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Abstract

Purpose of review—Successful integration of artificial intelligence into extant clinical 

workflows is contingent upon a number of factors including clinician comprehension and 

interpretation of computer vision. This article discusses how image analysis and machine learning 

have enabled comprehensive characterization of kidney morphology for development of automated 

diagnostic and prognostic renal pathology applications.

Recent findings—The primordial digital pathology informatics work employed classical image 

analysis and machine learning to prognosticate renal disease. Although this classical approach 

demonstrated tremendous potential, subsequent advancements in hardware technology rendered 

artificial neural networks ‘(ANNs) the method of choice for machine vision in computational 

pathology’. Offering rapid and reproducible detection, characterization and classification of kidney 

morphology, ANNs have facilitated the development of diagnostic and prognostic applications. In 

addition, modern machine learning with ANNs has revealed novel biomarkers in kidney disease, 

demonstrating the potential for machine vision to elucidate novel pathologic mechanisms beyond 

extant clinical knowledge.

Summary—Despite the revolutionary developments potentiated by modern machine learning, 

several challenges remain, including data quality control and curation, image annotation and 

ontology, integration of multimodal data and interpretation of machine vision or ‘opening the 

black box’. Resolution of these challenges will not only revolutionize diagnostic pathology but 

also pave the way for precision medicine and integration of artificial intelligence in the process of 

care.
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INTRODUCTION

In the age of modern medicine and artificial intelligence integration, computational image 

analysis and machine learning are revolutionizing diagnostic pathology [1▪]. The advent of 

algorithms for automated classification of kidney morphology in digital histopathology has 

potential to enable computer-aided detection, diagnosis and prognosis of renal disease [2▪▪]. 

Integration of such machine learning applications with extant clinical practices will offer 

rapid and precise patient assessment on the part of the pathologist, with significant 

implications for patient outcome. Further expansion of computational and machine learning 

analysis to clinical biometrics and omics data will potentiate patient prognostication and 

personalized medicine. Beyond research and development of artificial intelligence tools, 

successful adoption of artificial intelligence in patient care requires physician 

comprehension and interpretation of computer vision’s methods and results, respectively. 

The goal of this review is to guide readers through the computational image analysis and 

machine learning pipelines applied to digital renal histopathology (Fig. 1), while also 

summarizing published, kidney-centric artificial intelligence tools (Table 1).

THE DATA: DIGITAL RENAL HISTOPATHOLOGY

Terminology

Computational image analysis and machine learning utilize a wealth of technical jargon. To 

achieve the aims of this review, several terms are bolded and defined throughout. For 

additional terminology, we recommend Roeder et al.’s Computational Image Analysis 
Glossary for Biologists [14] and Deo’s Machine Learning in Medicine [15].

The advent of digital pathology

The implementation of telepathology in the 1960s demonstrated the power of data sharing 

and communication for diagnostic assessment [16]. Later development of whole-slide 

imaging technologies enabled digitization of pathology slides, establishment of digital 

pathology platforms and curation of whole-slide image (WSI) repositories. Modern digital 
pathology capitalizes upon these developments, providing a WSI-based, data-driven 

environment for pathology research, education and clinical practice [17,18]. Primordial 

digital pathology informatics efforts employed computational image analysis, feature 

engineering and classical machine learning to prognosticate survival in patients with renal 

cellcarcinoma (RCC) [3]. More recent works focus on the extension of these methods to 

benign processes of the kidney.

Data sources and challenges

Benign renal histopathology data are primarily derived from human kidney biopsies 

performed in patients with primary renal or allograft dysfunction. To date, exemplary renal 

pathology repositories featuring comprehensive human data include the Nephrotic 

Syndrome Network (NEPTUNE) [19] and CureGN [20]. Enlistment of these vast data for 

computational purposes is ideal. However, these datasets lack ground-truth annotations. As a 

direct result, all projects investigating kidney morphology for classification or predictive 

purposes must invest significant time and manpower to generate annotation sets. Depending 
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on the kidney structure of interest, machine learning algorithms require anywhere from 

hundreds to thousands of examples [21] to achieve optimal performance. This annotation 

burden [12▪] is but one of many data-related challenges facing digital pathology research.

Large-scale analysis of digital pathology is further complicated by data heterogeneity. The 

lack of standardized protocols for sample preparation and digitization results in 

heterogeneous, multiinstitutional datasets, which feature significant variation in stain and 

image quality. To mitigate this issue, de Bel et al. [22▪] recently proposed an innovative 

solution to the shortage and heterogeneity of kidney data: cycle generative adversarial 

networks (cycleGANs) for stain transformation and structural segmentation of kidney 

histopathology. GANs are deep neural network architectures [23], which learn to generate 

synthetic images resembling authentic input images. In the aforementioned work, the 

cycleGAN is trained to take input histology images of disparate stain quality and generate 

images featuring an identical colourspace. The ability to generate synthetic images 

representative of renal histopathology navigates disparities in tissue preparation. An 

additional computational tool for quality control of digital pathology data is HistoQC [24▪▪]. 

