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Abstract

A scientifically sound integrated assessment modeling (IAM) system capable of providing 

optimized cost-benefit analysis is essential in effective air quality management and control 

strategy development. Yet scenario optimization for large-scale applications is limited by the 

computational expense of optimization over many control factors. In this study, a multi-pollutant 

cost-benefit optimization system based on a genetic algorithm (GA) in machine learning has been 

developed to provide cost-effective air quality control strategies for large-scale applications (e.g., 

solution spaces of ~1035). The method is demonstrated by providing optimal cost-benefit control 

pathways to attain air quality goals for fine particulate matter (PM2.5) and ozone (O3) over the 

Pearl River Delta (PRD) region of China. The GA is found to be > 99% more efficient than the 

commonly used grid searching method while providing the same combination of optimized multi-

pollutant control strategies. The GA method can therefore address air quality management 

problems that are intractable using the grid searching method. The annual attainment goals for 

PM2.5 (< 35 μg m−3) and O3 (< 80 ppb) can be achieved simultaneously over the PRD region and 

surrounding areas by reducing NOx (22%), volatile organic compounds (VOCs, 12%), and 

primary PM (30%) emissions. However, to attain stricter PM2.5 goals, SO2 reductions (> 9%) are 
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needed as well. The estimated benefit-to-cost ratio of the optimal control strategy reached 17.7 in 

our application, demonstrating the value of multi-pollutant control for cost-effective air quality 

management in the PRD region.
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1. Introduction

Tropospheric ozone (O3) and fine particulate matter (PM2.5) impose adverse effects upon 

human health and ecosystems. To alleviate these impacts, the China State Council has 

implemented substantial air quality control policies to reduce their precursor emissions. 

Since the Air Pollution Prevention and Control Action Plan was promulgated in 2013, the 

Pearl River Delta (PRD) region has taken the lead in effectively attaining the national annual 

averaged PM2.5 standard of 35 μg m−3 in 2015 (Li et al., 2019a). However, O3 

concentrations in the PRD region have exhibited an increasing trend since 2015, and the 

number of days with elevated O3 pollution in PRD greatly exceeds the number of days with 

elevated levels of other pollutants combined. Therefore, the current air quality control 

strategy for PRD emphasizes the need for coordinated control of both PM2.5 and O3 

pollution.

Integrated assessment modeling (IAM) for cost-benefit analysis (CBA) is considered an 

effective tool to guide the design of control strategies (Amann et al., 2011; Daily et al., 2009; 

Harmsen et al., 2015; Wegner and Pascual, 2011; Xing et al., 2017a). For instance, the 

Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) model, which was 

developed by the International Institute for Applied Systems Analysis (IIASA) (Amann et 
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al., 2011), has been widely used to assess the benefits and costs of air quality improvement 

(Amann et al., 2011b; Amann et al., 2008; Cheewaphongphan et al., 2017; Li et al., 2019b). 

GAINS uses reduced-form source-receptor relationships derived from a sample of sensitivity 

simulations using the European Monitoring and Evaluation Programme (EMEP) (Simpson et 

al., 2012). Nevertheless, secondary organic aerosols and nonlinear atmospheric chemistry 

associated with the joint control of pollutant precursors are not addressed well by the 

GAINS model (Amann et al., 2011). As a new policy-oriented IAM, the Air Benefit and 

Cost and Attainment Assessment System (ABaCAS) can provide a streamlined cost-benefit 

analysis for the development of effective multi-pollutant control strategies (Xing et al., 

2017a). ABaCAS incorporates an advanced response surface model (RSM) that can quantify 

the nonlinear interactions of O3 and PM2.5 to their precursor emission reductions quickly 

with minimal computation. The RSM used in ABaCAS was developed by applying 

advanced statistical interpolation techniques to meta-simulation scenarios performed with a 

comprehensive photochemical air quality model (Wang et al., 2011; Xing et al., 2011; Zhao 

et al., 2015a; Zhao et al., 2015b). An advantage of ABaCAS is that the nonlinear interactions 

among different precursor emissions can be simulated relatively well. However, the previous 

ABaCAS system did not contain a cost-benefit optimization module, and thus did not 

facilitate assessments of cost-effective pollution control strategies.

A series of research efforts have been undertaken to improve the development of cost-

effective control strategies for PM2.5 (Amann et al., 2001; Carnevale et al., 2012; Harley et 

al., 1989) and O3 (Carnevale et al., 2012; Carnevale et al., 2007; Cohan et al., 2006; Fu et 

al., 2006; Guariso et al., 2004). In particular, the LEast-COst control strategy optimizer (LE-

CO) module was recently developed and applied in ABaCAS to identify optimized cost-

benefit control strategies for air quality in the Beijing-Tianjin-Hebei (BTH) region of China 

(Xing et al., 2019). In LE-CO, the polynomial function RSM (pf-RSM) significantly 

improves the computational efficiency of estimating the air quality response to emission 

changes compared to the previous RSM (Xing et al., 2018). However, the high 

computational expense of the grid searching (GS) optimization method limits the 

applicability of LE-CO to cases with ≤ 5 precursors and ≤ 5 regions.

