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For visually guided navigation, the use of environmental cues is essential. Particularly, detecting local boundaries that impose
limits to locomotion and estimating their location is crucial. In a series of three fMRI experiments, we investigated whether
there is a neural coding of navigational distance in the human visual cortex (both female and male). We used virtual reality
software to systematically manipulate the distance from a viewer perspective to different types of a boundary. Using a multi-
voxel pattern classification employing a linear support vector machine, we found that the occipital place area (OPA) is sensi-
tive to the navigational distance restricted by the transparent glass wall. Further, the OPA was sensitive to a non-crossable
boundary only, suggesting an importance of the functional constraint of a boundary. Together, we propose the OPA as a per-
ceptual source of external environmental features relevant for navigation.
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Significance Statement

One of major goals in cognitive neuroscience has been to understand the nature of visual scene representation in human ven-
tral visual cortex. An aspect of scene perception that has been overlooked despite its ecological importance is the analysis of
space for navigation. One of critical computation necessary for navigation is coding of distance to environmental boundaries
that impose limit on navigator’s movements. This paper reports the first empirical evidence for coding of navigational dis-
tance in the human visual cortex and its striking sensitivity to functional constraint of environmental boundaries. Such find-
ing links the paper to previous neurological and behavioral works that emphasized the distance to boundaries as a crucial
geometric property for reorientation behavior of children and other animal species.

Introduction
The use of visual information plays a critical role for spatial navi-
gation. For example, when a navigator is in an unfamiliar envi-
ronment without an internal map of the space, the navigator has
to rely on external visual cues to establish the sense of direction
and guide his/her movements. How does the human visual sys-
tem extract and encode navigationally relevant visual cues from a
scene environment?

A coherent set of recent evidence suggests that a scene-selec-
tive region in the human brain, the occipital place area (OPA;
Dilks et al., 2013; Grill-Spector, 2003), is crucially engaged in

processing navigation-related information of immediate envi-
ronments. For example, the OPA showed sensitivity to a mirror-
reversal of scenes (Dilks et al., 2011), which did not change a
category or an identity of the scene but changed the significance
for navigation as the mirror-reversal flips the path’s orientation.
Systematic investigation using multivoxel pattern analysis
showed that the OPA coded for the direction of navigable path,
which was determined by the position of the doors or spatial
arrangements of boundaries (“path affordance”; Bonner and
Epstein, 2017). The OPA also showed sensitivity to changes in
the viewer’s distance to scenes (Persichetti and Dilks, 2016), and
a voxelwise encoding model of 3D scene-structure (e.g., distance
and orientations of surfaces) explained the most variance of the
OPA activation (Lescroart and Gallant, 2019). Henriksson et al.
(2019) further showed that multivoxel patterns of OPA repre-
sented the spatial layout of scenes invariant to changes in tex-
tures, whereas the parahippocampal place area (PPA; Epstein
and Kanwisher, 1998) represented texture more specifically than
the layout, suggesting the OPA’s distinctive role in representing
the local environmental geometry. Altogether, there is converg-
ing evidence suggesting that OPA is crucial in representing
three-dimensional boundary structures in visual scenes.
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However, there are remaining questions about the role of
OPA in representing navigational information of visual bounda-
ries. What boundary structure matters for a navigator, and does
the OPA represent navigational cues that are functionally impor-
tant? The OPA may be sensitive to the perceptual aspect of boun-
daries (e.g., walls with vertical structure that is visually distinctive
from horizontal surface) or to the functional aspect of boundaries
such as limits imposed on navigator’s movements (e.g., walls
blocking the path). Earlier researchers have proposed that boun-
daries might be defined in terms of their functional affordance
(Kosslyn et al., 1974; Muller and Kubie, 1987). For example, any
environmental structure providing a functional constraint can be
considered as a boundary, beyond visible tall walls. If so, it makes
ecological sense that the visual system that represents boundary
and distance developed sensitivity to represent not only the pres-
ence of a functional boundary but also how far the functional
boundary is from an observer (which hereinafter referred to as
the navigational distance). The functional constraint in an envi-
ronment can come from multiple objects (proximal or distal), at
gradient and subjective levels based on an observer’s physical
abilities. For the purpose of this paper, we focus on one type of a
functional boundary that has a significant impact on the naviga-
tional path and affordance in space, such as those that block an
observer’s movement to move forward in an environment.

Despite its importance, the neural correlate of navigational
distance has not been explicitly tested. Imagine an environment
where there is a glass wall in front of you that you can see
through but cannot cross over. Will the OPA be sensitive to the
navigational distance to the glass wall beyond the visible distance
to the back wall? Here, we directly test this ecologically impor-
tant question: whether and how the OPA represents the naviga-
tional distance in scenes. We hypothesized that if the OPA
encodes the functional aspect of boundaries, it will be sensitive to
the presence of structures blocking the movements (“naviga-
tional boundary”) and will represent the distance to such naviga-
tional boundaries (“navigational distance”). We systematically
manipulated the navigational distance by artificially generating
scenes with transparent glass walls as navigational boundaries.

Materials and Methods
Participants
Experiment 1
Eighteen participants (6 male, 12 female; 1 left-handed; ages 19–31) were
recruited from the Johns Hopkins University (JHU) community with fi-
nancial compensation. Three participants were excluded from the analy-
sis. One participant was excluded because his regions-of-interest (ROIs)
were not localized. The other two participants were excluded due to ex-
cessive movements. All had normal or corrected-to-normal vision.
Written informed consent was obtained, and the study protocol was
approved by the Institutional Review Board of the JHU School of
Medicine.

Experiment 2
Fifteen participants (6 male, 9 female; 2 left-handed; ages 18–26) were
recruited from the JHU community with financial compensation. All
had normal or corrected-to-normal vision. Written informed consent
was obtained, and the study protocol was approved by the Institutional
Review Board of the JHU School of Medicine.

Experiment 3
Fourteen participants (6 male, 8 female; three left-handed; ages 18–29)
were recruited from the JHU community for financial compensation. All
had normal or corrected-to-normal vision. Written informed consent
was obtained, and the study protocol was approved by the Institutional
Review Board of the JHU School of Medicine.

