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Abstract

Purpose of review—Successful integration of artificial intelligence into extant clinical
workflows is contingent upon a number of factors including clinician comprehension and
interpretation of computer vision. This article discusses how image analysis and machine learning
have enabled comprehensive characterization of kidney morphology for development of automated
diagnostic and prognostic renal pathology applications.

Recent findings—The primordial digital pathology informatics work employed classical image
analysis and machine learning to prognosticate renal disease. Although this classical approach
demonstrated tremendous potential, subsequent advancements in hardware technology rendered
artificial neural networks ‘(ANNS) the method of choice for machine vision in computational
pathology’. Offering rapid and reproducible detection, characterization and classification of kidney
morphology, ANNs have facilitated the development of diagnostic and prognostic applications. In
addition, modern machine learning with ANNs has revealed novel biomarkers in kidney disease,
demonstrating the potential for machine vision to elucidate novel pathologic mechanisms beyond
extant clinical knowledge.

Summary—Despite the revolutionary developments potentiated by modern machine learning,
several challenges remain, including data quality control and curation, image annotation and
ontology, integration of multimodal data and interpretation of machine vision or ‘opening the
black box’. Resolution of these challenges will not only revolutionize diagnostic pathology but
also pave the way for precision medicine and integration of artificial intelligence in the process of
care.
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INTRODUCTION

In the age of modern medicine and artificial intelligence integration, computational image
analysis and machine learning are revolutionizing diagnostic pathology [1¥]. The advent of
algorithms for automated classification of kidney morphology in digital histopathology has
potential to enable computer-aided detection, diagnosis and prognosis of renal disease [2""].
Integration of such machine learning applications with extant clinical practices will offer
rapid and precise patient assessment on the part of the pathologist, with significant
implications for patient outcome. Further expansion of computational and machine learning
analysis to clinical biometrics and omics data will potentiate patient prognostication and
personalized medicine. Beyond research and development of artificial intelligence tools,
successful adoption of artificial intelligence in patient care requires physician
comprehension and interpretation of computer vision’s methods and results, respectively.
The goal of this review is to guide readers through the computational image analysis and
machine learning pipelines applied to digital renal histopathology (Fig. 1), while also
summarizing published, kidney-centric artificial intelligence tools (Table 1).

THE DATA: DIGITAL RENAL HISTOPATHOLOGY

Terminology

Computational image analysis and machine learning utilize a wealth of technical jargon. To
achieve the aims of this review, several terms are bolded and defined throughout. For
additional terminology, we recommend Roeder et al.’s Computational Image Analysis
Glossary for Biologists [14] and Deo’s Machine Learning in Medicine [15].

The advent of digital pathology

The implementation of telepathology in the 1960s demonstrated the power of data sharing
and communication for diagnostic assessment [16]. Later development of whole-slide
imaging technologies enabled digitization of pathology slides, establishment of digital
pathology platforms and curation of whole-slide image (WSI) repositories. Modern digital
pathology capitalizes upon these developments, providing a WSI-based, data-driven
environment for pathology research, education and clinical practice [17,18]. Primordial
digital pathology informatics efforts employed computational image analysis, feature
engineering and classical machine learning to prognosticate survival in patients with renal
cellcarcinoma (RCC) [3]. More recent works focus on the extension of these methods to
benign processes of the kidney.

Data sources and challenges

Benign renal histopathology data are primarily derived from human kidney biopsies
performed in patients with primary renal or allograft dysfunction. To date, exemplary renal
pathology repositories featuring comprehensive human data include the Nephrotic
Syndrome Network (NEPTUNE) [19] and CureGN [20]. Enlistment of these vast data for
computational purposes is ideal. However, these datasets lack ground-truth annotations. As a
direct result, all projects investigating kidney morphology for classification or predictive
purposes must invest significant time and manpower to generate annotation sets. Depending
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on the kidney structure of interest, machine learning algorithms require anywhere from
hundreds to thousands of examples [21] to achieve optimal performance. This annotation
burden [12%] is but one of many data-related challenges facing digital pathology research.