Designed to automatically detect image artefacts and normalize sample stain variation, 

HistoQC offers a rapid and reproducible alternative to the manual review of WSIs.

DETECTION AND CHARACTERIZATION OF KIDNEY STRUCTURES IN 

WHOLE-SLIDE IMAGES

Traditionally, diagnostic renal pathology involves examination of kidney biopsies for known 

structural abnormalities indicative of disease [13▪]. On the basis of the type and severity of 

abnormality, pathologists classify biopsies and provide a patient diagnosis. Automation of 

this process requires the development of artificial intelligence tools, which automatically 

detect kidney structures in biopsy WSIs. To achieve this end, engineers employ computer 
vision: the scientific field that explores how computers can achieve high-level understanding 

from digital images [25]. When provided and trained with digital pathology data, computers 

have the potential to detect, analyse and classify kidney structural morphology, effectively 

emulating pathologist visual assessment. Computers accomplish these tasks by conducting 

pattern recognition via image analysis [18].

Image analysis is the extraction of meaningful information from digitized images via image 

processing techniques [25]. Given that images are composed of pixels, or a matrix of 

numbers, these processing techniques involve mathematical calculations to detect and 

characterize specific patterns in image pixels [25]. To selectively analyse image regions of 

interest, we apply segmentation: the partitioning of an image into multiple, distinct 

segments [25] of select pixels. For example, when analysing kidney morphology, WSIs must 

be segmented or partitioned into regions featuring anatomical structures of interest such as 

glomeruli, tubules, vessels or inflammatory cells. Once segmented, kidney structures may be 

quantified – enumerated and measured – to provide a set of descriptive features for 

subsequent classification by type and morphological variation [26,27].
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Classical feature extraction and classification from renal biopsy whole-slide images

A myriad of classical image analysis algorithms has been developed for exploration of 

kidney morphology in WSIs [27]. These algorithms capitalize upon textural and 
morphological image processing techniques [28] to detect regions wherein disease may 

manifest. In image processing, morphology describes the shapes of image regions, while 

texture describes the arrangement and heterogeneity of colour or pixel intensities. Object 

edges in images are described as discrete regions wherein an abrupt change in intensity is 

observed for a stretch of contiguous pixels. Textural operations may be employed to detect 

object edges or distinct textures in images. For example, the texture of glomeruli is very 

different from the surrounding tubulo-interstitium. This observation, among many others, 

facilitated the application of textural analysis techniques for glomerulus detection and 

feature engineering, including Gabor filtering [6], local binary pattern (LBP) [7] and 

histogram of oriented gradients [5].

Morphological processing techniques have been used for detection of kidney microstructures 

that have characteristic morphologies. For example, the glomerular unit is typically elliptical 

in histology images, and therefore may be detected via minimization of the variance between 

the glomerulus boundary and a predefined shape (e.g. ellipse) [29]. Unfortunately, despite 

reproducible detection of glomerulus boundaries, these shape fitting methods have a 

substantial false-positive rate. More specifically, the similarity of the glomerular boundary to 

large, transversely cut tubules and arterioles renders each candidate for detection [29]. 

Algorithms based upon textural analysis also have drawbacks. In pathologic states, such as 

renal parenchymal scarring, there is a decrease in textural contrast between globally 

sclerosed glomeruli and surrounding cortical fibrosis that may hinder texture-based 

segmentation [30]. Therefore, algorithms may perform poorly when analysing disease tissue. 

To date, some of the most successful algorithms use morphological and textural analysis in 

tandem to provide for robust detection, segmentation and characterization of glomeruli, 

intraglomerular compartments and tubules [13▪,31].

Once segmented, image regions are further processed to derive discriminative features for 

subsequent classification tasks. Features descriptive of image texture can be as simple as the 

standard deviation of pixel intensities in a given region [7], or as complex as the amplitude 

response of a Gabor filter [6]. Similarly, morphological features may be more apparent, such 

as image object area defined as the sum of resident pixels, or the computation of nuclear 

shape signatures that compare object radii at incremental polar angles [32]. Given the ability 

to selectively apply techniques for image analysis, derived features are often referred to as 

handcrafted or engineered. Similar to segmentation tasks, handcrafted feature sets derived 

via a combination of textural and morphological processes provide for optimal image 

classification. Although classical classification algorithms in machine learning are 

numerous, methods commonly used for classification of kidney microstructures using 

handcrafted image features include support vector machines (SVMs) [7,31,33] and decision 

trees [29]. Strong classifier performance has also been reported when features are extracted 

using artificial neural networks (ANNs), and subsequently classified using a SVM [33].
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Neural networks for feature extraction and classification from renal biopsy whole-slide 
images

In recent years, ANNs have taken the field of image analysis by storm, exploiting their 

tremendous depth of vision and comprehension for a myriad of image-based applications. 