Experimental Design
Stimuli
For all three experiments, artificially rendered indoor environments
were used as the stimuli. The environments were constructed using vir-
tual-reality software (Unreal Engine 4, Epic Games). Captured images
from each environment were used as stimuli. The stimuli were presented
in 600� 465 pixel resolution (13.8° � 10.7° visual angle) in the scanner
with an Epson PowerLite 7350 projector (type: XGA, brightness: 1600
ANSI lumens).

Each environment was identical in spatial layout but different in
terms of surface texture on the floor and walls. For each environment, a
unique set of two textures (floor and wall textures) were used. The tex-
ture on the ceiling was identical across all environments. In Experiment
1, 24 unique environments (http://web.yonsei.ac.kr/parklab/IMAGE_
SETS.html) were created separately for each distance level (i.e., Near,
Middle, and Far). Critically, we manipulated the navigational boundary
(e.g., glass wall) within each environment by adding or removing the
glass wall from same sets of environments. Thus, any texture difference
across distance levels remained the same for the No-Glass-Wall and the
Glass-Wall conditions. In Experiments 2 and 3, we generated 36 unique
environments (http://web.yonsei.ac.kr/parklab/IMAGE_SETS.html) and
used the same set of environments to create the stimuli for all distance
levels.

Stimuli validation with behavioral ratings
To validate the distance perception of our stimuli, JHU undergraduate
students who did not participate the fMRI experiment were separately
recruited and compensated with course credits.

In Experiment 1, the stimuli were presented one at a time in a ran-
dom order, and participants were asked, “How far would you be able to
walk forward?” Participants estimated the perceived navigational dis-
tance (in feet or meters) and typed their answers using a keyboard.
When there was no glass wall (No-Glass-Wall), the perceived naviga-
tional distance was significantly different across Near, Middle, and Far
(one-way repeated-measures ANOVA: F(2,10) = 23.4, p, 0.01). A paired
t test revealed that there is a stepwise increment between distance levels
(Near vs Middle: t(10) = �5.08, p, 0.01, Middle vs Far: t(10) = 4.29,
p, 0.01). In contrast, when there was a glass wall at the same location
(Glass-Wall), the perceived navigational distance was about the same
across Near, Middle, and Far (one-way repeated-measures ANOVA:
F(2,10) = 1.1, p=0.35). The results suggest that the perceived navigational
distance was substantially changed by the presence of a transparent glass
wall.

In Experiment 2 and 3, there were two questions asked. The first
question was “Would you be able to reach the back wall of the room?”,
and participants were asked to respond by pressing either “Yes” or “No”
button. The purpose of this question was to test whether the boundary
was perceived as non-crossable. As predicted, almost all participants (15/
16 in Exp2, 17/18 in Exp3) chose to answer “No (cannot reach the back
wall)” for the glass wall. On the other hand, 17 of 18 participants in
Experiment 3 answered “Yes (can reach the back wall)” for the Curtain
condition, confirming that the curtain is perceived as an environmental
feature that is easily crossable, whereas the glass wall is perceived as a
non-crossable boundary.

The second question was “How far would you be able to walk for-
ward?” In Experiment 2, the perceived navigational distance was about
the same across Near, Middle, and Far (one-way repeated-measures
ANOVA: F(2,14) = 0.91, p=0.42) when the glass wall was located at the
same position (Constant-Glass-Wall). On the contrary, when the location
of glass wall was varied while the visible distance was kept the same
(Varying-Glass-Wall), the perceived navigational (Navig) distance was
significantly different across Near-Navig, Middle-Navig, and Far-Navig
(one-way repeated-measures ANOVA: F(2,14) = 100.34, p, 0.01). Further,
a paired t test revealed a stepwise increment of the perceived navigational
distance between Near-versus Middle-Navig (t(14) = �10.92, p, 0.01),
and Middle-versus Far-Navig (t(14) = �6.54, p, 0.01). The results indi-
cate that the perceived navigational distance is effectively manipulated by
the location of the navigational boundary. In Experiment 3, the estimated
navigational distance of Glass-Wall and No-Glass-Wall replicated
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findings from the previous experiments (Glass-Wall: F(2,17) = 2.25,
p=0.12; No-Glass-Wall: F(2,17) = 10.79, p, 0.01). Most importantly, the
Curtain condition showed a significant difference of the perceived naviga-
tional distance across Near, Middle, and Far (one-way repeated-measures
ANOVA: F(2,17) = 11.01, p, 0.01), suggesting that the curtain did not
limit the navigational distance as the glass wall did.

fMRI main experimental runs
Experiment 1 consisted of 18 runs [each 4.17min, 125 repetition time
(TR)]. Twelve images from one of the six conditions were presented in
blocks of 12 s each, and a fixation period (8 s) always followed the condi-
tion block. Two blocks per condition were acquired within a run. Block
order was pseudo-randomized with the following constraint. We first
determined the block order by randomizing conditions within a mini
epoch, which was a set of all condition blocks. For example, in
Experiment 1, there were six conditions and each condition block were
repeated twice. The presentation order of each run was determined by
randomizing six conditions within an epoch twice independently and
concatenating them. In concatenating, we put a constraint so that there
is no repetition of the same condition appearing in two successive
blocks. Within a condition block, each image was presented for 600ms,
followed by a 400ms blank screen. The stimuli presentation and the
experiment program were produced and controlled by MATLAB and
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Participants per-
formed a one-back repetition detection task in which they pressed a but-
ton whenever there was a repetition of an image, while paying attention
to how far they can walk forward if they were inside the presented envi-
ronment. The specific instruction given to participants was “Imagine
that you are in the room and think about how far you would be able to
walk forward. While doing that, if the same image repeats in a row, press
a button.”

Experiment 2 consisted of eight runs (each 6.83min, 205 (TR).
Twelve images from one of the five conditions were presented in blocks
of 12 s each, and a fixation period (8 s) followed each block. Four blocks
per condition were acquired within a run. The order of blocks was ran-
domly decided for each run following the same procedure and constraint
as in Experiment 1. Each image was presented for 600ms, followed by a
400ms blank screen. The stimuli presentation and the experiment pro-
gram were produced and controlled by MATLAB and Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997). Participants performed a one-
back repetition detection task, in which they pressed a button whenever
there was a repetition of an image. Participants were encouraged to
immerse themselves in each environment while looking at the stimuli,
but unlike in Experiment 1, they were not explicitly asked to perform
any navigation-related tasks (e.g., imagining walking or estimating the
distance). The specific instruction given to participants was “Pay atten-
tion to each image and try to imagine that you are in that room. While
doing that, if the same image repeats in a row, press a button.”