Machine learning (ML) methods are suitable for addressing complex problems that involve 

massive combinatorial spaces or nonlinear processes, which conventional procedures either 

cannot solve or can tackle only at great computational cost (Butler et al., 2018). The genetic 

algorithm (GA), a well-known ML algorithm inspired by natural selection processes in 

biology (Goldber and Holland, 1988), is a robust and effective technology for solving multi-

objective optimization problems (Filipic et al., 1999; Sirikum and Techanitisawad, 2006; 

Song et al., 2019). The GA has been widely used in environmental management and 

engineering (Collins et al., 2010; Hong et al., 2018; Rogers et al., 1995; Seyedpour et al., 

2019; Von Arx et al., 1998) and has been successfully applied in designing ozone control 

strategies (Loughlin et al., 2000; Reis et al., 2005). In this study, the GA was implemented 

into LE-CO to address multi-pollutant optimization problems with large solution spaces 

(~1035). The Environmental Benefits Mapping and Analysis Program-Community Edition 

(BenMAP-CE, version 1.4) (Fann et al., 2018; Sacks et al., 2018) was then used within 

ABaCAS to estimate the health benefits of the optimized control strategies. This innovative 

system, named ABaCAS-Optimized Edition, or ABaCAS-OE, was applied to generate the 
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optimized control strategies to meet specific air quality goals for PM2.5 and O3 in PRD, and 

the performance of ABaCAS-OE was evaluated for the PRD case study. The ABaCAS-OE 

is available for download upon request (http://www.abacas-dss.com/abacas/Default.aspx).

2. Materials and Methods

2.1 Overview of the ABaCAS-OE System

The ABaCAS-OE system was designed to generate the cost-benefit optimal control 

strategies for PM2.5 and O3 air quality attainment. An overview of ABaCAS-OE is displayed 

in Fig. 1. First, annual PM2.5 and O3 goals were set to 35 μg m−3 and 80 ppb, respectively, 

for cities in the PRD region in 2020, the target year of the 13th Five-Year Plan in China. Air 

quality is required to meet these Class II National Ambient Air Quality Standard levels 

according to the 13th Five-Year Plan of Environmental Protection in PRD. For cases where 

the goals cannot be achieved through full control of all anthropogenic emissions in Domain 

3, the goals are relaxed in the ABaCAS-OE system (Fig. 2). Second, the LE-CO module 

including the GA (hereafter GA-LECO) is used to select the optimal combination of 

emission controls to meet the air quality goals with the least cost based on the International 

Control Cost Estimate Tool (ICET). Third, the optimized control strategies are input into 

BenMAP-CE to estimate the monetized health benefits resulting from the PM2.5 and O3 

reductions based on concentration-response (C-R) functions from epidemiology studies. 

Finally, a sorted list of control strategies that meet the air quality goals at relatively low cost 

is reported.

In the functional module of GA-LECO, the GA parameters, including population size and 

the number of generations, are set first. The “population size” refers to the number of control 

strategies that are considered in a given generation, and the “number of generations” refers 

to the number of cycles applied in the GA to generate a set of optimized control strategies. 

As discussed in detail in Section 3.2, the population size and the number of generations were 

set to 400 and 180, respectively, in this study. After setting these parameters, the initial 

population of control strategies was randomly generated to begin the operation process of 

GA-LECO. Third, the performance of each strategy was evaluated by a multi-objective 

function accounting for total control costs and air quality concentrations associated with the 

strategies. The ICET cost module was applied to estimate the control cost associated with 

each control scenario based on the marginal cost curves of pollutant controls (Sun et al., 

2014). The pf-RSM air quality module was run to provide the estimated response of PM2.5 

and O3 concentrations to emission changes (Wang et al., 2011; Xing et al., 2011; Xing et al., 

2017b; Zhao et al., 2017). Fourth, the Software for Model Attainment Test-Community 

Edition (SMAT-CE), an air quality attainment assessment module that combines the 

simulated results from the pf-RSM and monitor data using an improved Voronoi Neighbor 

Averaging (eVNA) algorithm, was applied to improve the accuracy of predicted pollutant 

concentrations (Ding et al., 2016; Wang et al., 2015; Xing et al., 2017a). During the GA 

search process, steps of evaluating control strategies, selection, crossover, and mutation 

generated a new generation of control strategies such that the cost of the strategies generally 

decreased by generation. Finally, the algorithm terminated when the maximum number of 
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generations was reached, and a cost-sorted list of optimized control strategies was output. 

Further description of the GA is provided in Section 2.2.

2.2 Optimization Method

As one of the most popular ML algorithms, the GA was developed in the 1970s by Holland 

(1975). It is a random search optimization algorithm that simulates biological evolution 

theory and searches for the optimum of an objective function (Song et al., 2019). Unlike 

other search techniques, the GA simultaneously processes a population of solutions and 

requires no specific knowledge about the problem space to successfully search for good 

solutions. Also, the GA exhibits a high degree of robustness in finding ideal solutions to 

difficult optimization problems (Goldberg, 1989; Holland, 1975). These characteristics have 

led to the increasing use of the GA in ML (Filipic et al., 1999; Giordana and Neri, 1996; 

Massoudieh et al., 2008; Mousavi et al., 2014; Seyedpour et al., 2019). The evolutionary 

strategy of GA in this study is shown in the dotted rectangle in Fig. 1. Here, the GA is 

initiated through random a generation of a specified number of control strategies, and then 

each control strategy is evaluated by the multi-objective function. Subsequently, optimal 

control strategies are combined to create offspring by the selection, crossover, and mutation, 

and the scheme is repeated over many generations until the maximum number of generations 

is reached (Stramer et al., 2010).

