions introduced in related works.

8. Future Directions

This review summarized the motivations for automated rehabilitation evaluation, reviewed 

the main sensors for capturing human motion, and discussed existing evaluation approaches 

in the literature. In this section, several future research directions are discussed.

Definition of movement features for automated progress evaluation—

In clinical practice, the quality of patient movements or exercise performance is often 

assessed subjectively based on visual observation by a clinician. Although some patient 

scenarios allow for the use of quantitative functional measures (e.g., postural sway analysis, 

reaction time, range of motion testing) or patient-reported questionnaires for evaluation, 

clinicians often rely on more subjective tests (e.g., Functional Movement Screen™, specific 

skill evaluation, muscle tests) or their individual understanding of the correct performance of 

an exercise without the use of a checklist, rubric, or strict rules to inform evaluation of 

patient function or performance [25], [28], [158]. The use of subjective and intuitive 

evaluation methods creates the risk of measurement errors due to outside factors (e.g., 

clinician bias, measurement imprecision, etc.) which affect the reliability and validity of the 

evaluation, and clinicians may overestimate patient performance or function [25], [159]. 

Defining sets of recommended criteria for movement evaluation may reduce the variability 

and subjectivity in related tests [25], [158], as well it can benefit the approaches for 

automated evaluation of exercises.
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Although several research works have addressed this problem, the focus has been solely on 

quantifying rehabilitation movements for static body postures [49] and balance tests [81]. A 

recent study by Capecci et al. [62] proposed rules for assessing rehabilitation exercises based 

on attained target joint angles, target joint velocities, and postural constraints in 

accomplishing the goals of each exercise. However, the study proposed guidelines for only 

five selected rehabilitation exercises. The development of similar standard features for 

quantifying the various exercises that are commonly used in rehabilitation applications, and 

subsequently, the availability of databases with clinician-scored exercises, would provide the 

needed ground truth and facilitate the development of systems for automated performance 

monitoring and evaluation. Furthermore, valuation of the practical relevance of such 

approaches should also include non-inferiority studies, to provide a better understanding of 

whether unsupervised rehabilitation with systems for automated performance evaluation 

produces similar therapeutic benefits as clinician-supervised rehabilitation. Such studies will 

furnish the necessary insights underpinning the usability and benefits of the systems for 

clinical support of at-home rehabilitation.

Deep neural networks for feature learning—

The majority of prior related studies are based on manual selection of important movement 

features, or engineering new features from captured motion data. Such approaches have 

limitations since they require specialized expertise and motion kinematics knowledge to 

manually extract practical features from motion data, and the extracted features cannot be 

reused for new exercises. Although traditional feature engineering algorithms, such as PCA 

[47] and manifold learning [41], can be applied to encode local or global features for 

exercise evaluation, these methods generally assume certain preconditions. Deep learning-

based approaches are widely used across various applications for encoding feature 

representations without the need for domain-specific knowledge. The ability of deep 

learning models to encapsulate highly nonlinear relations among sets of observed and latent 

variables, as well as the capacity to encode data features at multiple hierarchical levels of 

abstraction make them an attractive means for motion modeling and analysis. For example, 

Vakanski et al. [39] employed an autoencoder neural network for dimensionality reduction 

of rehabilitation data. Other related research proposed different architectures of neural 

networks for learning spatial and temporal features from movement data [160]–[164]. In 

[162], a deep recurrent network was designed to learn co-occurrence features from skeletal 

data through a novel regularization scheme. Similarly, Song et al. [163] proposed a deep 

network that introduced spatial and temporal attention subnetworks. The spatial attention 

mechanism facilitated the selection of dominant joints, whereas the temporal attention 

assigned greater weights to salient time frames. Despite the large body of previous literature 

and research on deep learning for motion modeling (e.g., for motion recognition, 

classification), little research has been conducted on movement evaluation in rehabilitation 

exercises.

Large-scale rehabilitation datasets—

One of the reasons for the limited research on deep learning for evaluation of human 

motions in physical rehabilitation applications is the lack of large-scale annotated datasets of 

rehabilitation exercises. The publicly available datasets for rehabilitation evaluation covered 
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in this review are of relatively small size, and typically do not offer clinically relevant scores 

provided by experienced medical professionals. The emergence of larger and more 

comprehensive datasets, such as UI-PRMD and KIMORE, provides a basis for research in 

this direction and optimism that the community will put efforts into the collection of new 

datasets.