Experiment 3 consisted of 10 runs (each 6.17min, 185 TR). Twelve
images from one of the nine conditions were presented in blocks of 12 s
followed by a fixation period (8 s). Two blocks per condition were
acquired within a run. The order of blocks was randomly decided for
each run, following the same procedure and constraint as the previous
two experiments. Each image was presented for 600ms, followed by a
400ms blank screen. The stimuli presentation and the experiment pro-
gram were produced and controlled by MATLAB and Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997). Participants performed a one-
back repetition detection task, in which they pressed a button whenever
there was a repetition of an image. There was no explicit task about navi-
gation or distance estimation, but participants were encouraged to imag-
ine they were inside each environment. The specific instruction given to
participants was “Pay attention to each image and try to imagine that
you are in that room. While doing that, if the same image repeats in a
row, press a button.”

Localizer runs
For each of three experiments, two functional localizer runs were per-
formed independent of the main experimental runs. In a localizer
run, participants saw blocks of faces, scenes, objects, and scrambled

object images. A localizer run consisted of four blocks per each of
these four image conditions, and 20 images were presented in each
block (7.1min, 213 TR). In each trial, a stimulus was presented for
600ms, followed by 200ms blank. Participants performed one-back
repetition detection task.

fMRI data acquisition
The fMRI data were acquired with a 3-T Philips fMRI scanner with a 32-
channel phased-array head coil at the F. M. Kirby Research Center for
Functional Brain Imaging at JHU. Structural T1-weighted images were
acquired by magnetization-prepared rapid-acquisition gradient echo
with 1� 1 � 1 mm voxels. Functional images were acquired with a gra-
dient echoplanar T2* sequence [2.5� 2.5� 2.5 mm voxels; TR 2 s; TE
30ms; flip angle = 70°; 36 axial 2.5 mm sliced (0.5 mm gap); acquired
parallel to the anterior commissure–posterior commissure (ACPC) line].
All three experiments followed the same scanning protocol.

Statistical analyses
Preprocessing
The fMRI data were analyzed with Brain Voyager QX software (Brain
Innovation). Preprocessing included slice scan-time correction, linear
trend removal, and 3-D motion correction. No spatial or temporal
smoothing was performed, and the data were analyzed in individual
ACPC space. The same preprocessing pipeline was used for all three
experiments.

Regions of interest
We defined three scene-selective areas (OPA, PPA, and RSC) to examine
their independent roles in processing navigational distance in scenes.
Recent fMRI literature suggests distinctive yet complementary roles of
these scene-selective regions. The PPA responds to various aspects of
scenes, such as spatial geometry (Epstein and Kanwisher, 1998;
Henderson et al., 2011; Kravitz et al., 2011; Park et al., 2011), semantic
categories (Walther et al., 2009, 2011), large objects (Konkle and Oliva,
2012; Konkle and Caramazza, 2013), and textures (Cant and Xu, 2012,
2015; Park and Park, 2017). Compared with the PPA, retrosplenial com-
plex (RSC) responds sensitively to the familiarity of scenes (Sugiura et
al., 2005; Epstein et al., 2007), the survey knowledge about environments
(Wolbers and Büchel, 2005), and the heading direction (Aguirre and
D’Esposito, 1999; Marchette et al., 2014; Silson et al., 2019). The OPA,
our target ROI, represents distance and boundary information from a
navigationally relevant scene (Bonner and Epstein, 2017; Persichetti and
Dilks, 2016; Henriksson et al., 2019). Thus, we examined three scene-
selective regions to examine unique and distinctive roles of these regions
in representing navigational distance in scenes.

The ROIs were defined by following the same procedures across
all three experiments, with two independent functional localizers for
each experiment. The process of ROI localization was done in two
steps. First, we individually identified ROIs using condition contrasts
(Scenes – Faces; Epstein and Kanwisher, 1998) implemented in a gen-
eral linear model. The single contiguous cluster of voxels that passed
the threshold (p, 0.0001) was used. The OPA was defined by locat-
ing the cluster near transverse occipital sulcus. The PPA was defined
by locating the cluster between posterior parahippocampal gyrus and
lingual gyrus. The RSC was defined by locating the cluster near the
posterior cingulate cortex.

Second, we redefined each ROI in each individual participant by
intersecting the group-based anatomic constraint derived from a large
number (N=70) of localizer subject database (Bainbridge et al., 2017).
The database contained individually defined ROIs using the same con-
trast and threshold as the current study. The group-based constraint was
initially generated in Talairach space and then transformed to each indi-
vidual’s ACPC space. This second step ensured all ROIs have consistent
anatomic locations across all participants. These ROIs were first identi-
fied separately for the left and right hemispheres and were tested
whether there is a hemispheric difference. Specifically, we ran a two-way
ANOVA with Condition and Hemisphere as factors and examined
whether there is a significant interaction effect. The results suggested no
hemispheric difference in any of ROIs across all experiments:
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Experiment 1 (OPA: F(1,52) = 0.11, p=0.74;
PPA: F(1,56) = 2.44, p=0.12; RSC: F(1,44) = 0.8,
p= 0.38), Experiment 2 (OPA: F(1,56) = 0.86,
p= 0.36; PPA: F(1,56) = 0.67, p= 0.42; RSC:
F(1,48) = 0.59, p=0.45), and Experiment 3
(OPA: F(2,78) = 0.1, p=0.9; PPA: F(2,78) = 0.34,
p= 0.72; RSC: F(2,78) = 0.71, = 0.5). Thus, we
merged the left and right ROIs together and
defined as bilateral ROIs.

In addition, the early visual cortex (EVC)
was defined based on the same database
(N= 70; Bainbridge et al., 2017) used to gener-
ate the group-based anatomic constraint. The
EVC in the database were anatomically defined
for each subject in a standardized space
(Talairach). Using these individual EVCs, we
created a probabilistic map. This map was then
thresholded at 60%, and the remaining voxels
after thresholding were defined as the group-
EVC. To define the EVC of current study par-
ticipants, the group-EVC was transformed into
each individual’s ACPC space. Last, an experi-
menter visually inspected the ACPC-trans-
formed EVC of each participant.