Large-scale analysis of digital pathology is further complicated by data heterogeneity. The
lack of standardized protocols for sample preparation and digitization results in
heterogeneous, multiinstitutional datasets, which feature significant variation in stain and
image quality. To mitigate this issue, de Bel et al. [22"] recently proposed an innovative
solution to the shortage and heterogeneity of kidney data: cycle generative adversarial
networks (cycleGANS) for stain transformation and structural segmentation of kidney
histopathology. GANSs are deep neural network architectures [23], which learn to generate
synthetic images resembling authentic input images. In the aforementioned work, the
cycleGAN is trained to take input histology images of disparate stain quality and generate
images featuring an identical colourspace. The ability to generate synthetic images
representative of renal histopathology navigates disparities in tissue preparation. An
additional computational tool for quality control of digital pathology data is HistoQC [24™].
Designed to automatically detect image artefacts and normalize sample stain variation,
HistoQC offers a rapid and reproducible alternative to the manual review of WSIs.

DETECTION AND CHARACTERIZATION OF KIDNEY STRUCTURES IN
WHOLE-SLIDE IMAGES

Traditionally, diagnostic renal pathology involves examination of kidney biopsies for known
structural abnormalities indicative of disease [13"]. On the basis of the type and severity of
abnormality, pathologists classify biopsies and provide a patient diagnosis. Automation of
this process requires the development of artificial intelligence tools, which automatically
detect kidney structures in biopsy WSIs. To achieve this end, engineers employ computer
vision: the scientific field that explores how computers can achieve high-level understanding
from digital images [25]. When provided and trained with digital pathology data, computers
have the potential to detect, analyse and classify kidney structural morphology, effectively
emulating pathologist visual assessment. Computers accomplish these tasks by conducting
pattern recognition via image analysis [18].

Image analysis is the extraction of meaningful information from digitized images via image
processing techniques [25]. Given that images are composed of pixels, or a matrix of
numbers, these processing techniques involve mathematical calculations to detect and
characterize specific patterns in image pixels [25]. To selectively analyse image regions of
interest, we apply segmentation: the partitioning of an image into multiple, distinct
segments [25] of select pixels. For example, when analysing kidney morphology, WSIs must
be segmented or partitioned into regions featuring anatomical structures of interest such as
glomeruli, tubules, vessels or inflammatory cells. Once segmented, kidney structures may be
guantified — enumerated and measured — to provide a set of descriptive features for
subsequent classification by type and morphological variation [26,27].
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Classical feature extraction and classification from renal biopsy whole-slide images

A myriad of classical image analysis algorithms has been developed for exploration of
kidney morphology in WSIs [27]. These algorithms capitalize upon textural and
morphological image processing techniques [28] to detect regions wherein disease may
manifest. In image processing, morphology describes the shapes of image regions, while
texture describes the arrangement and heterogeneity of colour or pixel intensities. Object
edges in images are described as discrete regions wherein an abrupt change in intensity is
observed for a stretch of contiguous pixels. Textural operations may be employed to detect
object edges or distinct textures in images. For example, the texture of glomeruli is very
different from the surrounding tubulo-interstitium. This observation, among many others,
facilitated the application of textural analysis techniques for glomerulus detection and
feature engineering, including Gabor filtering [6], local binary pattern (LBP) [7] and
histogram of oriented gradients [5].

Morphological processing techniques have been used for detection of kidney microstructures
that have characteristic morphologies. For example, the glomerular unit is typically elliptical
in histology images, and therefore may be detected via minimization of the variance between
the glomerulus boundary and a predefined shape (e.g. ellipse) [29]. Unfortunately, despite
reproducible detection of glomerulus boundaries, these shape fitting methods have a
substantial false-positive rate. More specifically, the similarity of the glomerular boundary to
large, transversely cut tubules and arterioles renders each candidate for detection [29].
Algorithms based upon textural analysis also have drawbacks. In pathologic states, such as
renal parenchymal scarring, there is a decrease in textural contrast between globally
sclerosed glomeruli and surrounding cortical fibrosis that may hinder texture-based
segmentation [30]. Therefore, algorithms may perform poorly when analysing disease tissue.
To date, some of the most successful algorithms use morphological and textural analysis in
tandem to provide for robust detection, segmentation and characterization of glomeruli,
intraglomerular compartments and tubules [13",31].