The GA evolution cycle is based on three fundamental operators: (1) Selection: This 

operator selects effective control strategies with low fitness values to participate in crossover 

to transfer the beneficial control factors to offspring. In this study, the rank selection method 

is applied by directly comparing the fitness values without contrasting looping statements 

(Song et al., 2019). (2) Crossover: This operator generates high-quality “child” control 

strategies by swapping the control factor values of the two-parent control strategies 

identified by the selection operator. The crossover probability is usually very high, in the 

range of [0.7, 1], because crossover occurs sparsely if the probability is too small and is 

inefficient for evolution (Elhoseny et al., 2018; Yang, 2014). (3) Mutation: This operator 

introduces random variation in the reduction rate of control factors after crossover. The 

mutation operator maintains the diversity of the population and avoids entrapment of the GA 

in local optima. Mutation rates of less than 5% are typically applied in the current literature, 

but exceptional cases have considered much higher rates. In this system, the crossover 

probability and mutation rate were set to 1 and 0.05, respectively, to maximize the retention 

of elite individuals to enhance the population characteristics.

In our work, the objective function was optimized for air quality goals of PM2.5 and O3 and 

control costs, all of which depended on the emission reduction levels of control factors. The 

search sample space was defined as emission reduction levels from 0 to 90%, with reduction 

levels stepped by 10%, resulting in 1035 possible control strategies based on the combination 

of different reduction rates for the control factors. The control factors consisted of five 

pollutants in seven regions over PRD. The pollutants were NOx, SO2, NH3, volatile organic 

compounds (VOCs; i.e., VOC and intermediate VOC), and primary PM (including primary 

organic aerosol (POA) and other primary PM), and the regions were Shunde (SD), Foshan 

(FS), Guangzhou (GZ), Jiangmen (JM), Zhongshan (ZS), Dongguan and Shenzhen 
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(DG&SZ), and other regions (OTH). NH3 emission control can be an efficient strategy to 

reduce PM2.5, but the costs of controlling NH3 in PRD are much higher than those of 

primary PM and SO2. Moreover, the air quality standard of PM2.5 in PRD can be achieved 

by controlling primary PM and SO2 emissions alone, and so the emission reduction ratio for 

NH3 was set to 0 for all control strategies designed in this study. The objective function is 

defined as follows:

Minimize

F = Cost
Costmax cost term

+ ∑sp
ΔConcsp

ΔConcsp, max air quality term
(1)

Subject to

Cost = ∑r ∑pCostpr (2)

ΔConcsp = ∑r ∑sp (Concsp, control
r − Concsp, goal) (3)

Concsp, control
r − Concsp, goal = 0,  if Concsp, control

r ≤ Concsp, goal (4)

ΔConcsp, max = ∑r ∑sp Concsp, baseline
r − Concsp, goal (5)

Concsp, baseline
r − Concsp, goal = 0,   if Concsp, baseline

r ≤ goal_ Concsp, goal (6)

ΔConcsp, max ≠ 0 (7)

where F is the fitness of the control scenario (to be minimized); Cost is the cost of the 

control scenario; Costmax is the cost of the control scenario when reduction ratios of all 

control factors reach maximum; ΔConcsp is the concentration delta between the control 

concentration and goal concentration for pollutant sp (i.e., PM2.5 and O3); ΔConcsp,max is 

the concentration delta between the baseline concentration and goal concentration for 

pollutant sp; Costpr is the cost for pollutant p (i.e., NOx, SO2, NH3, VOCs, and primary PM) 

at region r (i.e., SD, FS, GZ, JM, ZS, DG&SZ, and OTH); Concsp, control
r  is the control 

concentration for pollutant sp at region r; Concsp,goal is the air quality goal of pollutant sp; 

and Concsp, baseline
r  is the baseline concentration for pollutant sp at region r. The cost for 

pollutant p over all control technologies is calculated with (8):

Costpr = ∑iCostp, i
r

(8)
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Costp, i
r = UCp, i × ΔEmisp, ir (9)

ΔEmisp, ir = CtrRp
r × ∑sbaseline_Emispr, s (10)

where Costp, ir  is the cost of technology i for pollutant p at region r; UCp,i is the unit cost of 

technology i for pollutant p; ΔEmisp, ir  is the emission reduction by the technology i for 

pollutant p at region r; baseline_Emispr, s is the baseline emissions of pollutant p at region r in 

sector s where control technology i is applied; and CtrRp
r is the emission reduction ratio of 

pollutant p at region r, which is the optimized variable based on the GA.