Multivariate analysis: pattern classification
For multivoxel pattern analysis (MVPA), pat-
terns of activity were extracted across the vox-
els of an ROI for each block of the six
conditions. The MRI signal intensity from
each voxel within an ROI was transformed
into z scores across time points for each run.
The activity level of each individual voxel for
each block was labeled with its respective con-
dition. Four seconds (2 TR) of offset was added
to the 12 s (6 TR) condition length to account
for the hemodynamic delay of the blood oxy-
gen level-dependent response. The obtained
values for each time points were averaged to
generate a pattern across voxels within an ROI
for each condition.

Using the extracted multivoxel patterns
from each ROI, a linear support vector
machine (SVM; using LIBSVM: http://
sourceforge.net/projects/svm) classifier was trained to test whether the
trained algorithm can assign the correct condition label to the activation
patterns. For each participant, the classification was performed sepa-
rately for the Glass-Wall and No-Glass-Wall conditions. For both condi-
tions, the SVM classifier was trained to classify across three visible
distance levels (Near, Middle, and Far). A leave-one-out cross validation
method was used. First, one of the blocks was left out of the training
sample. Then, the classifier was tested to see whether it could provide
the correct label for the block that it was not trained on. These steps
were repeated such that each block of the dataset played a role in training
and testing. Because there were three possible labels (Near, Middle, or
Far), the chance level for the classification was one-third. The average
classification accuracy of all tested blocks was used as a dependent mea-
sure for each participant. The same analysis steps were performed for
the pattern classification in all three experiments.

For comparing the SVM classification performance across ROIs, we
used a linear mixed-effects model to take into account unequal number
of subjects between the ROIs and the variance across subjects.
Specifically, we modeled the classification accuracy using the code pack-
age implemented in R (lme4; Bates et al., 2015), where the fixed effects
were ROI, Condition, and ROI � Condition (interaction) and the ran-
dom intercepts for Subjects were included. To estimate the p value for
the model fit, we used the code package lmerTest, which uses
Satterthwaite approximation (Satterthwaite, 1941; Kuznetsova et al.,
2017).

Results
Coding of navigational distance limited by a boundary
In Experiment 1, we straightforwardly tested whether the OPA
codes for the navigational distance in a visual scene. For realistic
yet controlled visual stimuli, we generated artificial indoor envi-
ronments using virtual-reality software (Unreal Engine 4, Epic
Games). All environments had a flat and straight floor, which
provided a clear path from the standpoint, and they were ren-
dered to have the same width and height except for the distance
to a back wall of an environment. Critically, to change naviga-
tional distance while minimizing the perceptual difference, a
transparent glass wall was used as a boundary that limits one’s
movement in a local environment. For example, if there is a glass
wall between the viewer and the back wall, the viewer would be
able to walk only up to the glass wall, although the back wall
would be still visible. The glass wall minimizes perceptual change
or visibility of space beyond the glass wall while creating signifi-
cant difference to one’s movement in an environment.

There were six stimuli conditions varied by two factors. A fac-
tor visible distance had three levels (Near, Middle, Far), which
was defined as the distance from the standpoint to the back wall
that was always visible. Another factor navigational boundary
had two levels (Glass-Wall, No-Glass-Wall). When there was
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Figure 1. Experiment 1 Stimuli and schematic illustration of conditions. There were six conditions, which were varied in
three visible distance levels (Near, Middle, and Far) and two navigational boundary levels (No-Glass-Wall and Glass-Wall).
Left, The front-view column shows stimuli example from each visible distance condition, which were presented to partici-
pants in the scanner. Right, The side-view panel illustrates schematic structure of environment for each condition. A white
box represents each environment (e.g., a room), and a light blue rectangle in the Glass-Wall represents a transparent glass
wall. A yellow arrow represents the navigational distance within each environment. Importantly, the navigational distance in
the No-Glass-Wall was different at each visible distance level, whereas the navigational distance in the Glass-Wall was the
same across all visible distance levels. We validated our navigational distance manipulation with a separate set of participants
through a behavioral experiment.
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no glass wall, the navigational distance was determined by the
location of the back wall, because the viewer would be able to
walk up to the back wall of the environment (No-Glass-Wall
conditions; Fig. 1, top). On the other hand, when there was a
glass wall, the navigational distance was determined by loca-
tion of the glass wall rather than the back wall, because the
viewer would not be able to walk past the glass wall. Critically,
we kept the location of the glass wall as the same across Near,
Middle, and Far, which made the navigational distance identi-
cal regardless of the visible distance levels (Glass-Wall condi-
tions; Fig. 1, bottom).

In Experiment 1, 18 participants (12 female) viewed blocks of
images from each of six conditions while being scanned in a 3T
Philips fMRI scanner. Participants performed a one-back repeti-
tion detection task in which they pressed a button whenever
there was a repetition of an image, while paying attention to how
far they can walk forward if they were inside the presented envi-
ronment. Each ROI (PPA, RSC, and OPA) was functionally
defined using independent localizers (Scene – Face, p, 0.0001,
uncorrected, and then thresholded using a group mask; see
Materials and Methods). A linear SVM classifier was trained
with multi-voxel patterns of activation from each ROIs to test
whether the multivoxel pattern can correctly classify between the
conditions. For each participant, the classification was performed
separately for the Glass-Wall and No-Glass-Wall conditions. For
both conditions, the SVM classifier was trained to classify across
three visible distance levels (Near, Middle, and Far). A leave-
one-out cross validation method was used (see Materials and
Methods). Using this method, we make a pair of clear hypotheses
about the classifier: if a brain region represents the navigational
distance, multivoxel patterns from such region will be distin-
guishable if the navigational distance differs. At the same time, if
a brain region represents the navigational distance, multivoxel
patterns from such region will not be distinguishable if the navi-
gational distance is equal. Note that our rationale about naviga-
tional distance is supported by fulfilling a combination of these
two complementing hypotheses.

The accuracy of three-way SVM classification across visible
distance levels (Near, Middle, Far) was significantly above chance
in the No-Glass-Wall condition (mean: 39.50%, t(13) = 3.45, p ,

0.01) but not in the Glass-Wall condition
in the OPA (mean: 34.9%, t(13) = 0.75,
p=0.47; Fig. 2). In other words, the neu-
ral patterns from the OPA were distin-
guishable for three different navigational
distances in No-Glass-Wall condition, but
indistinguishable when a transparent glass
wall was added to the environment to
limit the navigational distance in the
Glass-Wall condition. A paired t test
between No-Glass-Wall and Glass-Wall
conditions was also significant (t(13) =
�2.24, p, 0.05), suggesting that the neu-
ral pattern of the OPA is modulated by
the navigational distance present in
scenes. Further, an analysis of the confu-
sion matrix suggested that the above-
chance classification accuracy in the
OPA was not driven by a single distance
level.