Once segmented, image regions are further processed to derive discriminative features for
subsequent classification tasks. Features descriptive of image texture can be as simple as the
standard deviation of pixel intensities in a given region [7], or as complex as the amplitude
response of a Gabor filter [6]. Similarly, morphological features may be more apparent, such
as image object area defined as the sum of resident pixels, or the computation of nuclear
shape signatures that compare object radii at incremental polar angles [32]. Given the ability
to selectively apply techniques for image analysis, derived features are often referred to as
handcrafted or engineered. Similar to segmentation tasks, handcrafted feature sets derived
via a combination of textural and morphological processes provide for optimal image
classification. Although classical classification algorithms in machine learning are
numerous, methods commonly used for classification of kidney microstructures using
handcrafted image features include support vector machines (SVMs) [7,31,33] and decision
trees [29]. Strong classifier performance has also been reported when features are extracted
using artificial neural networks (ANNSs), and subsequently classified using a SVM [33].
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Neural networks for feature extraction and classification from renal biopsy whole-slide

images

In recent years, ANNs have taken the field of image analysis by storm, exploiting their
tremendous depth of vision and comprehension for a myriad of image-based applications.
With respect to computational renal pathology, ANNs have emerged as the ‘panacea’ for
existing challenges, enabling not only detection and classification of kidney morphology
[2",8,11"" 12" 26,33,34,35] but also prediction of disease status and outcome
[13",9""35,36,37,38",39]. ANNSs achieve high-level understanding through their
biologically inspired architecture, wherein interconnected artificial neurons simulate the
neuronal pathways of the human brain [40]. Input data (observations) are passed through a
series of layers, or mathematical processes, which transform the input into a desired output.
As data are passed from layer to layer, the network gains increasingly abstract insight and
learns to recognize trends in the input data. Similar to the brain, ANNs also feature weighted
connections between their artificial neurons [41]. These connections enable neurons to
selectively influence each other, with higher number weights corresponding to greater
influence. This fully connected, weighted design facilitates ANN learning or training.

During training, ANNSs are provided with vast input data and ground truth labels defining
each input’s expected output. Comparison of transformed output with the ground-truth
defines the error of fitting, which the machine optimizes using an operation called back
propagation [41]. Back propagation involves adjustment of learning parameters, such as the
weights of neuronal connections, to produce updated transformed outputs. When the actual
and expected outputs converge, error is minimized, and the network achieves optimal
performance.

Initially, the computationally intensive nature of network parameter (weights) estimation
and optimization deterred use of ANNs for image-based applications. Later discovery of
convolutional neural networks (CNNs) — a more efficient network design — rendered
ANNs ideal for image analysis tasks. Digital pathology has since seen an explosion in the
application of CNNs for morphological and textural analysis of tissue structure in disease
[1%,39,42,43]. CNNs pass input images through a series of convolutional filters (layers) and
extract image features via convolution, a signal processing operation. The progressive
complexity of convolutional filters at increasing network depth results in the extraction of a
hierarchy of image features, branching from simple (edges and textures) to abstract
(objects). These hierarchical features, along with the input image’s ground truth label,
provide for subsequent image segmentation and classification tasks.

To date, CNNs have been applied for the detection and classification of kidney
morphological structures, including glomeruli, tubules, interstitium, arteries and even empty
Bowman’s spaces [2"",8,11™,12",26,33,34]. In addition, CNNSs have enabled discrimination
of healthy and pathologic kidney morphology [2**,13",34]. Many of these methods
capitalize upon select histological stains for multiclass structural segmentation. For example,
WSiIs stained with Masson’s trichrome enabled detection and quantification of glomeruli
and renal scarring. In addition, PAS-stained WSIs provided for comprehensive
compartmentalization of both healthy and pathologic kidney morphology [2"*]. These
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methods brought to light challenges facing multiclass segmentation of renal tissue, including
reproducible detection and subclassification of tubules and sclerosed glomeruli, and
overestimation of renal pathologies in distinct stains. Despite significant training data,
composed of both pathologist manual segmentations and ground truth labels, networks
struggle to reproducibly detect tubules (esp. atrophied) and sclerosed glomeruli. In addition,
studies have shown that quantification of trichrome stain tends towards overestimation of
renal fibrosis [44]. Taken together, these two challenges limit network performance for
detection and classification of pathologic kidney morphologies essential to disease
assessment.

Lutnick et al. [12"] recently developed Human-Atrtificial Intelligence-Loop (H-Al-L), a
unique, iterative technique for multiclass semantic segmentation of kidney structures from
WSiIs. Rather than providing a single image label, semantic segmentation involves linking a
class label to each pixel in an image. Pixel class labels are assigned based on ground truth
annotations defining distinct image regions of interest. H-Al-L allows humans to interact
with the machine through manual correction of structural boundary predictions for
additional rounds of network training [12"]. The ability to iteratively train the network and
guide the machine to identify kidney structures, as pathologists do, offers a solution to the
aforementioned challenges in multiclass image segmentation. In addition, H-Al-L’s ability
to automatically generate structural boundary predictions will ease the annotation burden in
medical image analysis.