In this study, the data of baseline_Emispr, s was derived from the collaborative research team 

of Tsinghua University and South China University of Technology. The parameters of UCp,i 

were based on Zhang et al. (2020). The cost estimated refers to the cost related to control 

technology application, while the social cost (e.g., subsidy to carry out the control policy) 

was not considered in ICET (Xing et al., 2019). The average control concentration of sp over 

monitors in a region is calculated with (11):

Concsp, control
r =

∑j = 1
n monitorsp, jr ×

rsmsp, j, control
r CtrR∑ p

r

rsmsp, j, baseline
r

n
(11)

where Monitorsp, ir  is the observed concentration for pollutant sp at monitoring site j of region 

r; rsmsp, i, control
r  is the function of modeled control concentration of pollutant sp at 

monitoring site j to CtrRp
r based on the pf-RSM; rsmsp, i, baseline

r  is the modeled baseline 

concentration of pollutant sp at monitoring site j based on the pf-RSM; and n is the number 

of monitoring sites in region r. In this study, the PM2.5 and O3 monitoring data over PRD 

were obtained from the Chinese Guangdong Environment Information Issuing Platform 

(http://www.gdep.gov.cn/). The response of O3 and PM2.5 concentrations to individual 

emissions changes (ΔConc) is calculated with the pf-RSM as follows:

ΔConc = ∑i = 1
a Ai ⋅ EP1

i + ∑j = 1
a′ Aj′ ⋅ EP2

j + ∑i = 1
b Bi ⋅ EP1

ai, 1

⋅ EP2
ai, 2 + C ⋅ EPM

(12)

where ΔConc is the response of O3 and PM2.5 concentrations to individual emissions 

changes; EP1 and EP2 are the emission change rates of two precursors (P1 and P2 can denote 

any two of NOx, VOCs, NH3, SO2, or POA) emissions associated with the baseline; a and a′ 
are the highest degrees of precursors; Ai, Aj′, Bi, C are the coefficients of terms; the 

superscript i, j are the degrees of the polynomials for the precursors; ai,1 and ai,2 are the 

polynomial degrees of precursors P1 and P2, respectively; the superscript b is the total 

number of interaction terms between P1 and P2 (i.e., ai,1 multiplied by ai,2); and EPM is the 

emission change ratio of primary PM relative to the baseline.
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The selection of terms to represent pollutant response in the pf-RSM are based on Xing et al. 

(2018), and the coefficients Ai, Aj′, Bi, C were fit to daily concentrations of O3 and PM2.5 as 

well as the precursor concentrations of NOx, VOCs, NH3, SO2, and POA in seven regions of 

PRD. The terms in Eq.(12) for O3 and PM2.5 in single-region RSMs are summarized in 

Table S1. The single-region RSMs were combined using the pf-RSM technique accounting 

for multi-region interactions from three components: 1) local formation of PM2.5 and O3 

related to their precursor emissions changes at receptor regions; 2) regional transport of 

pollutants from source regions to receptor regions; 3) inter-regional chemical interactions 

among multiple regions (Xing et al., 2017b). The simulation periods were January, April, 

July, and October, representing the average concentration in each season in 2015. Annual 

average PM2.5 was represented by the average concentration of these four months (Wang et 

al., 2018; Yin et al., 2017b). O3 is a seasonal pollutant with a higher concentration in 

summer and autumn. Therefore, the annual average O3 was represented by a two-month 

(July and October) average of monthly 90th percentile of maximum daily 8-hr averaged O3 

(Monthly 90th per MDA8 O3) concentration (equation provided in Section S1). The SMAT-

CE was used to adjust the simulation results with the monitor data to reduce the model bias. 

Four-month average PM2.5 concentrations were projected to the annual mean concentrations 

of PM2.5 in this study, as follows. First, the ratio of the twelve-month average to the four-

month average of monitor data in 2015 was calculated. Next, the resulting ratio was 

multiplied by the four-month average of the monitor-adjusted modeling results under 

different control scenarios to represent the annual mean concentrations (equation provided in 

Section S2). Similarly, for O3, the average of the Monthly 90th per MDA8 O3 in July and 

October under different control scenarios was multiplied by the ratio of the annual 90th 

percentile of maximum daily 8-hr averaged O3 concentration (Annual 90th per MDA8 O3) 

to the two-month average of Monthly 90th per MDA8 O3.

2.3 Health Benefits Evaluation

The health impact function was used to quantify air pollution-related health impacts in 

BenMAP-CE.

Δy = y0 × Pop × eβ × Δx − 1 (13)

where Δy is the change in the health or environmental effect; y0 is the incidence rate in the 

base year; Pop is the exposed population; β is the unitless C-R function coefficient derived 

from the relative risk (RR) reported in epidemiologic studies; and Δx is the estimated change 

in pollutant concentration exposure.

The population data for exposure in 2015 were extracted from Landscan (https://

landscan.ornl.gov/), which is a community standard for global population distribution data. 

The mortality rates in 2015 were gained from the GBD results tool (http://

ghdx.healthdata.org/gbd-results-tool) (Ding et al., 2019). Health benefits for five leading 

causes of PM2.5-related premature mortality (lung cancer, stroke, chronic obstructive 

pulmonary disease, lower respiratory infection, and ischemic heart disease) and four leading 

causes of O3-related premature mortality (coronary heart disease, stroke, cardiovascular 

disease, and hypertension) were estimated. C-R function coefficients used to estimate O3-
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related health impacts were based on Yin et al. (2017a), and those for estimating PM2.5-

related health impacts were based on Cohen et al. (2017). The economic benefits associated 

with the health impact estimates were quantified using the willingness to pay (WTP) 

method. The unit value of avoided premature deaths was 1.68 million Chinese Yuan (CNY) 

based on Xie (2011).