The evidence for the coding of naviga-
tional distance was specifically found in
the OPA among scene-selective regions.
Neither the PPA nor RSC showed above-

chance classification for navigational distance present in any
conditions and showed no difference across No-Glass-Wall and
Glass-Wall conditions: PPA (No-Glass-Wall: mean 35.62%,
t(14) = 1.31, p=0.21; Glass-Wall: 35.17%, t(14) = 1.39, p=0.19; no
difference between conditions, t(14) = �0.17, p=0.87), and RSC
(No-Glass-Wall: 34.55%, t(11) = 0.53, p= 0.61; Glass-Wall:
33.52%, t(11) = 0.1, p= 0.92; no difference between conditions,
t(11) =�0.39, p=0.71). These results suggest that the OPA is spe-
cifically involved in the coding of navigational distance, let alone
the sensitivity to the presence of navigational boundary (i.e., glass
wall).

To test whether the OPA’s results are driven by the low-level
visual features, we also examined the EVC (for the localization
process, see Materials and Methods). Similar to the OPA, the
EVC showed above-chance classification accuracy in the No-
Glass-Wall condition (mean: 53.69%, t(14) = 6.7, p, 0.01); but,
different from the OPA, it showed above-chance accuracy in the
Glass-Wall condition, where the navigational distance was kept
the same (mean: 48.09%, t(14) = 4.75, p, 0.01). This result sug-
gests that the EVC pattern is unlikely to reflect the coding of nav-
igational distance, but a low-level visual difference across
conditions. However, we conserve our conclusion about whether
the OPA’s representation is unique from that of the EVC in
Experiment 1, based on a following statistical test. We modeled
the SVM classification accuracy with a linear mixed-effects model
(lme4; Bates et al., 2015), where ROI, Condition, and ROI x
Condition (interaction) were specified as fixed effects, and the ran-
dom intercepts for Subjects were included. However, we could not
find the significant ROI� Condition interaction (F(1,40.32) = 0.049,
p=0.83) in Experiment 1.

The only visual difference between the No-Glass-Wall and
the Glass-Wall conditions was the presence of a transparent glass
wall. Despite this subtle visual difference, the neural pattern of
the OPA was significantly modulated by presence of the glass
wall. When the glass wall was added in a scene, the OPA patterns
were no longer distinguishable across conditions. However, it
remains as a question what was driving the nonsignificant classi-
fication result from the Glass-Wall. There are at least two possi-
ble underlying reasons. One possibility is that the OPA is

Figure 2. The SVM classification results in Experiment 1. The y-axis shows the mean classification accuracy (%), and the
dotted line marks the chance level of the three-way classification (0.33). The bar graph represents the mean accuracy, and
gray dots on top of the bar represent individual subject data. The star at the bottom of a bar indicates above-chance classifi-
cation accuracy. The statistical test suggested no hemispheric difference in any of ROIs, so we report results from bilaterally
merged ROIs. Among three scene-selective regions, only the OPA showed above-chance classification across Near, Middle,
and Far in the No-Glass-Wall condition (p , 0.01). Further, an analysis of the confusion matrix suggested that the above-
chance classification accuracy was not driven by a single distance level. The EVC showed significant classification accuracy for
both the No-Glass-Wall (p, 0.01) and Glass-Wall conditions (p, 0.01). *P, 0.05; n.s. indicates not significant.
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sensitive to the presence of the navigational boundary (i.e., the
presence of a glass wall) but not the distance to it. In this case,
the OPA detects the glass wall but does so without coding its spe-
cific location in a scene and will show nonsignificant classifica-
tion for the three scenes with the glass wall because they all
contain a glass wall. If this is the case, the OPA should not care
whether the location of glass wall is the same or different across
scenes. Another possibility is that the OPA actually codes for the
navigational distance to the glass wall, and the nonsignificant
classification found in the Glass-Wall condition reflects the equal
navigational distance that scenes in Glass-Wall conditions have
in Experiment 1. If this is the case, the OPA should differentiate
the three scenes with the glass wall if the location of glass wall
changes across scenes. We directly parse out these two possibil-
ities in Experiment 2 by changing the glass wall position in
scenes.

Sensitivity to different amount of navigational distance to
boundaries within a scene
Experiment 2 tested whether the OPA is sensitive to different
amount of navigational distance to the boundary (e.g., glass
wall). If the OPA truly codes for the navigational distance, then
multivoxel patterns from the OPA should be sensitive to a navi-
gational distance change induced by different locations of the
boundary. To test this in Experiment 2, the navigational distance
was manipulated by changing the glass wall position only, while
keeping the same visible distance (Varying-Glass-Wall condi-
tions; Fig. 3, bottom row). As a contrast, the equal navigational
distance was maintained by keeping the same glass wall position,
while varying the visible distance (Constant-Glass-Wall condi-
tions; Fig. 3, top row), which is the same condition from
Experiment 1 Glass-Wall condition.

Fifteen new participants (9 female) viewed blocks of images
from each condition in a 3T Philips fMRI scanner. In
Experiment 2, participants were instructed to simply detect a
repeated image while passively viewing scenes (i.e., one-back
task), contrasting with how Experiment 1 asked participants to
pay attention to how far they can walk forward if they were
inside the presented environment. As preview, consistent results
were found across Experiments 1 and 2 regardless of the differ-
ence in instructions, suggesting that the coding of navigational
distance is not critically affected by specific tasks, which is in line
with previously suggested automatic and rapid coding of naviga-
tional affordance in the OPA (Bonner and Epstein, 2017;
Henriksson et al., 2019).

For the Varying-Glass-Wall condition, the SVM classification
was performed across Near-Navig, Middle-Navig, and Far-
Navig, which differ only in terms of navigational distance. For
the Constant-Glass-Wall condition, the classification was per-
formed across Near, Middle, and Far, which differ only in terms
of visible distance. The three-way SVM classification demon-
strated that the OPA could successfully classify scenes when
there was a difference in the navigational distance (Varying-
Glass-Wall condition), but not when there was a difference in
the visible distance only and not in navigational distance
(Constant-Glass-Wall condition). The OPA’s classification accu-
racy was at chance in the Constant-Glass-Wall condition (mean:
33.19%, t(14) = �0.08, p=0.94), replicating Experiment 1.
Importantly, the classification accuracy in the Varying-Glass-
Wall condition was significantly above chance (mean: 37.22%,
t(14) = 2.91, p, 0.05) and significantly different from the
Constant-Glass-Wall condition (t(14) = �2.28, p, 0.05; Fig. 4).

