Oncogene (2020) 39:3680-3692
https://doi.org/10.1038/s41388-020-1244-1

ARTICLE

Vimentin prevents a miR-dependent negative regulation of tissue
factor mRNA during epithelial-mesenchymal transitions and
facilitates early metastasis

Marie-Emilie Francart' - Aline M. Vanwynsberghe' - Justine Lambert' - Morgane Bourcy' - Anthony Genna' -
Julien Ancel®? - Jennifer Perez-Boza® - Agnés Noél' - Philippe Birembaut® - Ingrid Struman* - Myriam Polette®” -
Christine Gilles'

Received: 12 July 2019 / Revised: 18 February 2020 / Accepted: 21 February 2020 / Published online: 10 March 2020
© The Author(s) 2020. This article is published with open access

Abstract

Epithelial-mesenchymal transitions (EMTs) are high-profile in the field of circulating tumor cells (CTCs). EMT-shifted
CTCs are considered to encompass pre-metastatic subpopulations though underlying molecular mechanisms remain elusive.
Our previous work identified tissue factor (TF) as an EMT-induced gene providing tumor cells with coagulant properties and
supporting metastatic colonization by CTCs. We here report that vimentin, the type III intermediate filament considered a
canonical EMT marker, contributes to TF regulation and positively supports coagulant properties and early metastasis.
Different evidence further pointed to a new post-transcriptional regulatory mechanism of TF mRNA by vimentin: (1)
vimentin silencing accelerated TF mRNA decay after actinomycin D treatment, reflecting TF mRNA stabilization, (2) RNA
immunoprecipitation revealed enriched levels of TF mRNA in vimentin immunoprecipitate, (3) TF 3’-UTR-luciferase
reporter vector assays implicated the 3’-UTR of TF mRNA in vimentin-dependent TF regulation, and (4) using different TF
3’'UTR-luciferase reporter vectors mutated for potential miR binding sites and specific Target Site Blockers identified a key
miR binding site in vimentin-dependent TF mRINA regulation. All together, these data support a novel mechanism by which
vimentin interferes with a miR-dependent negative regulation of TF mRNA, thereby promoting coagulant activity and early
metastasis of vimentin-expressing CTCs.

Introduction

Circulating tumor cells (CTCs) have attracted enormous
attention for their potential clinical significance [1, 2] (1) to
help predicting metastases, (2) to help guiding treatment
decisions and assessing therapeutic efficacy and (3) to allow
a live monitoring of disease progression and recurrence.
Containing metastatic founders, CTCs are thus recognized
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mechanisms underlying metastatic colonization by EMT-
shifted CTCs remain elusive.

Several pieces of work support a contribution of coa-
gulation in the process. Hypercoagulability is actually a
long known correlate of malignancy and venous throm-
boembolism has been associated with worse prognosis [10—
12]. In particular, CTCs have recently been associated with
increased risk of venous thrombosis in cancer patients
[13-16]. Though cancer-associated thrombosis is clearly
multifactorial, an aberrant thrombotic activity of tumor cells
is considered a key factor. Tissue factor (TF), a 47 kDa
membrane-associated glycoprotein known as a potent
membrane-associated activator of the coagulation cascade,
has emerged as a central player in the relationship between
the hemostatic system and cancer progression [11, 12, 17—
20]. TF binds FVIIa and subsequentely triggers the down-
stream coagulation cascade leading to thrombin generation
and fibrin-rich-clot formation. As we contributed to show
[21], enhanced TF expression has been observed in several
tumor cell lines and several types of human cancers
[14, 22-27]. If TF also triggers cellular signaling events that
facilitate tumor progression [12, 28, 29], a determinant role
of TF-associated coagulation mechanisms in supporting
metastasis has been demonstrated [10, 12, 17, 30, 31].
Notwithstanding the implication of TF-bearing tumor-
derived microparticles in hypercoagulability, a local acti-
vation of coagulation is more particularly considered to
contribute to the creation of a pericellular fibrin/platelet-rich
cocoon protecting CTCs against shear stress, anoikis and
immune attack and also providing a favorable niche for
their early metastatic seeding [10, 12, 13, 17, 30, 32].

Recently, we identified an EMT-driven axis leading to the
overexpression of TF, and providing tumor cells with coa-
gulant properties that facilitate early metastatic colonization of
CTCs in experimental metastasis mice assays [21]. Based on
this previous work emphasizing a narrow association between
vimentin and TF expression in vitro, in human breast cancers
and in CTCs isolated from metastatic breast cancer patients,
we examined here the possibility that the canonical EMT
marker vimentin could directly contribute to TF regulation,
and thereby to early metastasis. Vimentin is a type III inter-
mediate filament which, in a normal and adult context, is
mostly expressed by cells of mesenchymal origin [33]. It is
today considered a canonical marker of both physiological
and pathological EMTs. We and others have extensively
reported vimentin expression in tumor cells of epithelial ori-
gin in vitro, in animal models, in a large variety of epithelial
human tumors and CTCs isolated from cancer patients in
which it associates with poor clinical parameters [4, 6, 21, 34—
38]. As part of the cytoskeleton, vimentin has been primarily
recognized as a structural protein but has later been func-
tionally involved in various processes including cell migration
and invasion, cell—cell or cell-substrate adhesion, resistance to

shear stress and anoikis or drug resistance and metastasis
[33, 39-46]. More particularly, vimentin has also been
implicated in signalization and gene regulation [47-50].