With respect to computational renal pathology, ANNs have emerged as the ‘panacea’ for 

existing challenges, enabling not only detection and classification of kidney morphology 

[2▪▪,8,11▪▪,12▪,26,33,34,35] but also prediction of disease status and outcome 

[13▪,9▪▪,35,36,37,38▪▪,39]. ANNs achieve high-level understanding through their 

biologically inspired architecture, wherein interconnected artificial neurons simulate the 

neuronal pathways of the human brain [40]. Input data (observations) are passed through a 

series of layers, or mathematical processes, which transform the input into a desired output. 

As data are passed from layer to layer, the network gains increasingly abstract insight and 

learns to recognize trends in the input data. Similar to the brain, ANNs also feature weighted 

connections between their artificial neurons [41]. These connections enable neurons to 

selectively influence each other, with higher number weights corresponding to greater 

influence. This fully connected, weighted design facilitates ANN learning or training.

During training, ANNs are provided with vast input data and ground truth labels defining 

each input’s expected output. Comparison of transformed output with the ground-truth 

defines the error of fitting, which the machine optimizes using an operation called back 
propagation [41]. Back propagation involves adjustment of learning parameters, such as the 

weights of neuronal connections, to produce updated transformed outputs. When the actual 

and expected outputs converge, error is minimized, and the network achieves optimal 

performance.

Initially, the computationally intensive nature of network parameter (weights) estimation 

and optimization deterred use of ANNs for image-based applications. Later discovery of 

convolutional neural networks (CNNs) – a more efficient network design – rendered 

ANNs ideal for image analysis tasks. Digital pathology has since seen an explosion in the 

application of CNNs for morphological and textural analysis of tissue structure in disease 

[1▪,39,42,43]. CNNs pass input images through a series of convolutional filters (layers) and 

extract image features via convolution, a signal processing operation. The progressive 

complexity of convolutional filters at increasing network depth results in the extraction of a 

hierarchy of image features, branching from simple (edges and textures) to abstract 

(objects). These hierarchical features, along with the input image’s ground truth label, 

provide for subsequent image segmentation and classification tasks.

To date, CNNs have been applied for the detection and classification of kidney 

morphological structures, including glomeruli, tubules, interstitium, arteries and even empty 

Bowman’s spaces [2▪▪,8,11▪▪,12▪,26,33,34]. In addition, CNNs have enabled discrimination 

of healthy and pathologic kidney morphology [2▪▪,13▪,34]. Many of these methods 

capitalize upon select histological stains for multiclass structural segmentation. For example, 

WSIs stained with Masson’s trichrome enabled detection and quantification of glomeruli 

and renal scarring. In addition, PAS-stained WSIs provided for comprehensive 

compartmentalization of both healthy and pathologic kidney morphology [2▪▪]. These 
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methods brought to light challenges facing multiclass segmentation of renal tissue, including 

reproducible detection and subclassification of tubules and sclerosed glomeruli, and 

overestimation of renal pathologies in distinct stains. Despite significant training data, 

composed of both pathologist manual segmentations and ground truth labels, networks 

struggle to reproducibly detect tubules (esp. atrophied) and sclerosed glomeruli. In addition, 

studies have shown that quantification of trichrome stain tends towards overestimation of 

renal fibrosis [44]. Taken together, these two challenges limit network performance for 

detection and classification of pathologic kidney morphologies essential to disease 

assessment.

Lutnick et al. [12▪] recently developed Human-Artificial Intelligence-Loop (H-AI-L), a 

unique, iterative technique for multiclass semantic segmentation of kidney structures from 

WSIs. Rather than providing a single image label, semantic segmentation involves linking a 

class label to each pixel in an image. Pixel class labels are assigned based on ground truth 

annotations defining distinct image regions of interest. H-AI-L allows humans to interact 

with the machine through manual correction of structural boundary predictions for 

additional rounds of network training [12▪]. The ability to iteratively train the network and 

guide the machine to identify kidney structures, as pathologists do, offers a solution to the 

aforementioned challenges in multiclass image segmentation. In addition, H-AI-L’s ability 

to automatically generate structural boundary predictions will ease the annotation burden in 

medical image analysis.