These results suggest that the OPA is sensitive to the different
amount of navigational distance changed by a position of a navi-
gational boundary and reject an alternative possibility that the
OPA represents the mere presence of a boundary.

Moreover, consistent with Experiment 1, other scene-selective
areas did not show any significant modulation by the naviga-
tional distance: PPA (Constant-Glass-Wall: mean 34.58%,
t(14) = 0.75, p=0.47; Varying-Glass-Wall: 35.42%, t(14) = 1.91,
p= 0.08; no significant difference between conditions, t(14) =
�0.54, p= 0.6) and RSC (Constant-Glass-Wall: mean 32.29%,
t(12) = �0.6, p=0.56; Varying-Glass-Wall: 34.29%, t(12) = 0.56,
p= 0.58; no significant difference between conditions, t(12) =
�0.98, p=0.34). Also consistent with Experiment 1, EVC
showed above-chance classification accuracy in both Constant-
Glass-Wall (mean: 59.51%, t(14) = 5.05, p, 0.01) and the
Varying-Glass-Wall conditions (mean: 46.25%, t(14) = 4.29,
p, 0.01). We used a linear mixed-effects model (R package
lme4; Bates et al., 2015) to test whether there is a significant

Constant
Glass-Wall

Varying
Glass-Wall

Near Middle Far

Near-Navig Middle-Navig Far-Navig

Figure 3. Experiment 2 Stimuli. There were five conditions in total. Note that the Far
condition in Constant-Glass-Wall is the same as the Near-Navig condition in Varying-Glass-
Wall condition. This condition is presented twice in this figure for illustration purposes only.
In the Constant-Glass-Wall condition, there were three levels of visible distance (Near,
Middle, Far) with the same navigational distance. In the Varying-Glass-Wall condition, the
navigational distance was varied in three levels (Near-Navig, Middle-Navig, Far-Navig) while
keeping the same visible distance. We validated our navigational distance manipulation
with a separate set of participants through a behavioral experiment. The SVM classification
was separately tested for the Constant-Glass-Wall and Varying-Glass-Wall conditions (sepa-
rated by a horizontal line).

Figure 4. The SVM classification results in Experiment 2. The y-axis shows the mean clas-
sification accuracy (%), and the dotted line marks the chance level of three-way classification
(0.33). The bar graph represents the mean accuracy, and gray dots on top of the bar repre-
sent individual subject data. The star at the bottom of a bar indicates above-chance classifi-
cation accuracy. The OPA showed above-chance classification for the Varying-Glass-Wall
condition (p , 0.05), where the navigational distance was different, but the chance-level
classification performance for the Constant-Glass-Wall condition, where the navigational dis-
tance was identical. The EVC also showed significant classification accuracy for the Varying-
Glass-Wall condition (p, 0.01), but it showed the above-chance accuracy for the Constant-
Glass-Wall condition as well (p , 0.01), where the navigational distance was kept the
same. *P, 0.05; n.s. indicates not significant.
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difference between the OPA and EVC (i.e., modeling the classifi-
cation accuracy with the ROI and Condition as fixed effects and
Subject as a random intercept), and there was a significant ROI
� Condition interaction (F(1,42)=9.735, p, 0.01). The result
shows that the EVC can classify scenes regardless of the naviga-
tional distance difference, and such result hints that the above-
chance classification in the EVC does not reflect whether scenes
have the same or different navigational distance. Together,
Experiment 2 results further support an idea that the coding of
the navigational distance is a distinctive role of the OPA, rather
than a part of general scene processing.

Sensitivity to the functional constraint of boundaries
In Experiments 1 and 2, the glass wall has played a critical role in
modulating the OPA response patterns. Multivoxel patterns of
the OPA could be differentiated only when the navigational dis-
tance determined by the glass wall differed across conditions.
One question, though, is which properties of glass wall the OPA
responds to. We have argued that the glass wall is an important
navigational boundary because it limits how far one can navigate.
However, there is a possibility that such functional constraint
may not be the critical feature modulating the OPA pattern; for
example, the presence of an additional boundary feature itself
may have driven the observed effects. Although Experiment 2
showed that the OPA is sensitive to the location of the glass wall,
it remains as a question whether the OPA represents the func-
tional constraint of the glass wall. In other words, does it actually
matter to the OPA that the glass wall is not crossable?

To test this in Experiment 3, we generated a boundary that is
easily crossable: a transparent curtain. The curtain is different
from the glass wall in that it is an easily crossable boundary, but
it is similar to the glass wall in that it adds additional local
boundary features to a scene while allowing to see the space
beyond it (e.g., back wall of the room). To validate our naviga-
tional distance manipulation, we ran a behavioral experiment
with a separate set of participants and asked them to estimate
how far they would be able to walk forward in each scene. The
behavioral results confirmed that participants perceive the cur-
tain as crossable, and the curtain does not significantly affect the
navigational distance estimation as the glass wall does. To inves-
tigatehowaboundarywithout the functionalconstraintaffects the
neural coding of navigational distance in a scene, we added a
Curtain condition to the same experimental paradigm of
Experiment 1 (Fig. 5). All conditions (No-Glass-Wall, Glass-Wall,
andCurtain) differed in terms of visible distance (i.e., Near,Middle,
andFar). Just like inExperiment1, thenavigationaldistancediffered
in No-Glass-Wall condition, but not in Glass-Wall condition. The
critical questionwaswhether the curtain, a crossable boundary,will
restrict the navigational distance in a scene. If the existence of any
local boundary matters, then we expect to see a similar pattern in
CurtainconditiontotheGlass-Wallcondition. If,however, thefunc-
tional constraint that aboundary imposesmatters, thenweexpect to
see apattern inCurtain condition similar to theNo-Glass-Wall con-
dition. Fourteen new participants (8 female) were recruited and
scanned while looking at images from nine condition blocks. As in
Experiment 2, participants performed a one-back repetition detec-
tiontaskwithoutanynavigation-relatedtasks.