Recent works have demonstrated the successful application of an alternative ANN
architecture — Recurrent Neural Networks (RNNs) [45] — for classification of digital
pathology [13",46]. Traditional ANNSs process inputs independently, providing an output for
each input. In comparison, RNNs inter-relate all inputs, using the output of a previous input
to provide context for the next. As a result, RNNs have the ability to recognize the sequential
characteristics of a dataset, and use learned patterns in data to make informed predictions
and effectively exhibit memory. Ginley et a/. [13"] capitalized upon this network ‘memory’
to predict the stage of diabetic nephropathy from WSIs of kidney biopsies. Given that
current diagnostic schemes involve holistic evaluation of a biopsy’s glomerular pathologies,
machine learning applications designed for automated diagnosis must analyse and classify
all glomeruli in a WSI. To achieve this, Ginley ef al. [13"] strategically trained a RNN with a
sequence of labelled feature sets for each glomerulus in a biopsy, and trained the network to
predict an ‘average’ stage for the entire input dataset (kidney biopsy) based on learned data
trends. For the input data, glomeruli were staged by an expert pathologist, and glomerular
features were engineered via computational image analysis. This work’s successful
prediction of disease stage through a combination of computational image analysis, feature
engineering and modern machine learning demonstrates the tremendous potential for
artificial intelligence in diagnostic pathology.

Correlation of image features with clinical biometrics and progression data

ANNSs are not limited to image data. The ability of ANNSs to extract features and classify
image, numerical and categorical data, renders them ideal for correlation of histopathology
with clinical phenotypes. For example, multiple CNN models have been trained to correlate
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and predict CKD stage, proteinuria and other measures of kidney function at time of biopsy
based on input histopathology images derived from renal biopsies [9"",35]. Additional CNN
models predict 1, 3 and 5-year renal survival based on input biopsy images [9™]. At this
time, few kidney-centric works feature such predictive capacity. However, a variety of ANN
models have been developed for other types of histopathology data. Landmark discoveries in
the field of cancer pathology have been made as a product of artificial intelligence methods
for evaluation of histopathology data [38"",39,47,48]. The predictive capacity of these
models for patient biometrics and survival rates demonstrates artificial intelligence’s
potential in clinical diagnostics, prognostics and theragnostics.

CONCLUSION

Despite the successful application of ANNs in digital pathology, our interpretation of
machine vision and the metaphorical ‘black box’ remains unclear [49]. Elucidation of the
mechanisms governing machine decision making is essential to exploiting the maximal
potential of these algorithms and gaining insight beyond extant clinical knowledge. Such
insights will facilitate streamlined ANN training for recognition of rare, yet highly
informative image features (biomarkers) indicative of distinct clinical phenotypes.
Reproducible detection of clinical phenotypes from digital pathology will further the
development of diagnostic and prognostic applications requiring analysis of multimodal
data. In truth, the greatest obstacle facing the precision medicine initiative is integration of
omic — genomic, proteomic — and image data [50]. Although select biomarkers have been
identified in digital pathology, a method for comprehensive correlation of image biomarkers
with patient omic data has yet to be developed. Additional challenges facing digital
pathology include expansion of computational pipelines from two-dimensional tissue
sections to three-dimensional reconstructions, and establishment of image ontology
protocols [51-53] for curation of optimal machine learning datasets. Resolution of these
challenges will revolutionize our understanding of renal pathology and will actualize future
integration of artificial intelligence in the process of care.
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KEY POINTS

The ability of ANNSs to not only extract image features but also classify
image, numerical and categorical data potentiates the integration of omic and
image data in pursuit of precision medicine.

Given that machine learning algorithms require a high volume of annotated
examples to learn to reproducibly detect and classify distinct kidney
structures, computational tools (e.g. H-Al-L) offer a unique solution to ease
pathologists’ annotation burden and augment machine learning data sets.

Due to the lack of standardized sample preparation and imaging protocols,
robust algorithms must be developed to perform data quality control and
navigate disparities in digital pathology data.

Although modern machine learning with ANNs provides rapid, reproducible
results, the handcrafted or engineered features of classical machine learning
are more biologically and clinically interpretable.

RNNSs have enabled the evaluation of whole kidney biopsies, taking into
account all pathologically relevant regions of interest, and strong
approximation of pathologist visual assessment.
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FIGURE 1.

Clinical and computational workflow for artificial intelligence driven assessment of digital
renal pathology. Following data acquisition and preparation, classical and modern artificial
intelligence approaches provide novel insights for patient assessment and medical image

analysis.
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