Combining movement quality with pain level evaluation—

Patients’ pain level during a rehabilitation exercise session can reflect their health status, and 

thus, it can be an important indicator of the treatment outcome. Accordingly, a great deal of 

study focused on assessing pain level [109], [110], [112], [165], [166]. E.g., in [110] facial 

images captured by a smartphone were used to estimate the pain level of cancer patients. 

Milton et al. [165] studied the relation between common symptoms and health aspects, and 

found that the pain intensity produces stronger relationships when compared to other 

symptoms. Aung et al. [166] reviewed the literature on non-verbal expression of chronic 

pain to select factors that contribute to the occurrence of pain-related behaviors, and further 

discussed how the detection of pain-related behaviors could support rehabilitation. 

Integrating movement evaluation based on captured motion data and pain evaluation based 

on visual facial expressions into a single comprehensive rehabilitation indicator can be an 

exciting research direction.

Fusing data from depth sensors and inertial sensors—

As we stated earlier, the extraction of skeletal data is a trivial task with existing vision/depth 

sensors. However, these sensors are susceptible to the external environment (such as 

occlusion of body parts and lighting conditions) and have limitations in providing accurate 

information. For example, Destelle et al. [167] improved the accuracy of skeletal data 

extracted from depth cameras with the use of inertial data. Chen et al. [168] reported 

enhanced movement recognition when fusing depth and inertial data. Moreover, the fusion 

of depth, skeleton, and inertial data for human action recognition has been explored in 

numerous other studies [169]–[173]. In contrast, data fusion from different types of sensors 

is rarely applied to assessing rehabilitation exercises, and it can be a promising research 

avenue.

Motion capture using a smartphone—

At the present time, smartphones are accessible to most people as they are becoming more 

affordable. Most smartphones possess high-resolution cameras and advanced inertial 

sensors. Therefore, the use of smartphones to record human motion for exercise evaluation is 

appealing. Some efforts have been made in this regard [174]–[181]; however, these works 

have been limited to the use of inertial data for rehabilitation evaluation. In addition, there is 

no systematic study on the accuracy and reliability of these sensors for motion capture. In 

2018, Apple introduced the TrueDepth IR (infrared) camera to the iPhone X line. The 

camera allows motion capture with the smartphone, which offers great potential for related 

medical applications. It is very likely that most of the other smartphone manufacturers will 

introduce similar motion capture technology to their models in the very near future. The use 

of smartphones for movement evaluation is particularly attractive and suitable for home-

based rehabilitation.
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Combining evaluation with voice assistants—

Providing a qualitative or quantitative evaluation score of rehabilitation exercise to patients 

is far from sufficient to support effective implementation of at-home rehabilitation programs. 

The integration of voice assistants for conveying evaluation feedback to the patients can 

greatly improve the efficiency and user-friendliness of these types of systems. For instance, 

an integrated voice assistant (similar to Alexa or Google’s voice assistant) can instruct the 

patient on the sequence of movements to perform or the correctness of the posture during a 

practice session, as well as provide suggestions on how to improve the exercise quality or 

which aspects of the movements are not performed correctly.

9. Conclusion

This paper presents a review of computational approaches for automatic evaluation of 

patient performance in rehabilitation exercise programs, with a focus on machine learning 

methods for quantification of the quality of patient movements performed in a home-based 

setting.

The review categorizes the pertinent approaches into three major groups: discrete movement 

score, rule-based, and template-based approaches. The main characteristics, advantages and 

disadvantages of these groups of approaches, and representative studies of related works in 

the literature are described in the paper. We also detail the sensory systems used for data 

collection of rehabilitation movements and provide a description of the respective datasets 

for rehabilitation evaluation. The study reviews respective publications on the related topics 

on feature engineering, movement segmentation, and scoring functions. Lastly, we list 

several recommendations for future directions in rehabilitation evaluation.