2.4 Case Study Domain

The Weather Research and Forecasting (WRF, version 3.9.1) (NCAR, 2017) model was used 

to simulate meteorological conditions in 2015 to drive simulations with the Community 

Multiscale Air Quality (CMAQ, version 5.2) (U.S.EPA, 2017) model under various emission 

control strategies. Three nested simulation domains were used as illustrated in Fig. 2a. The 

vertical resolution for all domains was based on twenty layers from the surface to the 

tropopause. Domain 1 (d01) covers most of China and some other parts of Asia with 27 km 

× 27 km horizontal resolution, Domain 2 (d02) covers southeastern China with 12 km × 12 

km resolution, and Domain 3 (d03) covers all of PRD with 3 km × 3 km resolution and was 

the focus of this study. The innermost domain was divided into seven major regions: SD, FS, 

GZ, ZS, JM, DG&SZ, and OTH. Air quality monitoring data from the national network were 

used in representing local air quality in each city (Fig. 2b). The initial and boundary 

conditions for Domain 1 were based on the default profile, and those for Domain 2 and 

Domain 3 were extracted from simulation results on Domain 1 and Domain 2, respectively. 

The emission inventories for Domain 1 and Domain 2 were provided by Tsinghua University 

(Ma et al., 2017), and the high-resolution emission inventory for Domain 3 was developed 

by the collaborative research team of Tsinghua University and South China University of 

Technology. The boundary conditions used for simulations over Domain 3 were estimated 

from simulations over Domain 2 to represent the impacts of inflow from regions outside of 

PRD. The same boundary conditions were used in multiple simulation scenarios to build pf-

RSM.

3. Results and Discussion

3.1. Validation of WRF-CMAQ and pf-RSM Performance

The performance of the WRF model was evaluated using the meteorological observation 

data at the Sugang and Ronggui monitoring sites centrally located in the domain of this 

study as in our previous paper (Li et al., 2019a). Table S2 provides model performance 

statistics for temperature, wind speed, and relative humidity for January, April, July, and 

October in 2015. The Pearson correlation coefficient (R) for wind speed is about 0.5 or 

greater at the sites, but the wind speed is biased high (NMB: 101.02%) in January at Sugang. 

For temperature and relative humidity, the R is greater than 0.7, and the NMB ranges from 

−4.73% to 1.22% and 2.99% to 15.83%, respectively. These values are within typical 

performance ranges in meteorological modeling studies (Wang et al., 2016). The CMAQ 

model performance was evaluated by comparing model predictions with observations from 

three representative sites in the PRD air-quality-monitoring network. The sites are located in 

GZ, SD, and JM and represent urban (Guangdong Business College), industrial (Sugang), 

and rural (Duanfen) locations, respectively (Table S3). The R is higher for O3 than for 

PM2.5, which ranges from 0.71 to 0.79. Generally, the NMBs for PM2.5 and O3 predictions 
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meet the recommended value for acceptable performance (NMB±30% for PM2.5, ±15% for 

O3) (Emery et al., 2017), and range from −29.42 to 28.48% and −15.85 to 13%, respectively.

The accuracy of the pf-RSM prediction system was tested by out-of-sample validation, i.e., 

comparing the PM2.5 and O3 concentrations calculated by the pf-RSM with the 

corresponding CMAQ simulations for ten out-of-sample control strategies. The predictive 

performance of the pf-RSM was evaluated using five statistical indices; namely, the mean 

normalized error (MeanNE), maximal normalized error (MaxNE), mean fractional error 

(MeanFE), maximal fractional error (MaxFE), and R, are defined as follows:

MeanNE = 1
N ∑i = 1

N Mi − Oi
Oi

(14)

MaxNE = max Mi − Oi
Oi

(15)

MeanFE = 1
N ∑i = 1

N Mi − Oi
Mi + Oi

× 2 (16)

MaxNE = max Mi − Oi
Mi + Oi

× 2 (17)

R =
∑i = 1

N Mi − M Oi − O

∑i = 1
N Mi − M 2∑i = 1

N Oi − O 2 (18)

where Mi and Oi are the pf-RSM-predicted and CMAQ-simulated value of the i th data in 

the series of grid cells, and M and O are the average pf-RSM-predicted and CMAQ-

simulated value over the series.

The MeanNEs for PM2.5 and O3 are 0.88% and 1.58%, respectively, as shown in Table S4. 

The MeanFE and MaxFE in PM2.5 are 0.85% and 1.59%, respectively. The MeanFE and 

MaxFE in O3 are 1.51% and 3.23%, respectively. The R values are greater than 0.96. The 

MeanNE and MaxNE are less than 2% and 4% for both PM2.5 and O3, which meet the 

criteria of the MeanNE within 2% and MaxNE within 10% defined in our previous paper 

(Xing et al., 2018). The pf-RSM-predicted PM2.5 and O3 concentrations match with CMAQ 

model simulations fairly well, with normalized errors within 1.53% and 3.48% for PM2.5 

and O3, respectively.

3.2. GA Parameter Setting

Parameter setting is a key step in designing the optimization algorithm. The GA parameters 

greatly influence the speed of convergence and the success of the optimization. The 

influence of the population size and number of generations was thoroughly investigated in 

this study. Other GA parameters were selected based on recent literature. The rank selection 
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method was used to select parents for the next generation. The crossover with a probability 

of 1 was applied to the parents to produce the offspring. Random mutation with a probability 

of 0.05 was used to maintain the diversity of individuals. Using this configuration, the effect 

of the population size was investigated by varying the population size from 50 to 550 with 

the number of generations fixed at a large value (300). Since the GA is a stochastic 

algorithm, results differed in each run; hence, each experiment was repeated ten times and 

the average value of costs and run time was calculated. The GA-LECO runs were done on 

the same workstations with Intel (R) Xeon (R) CPU, 2.60 GHz, 32-core processor, and 128 

GB RAM. The population size that provided the most cost-effective control was then used in 

additional trials to select the number of generations.