The SVM classification was performed for each boundary
condition across three levels of visible distance: Near, Middle,
and Far. In the OPA, the No-Glass-Wall and Glass-Wall condi-
tions replicated the results from Experiment 1 (Fig. 6). Just like
in previous experiments, the classification accuracy was signifi-
cantly above-chance in the No-Glass-Wall condition (mean:

42.05%, t(13) = 3.3, p, 0.01), at chance level in the Glass-Wall
condition (mean: 32.38%, t(13) = �0.36, p= 0.72), and the differ-
ence between these two accuracies were statistically significant
(t(13) =�3.29, p, 0.01).

Critically, we found that a crossable boundary (curtain) did
not affect the OPA patterns as the non-crossable boundary (glass
wall) did. As in the No-Glass-Wall condition, a significantly
above-chance accuracy was observed in the Curtain condition
(mean: 39.02%, t(13) = 3.36, p, 0.01; Fig. 6), indicating that the
OPA patterns were distinguishable across Near, Middle, and Far
levels regardless of whether the curtain was present in a scene or
not. Moreover, the classification performance of the Curtain
condition was significantly higher than that of the Glass-Wall
condition (t(13) = �2.19, p, 0.05), but not statistically different
from the No-Glass-Wall condition (t(13) = 1.01, p= 0.33),

Figure 6. The SVM classification results in Experiment 3. The y-axis shows the mean clas-
sification accuracy (%), and the dotted line marks the chance level of three-way classification
(0.33). The bar graph represents the mean accuracy, and gray dots on top of the bar repre-
sent individual subject data. The star at the bottom of a bar indicates above-chance classifi-
cation accuracy. The results for No-Glass-Wall (p , 0.01) and Glass-Wall conditions were
replicated in all ROIs. Critically, the OPA showed above-chance classification for Curtain condi-
tion (p , 0.01), suggesting that the functional constraint of a boundary is crucial for the
OPA. Consistent with previous experiments, other ROIs were not sensitive to the navigational
distance; the PPA and RSC showed the chance-level classification in all conditions, whereas
the EVC showed the above-chance classification in all conditions (all ps, 0.05). *P, 0.05;
n.s. indicates not significant.

Near Middle Far

No-
Glass-Wall

Glass-Wall

Curtain

Figure 5. Experiment 3 Stimuli. There were nine conditions, which were varied in three
visible distance levels (Near, Middle, and Far; columns) and three navigational boundary lev-
els (No-Glass-Wall, Curtain, and Glass-Wall; rows). The No-Glass-Wall and Glass-Wall condi-
tions were identical to Experiment 1. In the Curtain condition, a transparent curtain was
positioned instead of a glass-wall. The location of the curtain was identical across all visible
distance levels. We validated our navigational distance manipulation with a separate set of
participants through a behavioral experiment. The SVM classifier was trained and tested to
classify across three visible distance levels (Near, Middle, and Far), separately for the No-
Glass-Wall, Curtain, and Glass-Wall conditions (separated by a horizontal line).
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confirming that the OPA responded to the Curtain condition
similarly to the No-Glass-Wall condition rather than the Glass-
Wall condition. Together, these results showed that even if there
is a boundary feature in a scene, if the boundary does not func-
tionally restrict the navigational distance, it essentially does not
affect the neural patterns of the OPA. This finding corroborates
our claim that the OPA codes for the navigational distance in a
scene and further highlights the importance of functional con-
straint a boundary imposes in such computation.

Other scene-selective areas did not show any sensitivity to the
functional constraint of a boundary or the navigational distance.
The PPA and RSC both showed the chance-level classification
accuracy in all conditions: PPA (No-Glass-Wall: mean 34.05%,
t(13) = 0.37, p=0.72; Glass-Wall: 36.19%, t(13) = 1.17, p= 0.26;
Curtain: 35.12%, t(13) = 0.85, p=0.41) and RSC (No-Glass-Wall:
30.83%, t(10) = �1.76, p=0.11; Glass-Wall: 36.07%, t(10) = 1.55,
p=0.15; Curtain: 35.12%, t(10) = 0.55, p=0.6). On the contrary,
the EVC showed above-chance classification accuracy in all con-
ditions (No-Glass-Wall: 53.55%, t(13) = 5.43, p, 0.01; Glass-
Wall: 50.48%, t(13) =4.18, p, 0.01; Curtain: 43.81%, t(13) =2.92,
p, 0.05). When we compared classification accuracy of the EVC to
the OPA using a mixed-effects model (R package lme4; Bates et
al., 2015), we found a significant interaction between the ROI
(EVC, OPA) and the Condition (Glass-Wall, Curtain, No-Glass-
Wall; F(2,65) = 4.0, p, 0.05). These results together suggest that
the EVC is not sensitive to the functional constraint of a bound-
ary and the above-chance classification in the Curtain condition
is unlikely to be driven by the navigational distance.

Discussion
The current study examined the nature of neural coding for the
navigational distance in visual scenes. In Experiment 1, we
showed that neural patterns from the OPA is sensitive to the ego-
centric distance to a boundary limiting the navigational distance.
Experiment 2 demonstrated that the OPA is sensitive to specific
locations of boundaries that vary navigational distance rather
than to the mere presence of the boundary in a scene.
Experiment 3 directly tested the nature of navigational distance
representation by asking whether the functional constraint on
navigation imposed by the boundary plays a critical role. A
boundary that does not block movements, such as a curtain, was
treated as if there was no boundary, similar to the No-Glass-Wall
condition.

Throughout three fMRI experiments, we showed that the
OPA codes for the navigational distance in visual scenes as influ-
enced by a functionally limiting local boundary. To our knowl-
edge, this is the first empirical evidence demonstrating that the
OPA is sensitive to the navigational distance.

Boundary and navigational path representation
The OPA consistently showed neural representation of naviga-
tional distance that is distinctive from other scene-selective areas.
How might the OPA develop the sensitivity to functionally con-
straining boundary in a scene?