The advances in machine learning and the advent of inexpensive and reliable motion capture 

sensors have inspired an increased interest in automated evaluation of rehabilitation 

exercises. Related studies in the literature corroborated the feasibility and viability of such 

technology, and advocated that it can create substantial benefits both for patients and 

healthcare systems. Numerous research works reported high accuracy in predicting the level 

of correctness of patient performance in comparison to reference movement data collected 

with healthy subjects. In addition, comparative studies that employed clinicians’ evaluation 

of movement quality as ground truth for validation of the computational approaches for 

exercise evaluation reported a high correlation in the assigned quality scores. These findings 

have been encouraging and evinced the potential of computational approaches for automated 

evaluation of rehabilitation exercises.

Despite the progress, there are still open questions and numerous challenges to overcome 

before we can witness a broad deployment of these systems in home-based and in-clinic 

settings. On one hand, modeling human movements remains a challenging problem and 

requires devising novel models that can successfully encapsulate the inherent variability in 

human movements. Furthermore, little research has been conducted on evaluating the impact 

of the approaches for rehabilitation evaluation on the long-term patient outcomes and 

whether the provided evaluation produces similar therapeutic benefits as clinician-

supervised exercise programs. Another major impediment is the reliance of the greatest 
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majority of the related systems on Kinect v1 or v2 sensors, whose production was 

discontinued by Microsoft in 2018. Fortunately, Microsoft introduced a new version Azure 

Kinect in 2019; however, the new sensor uses a different programming platform, and cannot 

re-use the programs developed for the older Kinect sensors in numerous research studies.

The recent introduction of cell-phones with motion tracking capabilities combined with the 

progress in cloud computing services offer enormous potential for widespread use of this 

technology. We believe that these systems will be ubiquitous in the near feature and they will 

play an important role in complementing the traditional approaches for evaluation of 

rehabilitation exercises.
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Highlights

• The paper reviews quantitative methods for assessment of rehabilitation 

movements.

• The review covers pertinent sensors for capturing rehabilitation movements, 

and datasets with rehabilitation exercises.

• Related work in the literature on data representation, feature engineering, 

movement segmentation, and scoring functions is presented.
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Figure 1. 
(a) Kinect v1; (b) Asus Xtion PRO LIVE; (c) Kinect v2; (d) Azure Kinect DK.
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Table 1.

RGB-D sensor capability comparison.

Feature Kinect v1 Asus Xtion PRO LIVE Kinect v2 Azure Kinect DK

RGB camera 1,280×960 px at 12 Hz 
640×480 px at 30 Hz 1,280×1,024 px at 30 Hz 1,920×1,080 px at 30 

Hz 3,840×2,160 px at 30 Hz

Depth camera
320×240 px at 30 Hz 640×480 px at 30 Hz

320×240 px at 60 Hz 512×424 px at 30 Hz
640×576 px at 30 Hz
512×512 px at 30 Hz
1,024×1,024 px at 15 Hz

SL SL ToF ToF

Motion sensor None None 3-axis accelerometer 3-axis accelerometer +3-axis 
gyroscope

Operative measuring 
range 0.85~4m 0.8m~3.5m 0.5~4.5m 0.5~3.86m; 0.5~5.46m;

0.25~2.88m; 0.25~2.21m

Field of view 
(horizontal × vertical 
degrees)

57×43 degrees 58×45 degrees 70×60 degrees 75×65 degrees; 120×120 degrees

Skeleton joints 15 or 20 joints 15 joints 25 joints 32 joints
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Table 2.

Datasets description.

Dataset Reference Year Sensor Modality Subjects Exercises Available

Taylor et al. [45] 2010 5 inertial sensors Inertial data 9 3 No

PAMAP2 [118] 2012 3 inertial sensors + 
heart rate monitor

Inertial data; heart rate 
signal

9 18 Yes

SPHERE-Staircase2014 [119] 2014 Asus Xtion Depth video; skeleton data 12 18 Yes

HPTE [71] 2014 Kinect v1 Gray-level and depth video 5 8 Yes

dataELEMENT [72] 2014 Kinect v1 Skeleton data 10 5 Yes

Kinect 3D Active [121] 2015 Kinect v2 Depth and skeleton data 54 13 Yes

UI-PRMD [124] 2018 Kinect v2 + Vicon Skeleton data 10 10 Yes

KIMORE [125] 2019 Kinect v2 RGB and depth videos; 
skeleton data

78 5 Yes
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Table 3.