Fig. 3 shows the range of control costs and computational time required for each of the 

combinations of the population size (Fig. 3a) and the number of generations (Fig. 3b). GA 

performance initially improves with increasing population size and number of generations 

until reaching a level where results are insensitive to further increase. As population size 

increases, performance improves (i.e., costs and the mean and standard deviation for 

repeated tests decrease), but more computational time is needed. The least control-cost 

solution using GA is similar to that for the GS method when the population size is greater 

than 400, and so the population size of 400 is considered as the optimal parameter in this 

study. As shown in Fig. 3b, the algorithm approximately converges when the number of 

generations is 180, yielding an extremely efficient optimization result. Hence, the maximum 

number of generations is set to 180. Based on this parameter analysis and the goal of 

obtaining high accuracy of the GA in our application, the population size and number of 

generations of the GA are set to 400 and 180, respectively, in this study. The performance of 

the GA generally depends on the choice of population size and the number of generations, 

and these choices require tradeoffs between accuracy and runtime for a given application.

3.3. Performance Comparison for GA and GS

To explore the performance of the GA, a series of computational experiments with different 

numbers of control factors were conducted to search for the least-cost control scenarios that 

satisfied targets using the GA and GS methods (Fig. 4). Not all cities could attain the targets 

using a small number of variable control factors (a limitation of the GS method), and so the 

goals were set for the whole PRD region in these experiments. The annual attainment goals 

of PM2.5 and O3 were selected to be 33 μg m−3 and 80 ppb respectively, which correspond to 

the 13th Five-Year Plan. Each experiment was conducted using ten runs with a uniform 

sample space, and then the average computational time was calculated for the runs. The 

number of variable control factors in the performance comparison experiments for GA and 

GS ranged from 3 to 28 as summarized in Table 1. Different numbers of emission source 

types were considered for NOx, VOCs, primary PM, SO2 and NH3. For instance, in the case 

three control factors, one type of NOx emission source, one type of VOCs emission source, 

and one type of primary PM emission source were considered, and the reduction ratios of 

other control factors were set to zero. Since simulations with the GS method were limited by 

computational resources, the number of control factors stopped at 12 in runs with the GS 

method.
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As shown in Fig. 4, as the number of control factors increases, the more computational time 

is needed due to the increased search space. The same objective function was used to 

evaluate the control strategies by GA and GS. According to the values of the objective 

function, the proposed GA method yields the same optimal control strategies as the GS 

method with a much shorter runtime. The runtime of the proposed GA increases linearly 

with the numbers of the variables, whereas the runtime of the GS method increases 

exponentially. The computational time of the GA is 99.99% less than that of the GS method 

when the number of control factors reaches 9. Therefore the computational efficiency of the 

GA method facilitates large-scale optimization of multi-pollutant control strategies.

3.4. Case Study

3.4.1. Optimized Control Strategies to Attain Air Quality Goals—The formation 

of O3 and PM2.5 is strongly coupled because of the interactions of their common precursors 

(Liao et al., 2008). To explore the effectiveness of coordinated emission controls for O3 and 

PM2.5 pollution over the PRD region, two types of control combinations were designed to 

achieve goals for PRD cities at minimum cost (Fig. 5). The air quality targets for the two 

cases are as follows: (1) PM2.5 goal only (Fig. 5a), and (2) PM2.5 and O3 goals together (Fig. 

5b). The PM2.5 goals were ranged from 35 μg m−3 to 25 μg m−3 to examine moderate to 

strengthened control, while the O3 goal was 80 ppb in all cases. In Fig. 5a (PM2.5 goal only), 

the PM2.5 goal of 35 μg m−3 is achieved by controlling primary PM emissions alone. The 

control on primary PM emissions is the dominant selection, because primary PM emission 

reductions are very efficient in reducing ambient PM2.5 concentrations and control costs for 

primary PM emissions are much lower than for other pollutants (see Fig. S1). For PM2.5 

targets less than 30 μg m−3, SO2 and NOx emissions are also partially controlled to meet the 

strengthened goals. In Fig. 5b (PM2.5 and O3 goals together), the O3 goal is attained through 

reducing VOCs by about 12% and NOx by about 23%, which also helps attain the PM2.5 

goal. The control ratios on primary PM are lower than in Fig. 5a because they are partly 

substituted with controls on NOx and VOCs. The NOx and VOCs controls also significantly 

increase costs, because the control costs of NOx and VOCs are considerably higher than 

those of primary PM and SO2.