One possible explanation is based on the intrinsic retinotopic
bias in the OPA. In contrast to the PPA that shows a bias for the
upper visual field, the OPA shows a bias for the lower visual field
(Silson et al., 2015; Arcaro and Livingstone, 2017). A study using
a deep convolutional neural network recently showed that the
majority of explained variance for the OPA’s neural pattern
could be attributed to the lower part of the image (Bonner and
Epstein, 2018). Consistently, Henriksson et al. (2019) tested the

relative contribution of each layout-defining components (back
wall, ceiling, floor, and the left and right walls) and showed that
the back wall and the floor have larger contribution to the
explained variance of OPA. These results together highlight the
importance of visual information at the low part of the image or
the floor, where boundaries or obstacles often appear. Thus, the
sensitivity of OPA to the lower visual field of a scene probably
facilitated OPA’s sensitivity to detect functional boundaries (e.g.,
glass wall) or obstacles on a path.

Beyond simple detection of obstacle structure, estimation of
distanceoftenbaseson lowerpart of a sceneaswell, as themeasure-
ment starts from the current viewer’s foot position, which usually
matches to thebottomcenterof a scene view.Results of the current
experiment adds to many recent fMRI findings that highlight the
role of the OPA in representing environmental features in a scene
important for navigation (Julian et al., 2016; Bonner and Epstein,
2017; Groen et al., 2018), aswell as to a greater literature highlight-
ing the importance of a boundary as one of the most fundamental
spatial feature in scene space (Cheng, 1986; Gallistel, 1990; Cheng
and Newcombe, 2005; Lee and Spelke, 2010; Cheng et al., 2013;
Lee, 2017). In this study, we demonstrate that theOPA’s represen-
tation of a boundary is constrained by the functional relevance of
theboundary structure to anavigator.

Functional constraint representation
The navigational distance representation in the OPA was modu-
latedonlybyaboundarywith the functional constraint (e.g., a glass
wall) but not by a boundary without the functional constraint on
navigation (e.g., a curtain). These results suggest that the OPA can
represent the functional value of anenvironmental structure.

How does the OPA get such information? Although the cur-
rent study did not focus on this question, it’s worth speculating
about at least two broad possibilities here. First, the OPA neu-
rons may be “tuned” to navigationally important perceptual fea-
tures through learning. For example, as a child navigates through
environments, the child will learn that a glass wall is impassible.
After many repetitions of similar experience, the OPA neurons
will develop sensitivity to visual features of navigationally rele-
vant boundaries in environments. Another possibility is that the
OPA gets online feedback from semantic areas about functional
value of the current stimuli. In this case, the OPA pattern may be
susceptible to a context of how the stimulus is presented or inter-
preted. Future work should explore the role of high-level knowl-
edge over boundary representation in the OPA.

Another interesting question is whether the OPA represents
the functional value of navigational boundaries in a binary or a
more gradient manner. We operationalized the functional con-
straint in this study as binary (i.e., passable or impassable), but the
boundaries in the real world havemore fine-grained level of limits
on movements. For example, a boundary like a half wall or a bar-
riermay not completely block a viewer’smovements but handicap
the movement to a certain level. Would the OPA be sensitive to
those intermediate level of functional limit as well? Future
attempts to quantify and parameterizing functional limits of dif-
ferent boundaries will provide a valuable insight into understand-
ing how theOPArepresents the functional value of boundaries.

Navigational distance representation
How might the OPA represent navigational distance informa-
tion? One possible interpretation is the observed effects are not
purely driven by the distance representation but by other aspects
of scenes, such as the volume of navigational space or the surface
area of the navigable ground plane. Although those are naturally
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covarying factors in real environments, we acknowledge this as a
potential limit of current study. A future study with systematic
control of each geometric property will address the issue.

Another possible interpretation is based on the OPA’s ana-
tomical location, which partly overlaps with several retinotopi-
cally-defined areas such as V3B, V7, LO2, and partial V3A (Nasr
et al., 2011; Silson et al., 2016). Because scene is a highly hetero-
geneous stimuli category, the scene-selectivity of the OPA may
have developed based on the region’s ability to process diverse
features based on overlap with multiple retinotopic maps (Silson
et al., 2016). It is plausible that the OPA uses such retinotopic in-
formation to compute the egocentric distance in a scene. In fact,
the retinotopic areas overlapping with the OPA, such as V3A
and V7, represent the position in depth information (Finlayson
et al., 2017). Consistently, a recent study reported the function-
ally defined OPA’s sensitivity to the depth information. The near
or far depth activated higher univariate response in the OPA
compared with the middle depth, and the OPA showed even
stronger response when the stimuli were presented in both near
and far depth plane, suggesting a bimodal preference to the
depth information (Nag et al., 2019). Although these results are
relevant to the findings in our study, there are several important
differences. First, the depth information was provided in funda-
mentally different ways. We used monocular pictorial cues such
as the perspective or texture gradient, whereas Nag et al. (2019)
used the binocular disparity with the red/green anaglyph glasses.
Second, whereas the depth sensitivity was shown with stronger
univariate responses of the OPA to near and far depth planes in
Nag et al. (2019), we did not find any significant univariate dif-
ference across Near, Middle, and Far navigational distances.
Given that we were nonetheless able to differentiate the Near and
Far navigational distances from the multivoxel patterns, it is pos-
sible that there are neurons in the OPA that represent the dis-
tance/depth information as a population, which would not
necessarily lead to different univariate responses (Hatfield et al.,
2016; Park and Park, 2017).

It is important to note that the navigational distance represen-
tation in the OPA is not a mere reflection of low-level inputs. In
the current study, there were two measurable depth information:
distance to local boundary (e.g., a glass wall) and distance to distal
boundary (e.g., a back wall which is a visible boundary of a room).
Nevertheless, the OPA was sensitive to the distance to the local
boundary only. This selective sensitivity to a local boundarymight
be related the OPA’s connection to the visually guided navigation
network (dorsal occipito-premotor pathway).When navigating in
an immediate environment, the local boundary has more critical
value than a distal boundary due to its proximity to a navigator. In
other words, estimating the distance to the back wall, which is
located in the space already blocked by the glass wall, would not be
as relevant as estimating the distance to the glass wall.

Thus, the OPA might use the low-level inputs (e.g., pictorial
depth cues) to compute the navigational distance but the sensi-
tivity to the distance is multiplied by its navigational value. The
combination of low-level depth cues and the navigational rele-
vance to a viewer will make OPA sensitive to the distance to only
those boundaries that are directly relevant to the navigation.

Conclusion
The current study showed that the OPA codes for the naviga-
tional distance to environmental boundaries that limit one’s
movements. We propose that the OPA acts as a perceptual source
of navigationally-relevant information in visual environments,

which supports for navigation in a local environment and also for
the formation of cognitive map.
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