Recent works have demonstrated the successful application of an alternative ANN 

architecture – Recurrent Neural Networks (RNNs) [45] – for classification of digital 

pathology [13▪,46]. Traditional ANNs process inputs independently, providing an output for 

each input. In comparison, RNNs inter-relate all inputs, using the output of a previous input 

to provide context for the next. As a result, RNNs have the ability to recognize the sequential 

characteristics of a dataset, and use learned patterns in data to make informed predictions 

and effectively exhibit memory. Ginley et al. [13▪] capitalized upon this network ‘memory’ 

to predict the stage of diabetic nephropathy from WSIs of kidney biopsies. Given that 

current diagnostic schemes involve holistic evaluation of a biopsy’s glomerular pathologies, 

machine learning applications designed for automated diagnosis must analyse and classify 

all glomeruli in a WSI. To achieve this, Ginley et al. [13▪] strategically trained a RNN with a 

sequence of labelled feature sets for each glomerulus in a biopsy, and trained the network to 

predict an ‘average’ stage for the entire input dataset (kidney biopsy) based on learned data 

trends. For the input data, glomeruli were staged by an expert pathologist, and glomerular 

features were engineered via computational image analysis. This work’s successful 

prediction of disease stage through a combination of computational image analysis, feature 

engineering and modern machine learning demonstrates the tremendous potential for 

artificial intelligence in diagnostic pathology.

Correlation of image features with clinical biometrics and progression data

ANNs are not limited to image data. The ability of ANNs to extract features and classify 

image, numerical and categorical data, renders them ideal for correlation of histopathology 

with clinical phenotypes. For example, multiple CNN models have been trained to correlate 
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and predict CKD stage, proteinuria and other measures of kidney function at time of biopsy 

based on input histopathology images derived from renal biopsies [9▪▪,35]. Additional CNN 

models predict 1, 3 and 5-year renal survival based on input biopsy images [9▪▪]. At this 

time, few kidney-centric works feature such predictive capacity. However, a variety of ANN 

models have been developed for other types of histopathology data. Landmark discoveries in 

the field of cancer pathology have been made as a product of artificial intelligence methods 

for evaluation of histopathology data [38▪▪,39,47,48]. The predictive capacity of these 

models for patient biometrics and survival rates demonstrates artificial intelligence’s 

potential in clinical diagnostics, prognostics and theragnostics.

CONCLUSION

Despite the successful application of ANNs in digital pathology, our interpretation of 

machine vision and the metaphorical ‘black box’ remains unclear [49]. Elucidation of the 

mechanisms governing machine decision making is essential to exploiting the maximal 

potential of these algorithms and gaining insight beyond extant clinical knowledge. Such 

insights will facilitate streamlined ANN training for recognition of rare, yet highly 

informative image features (biomarkers) indicative of distinct clinical phenotypes. 

Reproducible detection of clinical phenotypes from digital pathology will further the 

development of diagnostic and prognostic applications requiring analysis of multimodal 

data. In truth, the greatest obstacle facing the precision medicine initiative is integration of 

omic – genomic, proteomic – and image data [50]. Although select biomarkers have been 

identified in digital pathology, a method for comprehensive correlation of image biomarkers 

with patient omic data has yet to be developed. Additional challenges facing digital 

pathology include expansion of computational pipelines from two-dimensional tissue 

sections to three-dimensional reconstructions, and establishment of image ontology 

protocols [51–53] for curation of optimal machine learning datasets. Resolution of these 

challenges will revolutionize our understanding of renal pathology and will actualize future 

integration of artificial intelligence in the process of care.
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KEY POINTS

• The ability of ANNs to not only extract image features but also classify 

image, numerical and categorical data potentiates the integration of omic and 

image data in pursuit of precision medicine.

• Given that machine learning algorithms require a high volume of annotated 

examples to learn to reproducibly detect and classify distinct kidney 

structures, computational tools (e.g. H-AI-L) offer a unique solution to ease 

pathologists’ annotation burden and augment machine learning data sets.

• Due to the lack of standardized sample preparation and imaging protocols, 

robust algorithms must be developed to perform data quality control and 

navigate disparities in digital pathology data.

• Although modern machine learning with ANNs provides rapid, reproducible 

results, the handcrafted or engineered features of classical machine learning 

are more biologically and clinically interpretable.

• RNNs have enabled the evaluation of whole kidney biopsies, taking into 

account all pathologically relevant regions of interest, and strong 

approximation of pathologist visual assessment.
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FIGURE 1. 
Clinical and computational workflow for artificial intelligence driven assessment of digital 

renal pathology. Following data acquisition and preparation, classical and modern artificial 

intelligence approaches provide novel insights for patient assessment and medical image 

analysis.
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