Multiple pollutant emissions contribute to the ambient concentrations of O3 and PM2.5, and 

so various combinations of pollutant controls can achieve air quality targets with the 

consideration of costs. The top ten scenarios derived from the optimal parameter are listed in 

Table 2. All the scenarios can meet the air quality targets (PM2.5 < 35 μg m−3 and O3 < 80 

ppb) for cities in the PRD region. The overall reductions in NOx (22%) and VOCs (12%) are 

similar in Scenario 1 and 10, but the reduction in O3 concentrations is greater in Scenario 

10. Scenario 1 applies more aggressive controls on VOCs in JM and NOx in GZ than 

Scenario 10, but weaker controls on VOCs in SD and NOx in FS (see Table S5). Besides, 

more strengthened controls of SO2 and primary PM result in higher PM2.5 reductions in 

Scenario 1. The control costs of NOx and VOCs are considerably higher than that of the 

primary PM and SO2, and higher health benefits obtained from PM2.5 reductions lead to a 

higher benefit-to-cost ratio in Scenario 1. The higher benefit-to-cost ratio in FS for Scenario 

2 than Scenario 3 can be attributed to the larger primary PM control ratio and smaller NOx 

and VOCs control ratios; however, more reduction in O3 concentrations is obtained in FS for 
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Scenario 2. This indicates that O3 concentration may not be monotonically declining along 

with the increase of the control ratios of NOx and VOCs due to the nonlinearities in the air 

quality response. The ten scenarios in Table 1 suggest that there are multiple options to 

attain certain air quality goals. Decision-makers can choose control scenarios by 

comprehensively considering the control ratio of each pollutant, control cost, and the 

benefit-to-cost ratio in each region to make sound policy.

3.4.2. Attainment Assessment and Benefit-Cost Evaluation—Achieving the 

PM2.5 and O3 targets for all cities requires joint controls in multiple regions across the PRD. 

The cost-benefit optimal control scenario 1 (Table 2) that meets the PM2.5 (< 35 μg m−3) and 

O3 (< 80 ppb) targets in 2020 was selected as one example in Fig.6. The emission reduction 

ratios vary distinctly across the PRD for all pollutants in this case (e.g., NOx reductions 

ranged from 10% to 50%, VOCs from 10% to 20%, and primary PM from 20% to 40%). GZ 

and FS have a lower potential to reduce NOx emissions than the other regions due to the 

strict controls applied to NOx emission sources since 2015. Overall, the emission reduction 

ratios for VOCs are lower than those of PM2.5 and NOx.

The predicted annual average concentrations of PM2.5 and O3 for cities over PRD are shown 

in Fig.6a. The coordinated control of PM2.5 and O3 requires a regional joint prevention and 

control strategy because of the regional characteristics of PM2.5 and O3 pollution. Compared 

with 2015, the average annual decrease in PM2.5 and O3 required for cities in 2020 range 

from 7% to 18% and from 1% to 8%, respectively, so that all cities can reach the targets. 

Under this scenario, NOx, SO2, VOCs, NH3, and primary PM emissions in the study region 

are expected to be reduced by 22%, 0%, 12%, 0%, and 30%, respectively, relative to the year 

of 2015.

The cost of the control strategy was estimated based on the marginal cost curves of the PRD 

region in the ICET model (Zhang et al., 2020). As illustrated in Fig.6b, NOx and VOCs 

control account for the dominant share of the total cost. Although the emission reduction 

ratios for primary PM are greater than for VOCs and NOx, the cost of primary PM controls 

is lower because of the high cost of VOCs and NOx emission controls. Control costs are 

higher in the DG&SZ region, because DG experiences the most serious O3 pollution and 

requires more NOx emission reduction. The cost estimated in this study (1.51 billion CNY) 

is acceptable based on comparison with estimates from the special fund for air pollution 

control (1.27 billion CNY) from 2016 to 2019 reported by the Department of Ecology and 

Environment of Guangdong Province (http://gdee.gd.gov.cn/).

The number of avoided premature deaths attributable to pollution reductions in each sub-

region is expected to range from 139 to 1045, with a total of over 3700 deaths per year in the 

PRD region (Fig.6c). As a result of the PM2.5 concentration reductions, the avoided 

premature deaths and economic benefits are estimated to be about 7468 and 17.52 billion 

CNY, respectively (Table S6). In response to the O3 concentration reductions, 110 avoided 

premature deaths and 0.06 billion CNY economic benefits are estimated. The estimated 

PM2.5-attributable mortality reductions and economic benefits are higher than for O3, 

because of the stronger association of PM2.5 with mortality compared with O3. PM2.5-

attributable premature deaths are predicted to decline by 10% compared to the base year 
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(2015), and the average PM2.5 concentration in PRD is estimated to be about 30 μg m−3 

under this scenario. Maji et al. (2018) indicated that reducing the PM2.5 concentrations in 

the PRD to 25 μg m−3 in 2020 would reduce the number of premature deaths by 17.4% 

compared with 2015. Hence, the avoided premature deaths estimated in this study are 

consistent with the literature. Additionally, using the statistical life value for monetization as 

our previous study (Ding et al., 2016; Li et al., 2019a), the reductions in PM2.5 and O3 

concentrations are estimated to yield economic benefits of over 8.90 billion CNY which was 

acceptable.

Fig.6d shows the benefit-to-cost ratios for the seven sub-regions and the average benefit-to-

cost ratio for the PRD region. Assuming that the disease burden declines linearly from 2015 

to 2020, the economic benefits obtained within the five years are calculated to be 26.70 

billion CNY. In this scenario, the benefit-to-cost ratio is estimated as 17.7, which 

corresponds to a 1,770% monetary gain from the investment in air quality controls. The 

cost-benefit analysis provides key information to air quality managers and should be 

considered to relate air pollution controls to economic benefits for society.