Summary of sensors, modalities, features, and objectives per publication. G: gray-level image; D: depth 

image; S: skeleton data; I: inertial data; MC: motion classification; MA: motion assessment; MS: motion 

segmentation; PE: pose estimation; DA: data augmentation.

Reference Sensor Modality Feature engineering Objective

Ar and Akgul [20] Kinect v1 G + D Histogramming 3D Haar-like features MC

Ar and Akgul [71] Kinect v1 G + D Histogramming 3D Haar-like features MC

Benetazzo et al. [52] Kinect v1 S None MA

Cuellar et al. [72] Kinect v1 S Hand-crafted MA

Hagler et al. [73] Kinect v1 S Hand-crafted MA

Nomm and Buhhalko [74] Kinect v1 S Hand-crafted MC

Zhao et al. [49] Kinect v1 S Hand-crafted MA

Anton et al. [22] Kinect v1 S Hand-crafted MA

Anton et al. [55] Kinect v1 S Hand-crafted MC

Su [56] Kinect v1 S Hand-crafted MA

Su et al. [57] Kinect v1 S Hand-crafted MA

Crabbe et al. [43] (data from [119]) Kinect v1 D None PE

Uttarwar and Mishra [75] Kinect v1 S Hand-crafted MC

Saraee et al. [137] Kinect v2 S Hand-crafted MA

Vakanski et al. [39] (data from [113]) Kinect v2 S Autoencoder network MA

Paiement et al. [40] (data from [182]) Kinect v2 S Diffusion maps MC + MA

Parisi et al. [182] Kinect v2 S Hand-crafted MA

Capecci et al. [33] Kinect v2 S Hand-crafted MA

Capecci et al. [34] Kinect v2 S Hand-crafted MA

Capecci et al. [126] Kinect v2 S Hand-crafted MA

Capecci et al. [61] Kinect v2 S Hand-crafted MA

Capecci et al. [62] Kinect v2 S Hand-crafted MA

Tao et al. [41] (data from [119]) Kinect v2 S Diffusion maps MC + MA

Osgouei et al. [54] Kinect v2 S Hand-crafted MC

Spasojevic et al. [35] Kinect v2 S Hand-crafted MA

Yu and Xiong [128] Kinect v2 S Hand-crafted MA

Saraee et al. [156] Kinect v2 S Hand-crafted MA

Taylor et al. [45] Inertial sensor I Hand-crafted MC

Zhang et al. [48] Inertial sensor I Cross-correlation function MC

Lin and Kulic [148] Inertial sensor S None MS

Chen et al. [183] Inertial sensor I Hand-crafted MC

Zhang et al. [138] Inertial sensor I None MA

Houmanfar et al. [53] Inertial sensor I Hand-crafted + LASSO MA

Msayib et al. [184] Inertial sensor S Hand-crafted MA

Um et al. [185] Inertial sensor I None DA
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Reference Sensor Modality Feature engineering Objective

Um et al. [186] Inertial sensor I None MC

Um et al. [46] Inertial sensor I None MC

Burns et al. [187] Inertial sensor I HAR statistical and heuristic features 
[188]

MC

Yurtman and Barshan [139] Inertial sensor I None MC + MA

Karime et al. [127] Inertial sensor I Hand-crafted MA

Coskun et al. [189] Vicon MX-40 cameras; ToF + 
camera

S None MC

Vamsikrishna et al. [190] Leap motion controller S Hand-crafted MC
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Table 4.

Summary of approaches for evaluation of rehabilitation movements.

Approach Advantage Disadvantage Reference

Discrete movement 
score approaches

Efficient and achieve high 
accuracy

Cannot track diverse degrees of 
functional abilities

[37], [45]—[48], [55], [71], [74], [106], [183], 
[185]—[187]

Rule-based 
approaches

Provide multiple performance 
scores; less computation 
complexity

New rehabilitation exercises 
require different rules to be 
designed

[33]—[36], [49], [50], [61], [62], [73], [126], 
[127], [156], [182], [191]—[195]

Template-based 
approaches

Avoid the process of making 
rules; Can reflect the level of 
motor ability

Only give a overall score for 
exercise performance

[39]—[41], [52], [53], [55], [57], [96], [97], 
[103], [128], [138], [140], [143], [145], [148], 
[156], [190], [196]
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