4. Conclusions

In this study, an innovative integrated assessment system ABaCAS-OE was developed to 

provide the optimized cost-benefit control strategies to attain the air quality goals for PM2.5 

and O3 in the PRD region. GA-based optimization is also conducted and compared to the 

GS method for estimating the performance of the system. The results demonstrate that the 

GA method is > 99% more efficient than the GS method while generating the same optimal 

multi-pollutant control strategies. In other words, the system has the ability to design 

optimal PM2.5 and O3 control strategies for large-scale applications. The annual attainment 

goals for PM2.5 (< 35 μg m−3) and O3 (< 80 ppb) can be achieved over the PRD region and 

surrounding areas by only controlling NOx, VOCs, and primary PM emissions; however, to 

achieve more strengthened goals, SO2 reductions need be considered as well. The suggested 

control strategies can bring considerable health benefits, with the benefit-to-cost ratio 

reaching 17.7. The ABaCAS-OE system is expected to greatly help policymakers to design 

control strategies that comprehensively consider air quality targets, costs, and health benefits 

to fully support effective decision-making for air pollution prevention and control in China.

Several uncertainties influenced the results of the optimized control strategies in this study. 

(1) For cost estimation, using the provincial marginal cost curves to conduct the cost 

assessment causes uncertainties due to the lack of local information about control cost and 

efficiency. Future investigation into the detailed costs is necessary to obtain an accurate 

estimation of urban control costs. (2) For health impact evaluations, uncertainties exist in the 

epidemiological literature and the incidence and population data. However, uncertainties in 

the incidence and population data were difficult to quantify. For estimation of economic loss 

due to premature mortality, only the WTP method was used to evaluate economic benefits, 

and the unit value for monetization was based on studies in other regions, due to the limited 

information available for the PRD region.
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Fig. 1. 
Overview of the Air Benefit and Control and Attainment Assessment System-Optimized 

Edition (ABaCAS-OE). AQ, air quality; SMAT-CE, Software for Model Attainment Test-

Community Edition; GA-LECO, LEast-COst control strategy optimization based on the 

genetic algorithm (GA); pf-RSM, Response Surface Model with polynomial functions; 

ICET, International Control Cost Estimate Tool; BenMAP-CE, Environmental Benefits 

Mapping and Analysis Program-Community Edition.
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Fig. 2. 
(a) WRF-CMAQ simulation domains: 27 km (d01), 9 km (d02), and 3 km (d03); (b) regions 

defined in the pf-RSM with air quality monitor site locations. The triangular points represent 

the monitors in the PRD, the pentacle points represent the selected monitors for evaluation 

of the model performance.
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Fig. 3. 
Effect of the population size and number of generations on the performance of the proposed 

model, (a) average cost and computational time of different population size with 300 

generations in ten runs and (b) cost of different number of generations with 400 population 

size in ten runs, respectively, and the pentagrams were chosen to search the result. The 

programs were run on the same workstations with Intel (R) Xeon (R) CPU, 2.60 GHz, 32-

core processor, and 128 GB RAM.
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Fig. 4. 
The comparison of genetic algorithm and grid searching method in the computational time 

with the different number of variable control factors to search the same least-cost control 

strategies satisfying the targets.
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Fig. 5. 
Selected the least-cost control strategies to achieve certain PM2.5 and O3 goals for cities in 

the PRD region (a: only PM2.5 target; b: both PM2.5 and O3 (< 80 ppb) targets).
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Fig. 6. 
The optimal cost-benefit control strategies to attain PM2.5 (< 35 μg m−3) and O3 (< 80 ppb) 

goals for cities over PRD in the 2020 scenario based on ABaCAS-OE. SD - Shunde, FS - 

Foshan, GZ - Guangzhou, HZ - Huizhou, DG - Dongguan, JM - Jiangmen, SZ - Shenzhen, 

ZQ - Zhaoqing, ZS - Zhongshan, ZH - Zhuha.
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Table 1.

The number of variable control factors in the performance comparison for GA and GS.

Number of variable control factors ENOx EVOCs Eprimary PM ESO2 ENH3

3 1 1 1 0 0

6 2 2 2 0 0

9 3 3 3 0 0

12 4 4 4 0 0

16 4 4 4 4 0

20 5 5 5 5 0

24 6 6 6 6 0

28 7 7 7 7 0

*
ENOx, EVOCs, Eprimary PM, ESO2 and ENH3 is the number of the emission source of NOx, VOCs, primary PM, SO2, and NH3, 

respectively.
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Table 2.

Potential candidates to meet the PM2.5 and O3 target achievement
a
 of the cities in PRD

Scenario NOx SO2 VOCs Primary PM Cost (billion yuan) Economic benefit (billion yuan) Benefit-to-cost ratio

1 22% 0% 12% 30% 1.51 26.70 17.7

2 21% 16% 12% 33% 1.78 28.97 16.0

3 23% 18% 12% 29% 1.66 25.89 15.5

4 20% 19% 12% 29% 1.70 26.17 15.5

5 23% 9% 12% 29% 1.66 25.52 15.5

6 23% 9% 12% 29% 1.66 25.41 15.5

7 23% 0% 12% 29% 1.64 24.89 15.0

8 23% 17% 12% 29% 1.72 25.85 15.0

9 22% 9% 13% 25% 1.92 20.81 11.0

10 22% 0% 12% 25% 1.90 20.28 10.5

a
based on ABaCAS-OE; PM2.5-target: annual averaged concentration less than 35 μg m−3; O3-target: annual averaged concentration less than 80 

ppb.
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