In this study, we report a functional role of vimentin in
regulating TF expression at a posttranscriptional level. We
show, in several EMT cellular systems, that vimentin
silencing diminishes TF expression, coagulant activity and
early metastasis. Digging further the mechanisms under-
lying this regulation, vimentin was found to counteract a
miR-dependent negative regulation of TF mRNA.

Results

Vimentin regulates TF expression and coagulant
properties of EMT+ tumor cells

We recently reported that TF expression is induced by
EMT, providing EMT-shifted cells with coagulant proper-
ties that facilitate early metastasis [21]. By immunohis-
tochemistry, TF expression was more particularly shown to
correlate with vimentin expression in in vitro models of
EMT, in human breast cancers and in CTCs isolated from
metastatic breast cancer patients [21]. We bring here further
support to this narrow relationship linking TF and vimentin
by exploring RNA expression public databases that
revealed a positive correlation between the two molecules
both on nonmetastatic and metastatic breast cancers (Sup-
plementary Fig. 1a, b). Similar findings were generated by
immunohistochemistry on metastatic and nonmetastatic
lung adenocarcinomas (Supplementary Fig. 1c—e, Supple-
mentary material and methods), suggesting that TF/vimen-
tin association is an early cancer marker.

Considering this tight association between TF and
vimentin expression and aiming at deciphering EMT-driven
molecular mechanisms implicated in the regulation of TF
expression, we here examined the potential contribution of
vimentin to the process. For that purpose, we transfected
siRNA sequences against vimentin (Vim Sil and Vim Si2)
in well-known EMT+ MDA-MB-231 human breast tumor
cells and in human cell systems previously reported to be
inducible for EMT by EGF (MDA-MB-468, PMC42-LA)
or TGF-B1 (A549). Silencing vimentin clearly inhibited TF
expression in all cell models as shown by western blotting
(Fig. 1a). We verified that downregulating vimentin did not
modulate other cytoskeleton protein levels such as keratins,
tubulin, or actin (Supplementary Fig. 2). Because cell-
surface TF is determinant for the initiation of coagulation,
we also showed by FACS that cell surface-associated TF
expression is similarly decreased following vimentin silen-
cing in our tumoral cell systems (Fig. 1b). Mean fluores-
cence intensity are provided as supplemental information
(Supplementary Table 1).
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Fig. 1 Impact of vimentin on TF expression and coagulant prop-
erties of EMT+ tumor cells. a Western blotting analyses of TF and
GAPDH in MDA-MB-231, in MDA-MB-468 cells induced to EMT
by EGF, in PMC42-LA cells induced to EMT by EGF, in human lung
tumor A549 cells induced to EMT by TGF-f1, and human skin
fibroblasts, and transfected with two nontargeting siRNA (Ctrl Sil or
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FITC-A: Tissue factor

Ctrl Si2) or two siRNA against vimentin (Vim Sil or Vim Si2). The
results of corresponding in vitro coagulation assays, performed by
incubating whole blood of healthy donors with cells transfected, are
given underneath the western blots. b FACS analyses of surface TF
expression in cells treated as in a.
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We next evaluated whether vimentin-dependent mod-
ulation of TF expression functionally impacts cell coagulant
activity. Using an in vitro clot formation assay, we showed
that control cells are able to form a clot faster than cells
inhibited for vimentin expression (Fig. 1a). It is noteworthy
that Vim Sil, which is more efficient than Vim Si2 in
inhibiting vimentin expression, correlatively better inhibited
TF expression and coagulant properties (Fig. 1). Interest-
ingly, similar observations were also made on human skin
fibroblasts, supporting the existence of a vimentin/TF rela-
tionship in a normal cellular context (Fig. 1).

Vimentin silencing hinders metastatic colonization

Because TF expression has been shown by others and us to
support early steps of metastatic colonization (survival and
early niching), we examined the impact of silencing
vimentin in short-term experimental metastasis models
optimized previously in the laboratory [21]. In a scientific
context suggesting that EMT supports early metastasis
while MET must occur for metastasis to grow, we

i Vim Si1

Human Ki67 (red)/VWF (green)

optimized these assays using cells transiently silenced
in vitro before injection aiming at preferentially affecting
early steps of metastasis. Comparing EGF-treated MDA-
MB-468 (Fig. 2a) and MDA-MB-231 (Fig. 2b) cells
transfected with Vim Sil in vitro before injection, we
observed a clear diminution of human tumor cell content in
lungs after vimentin silencing, as quantified by RT-qPCR.
Immunostaining for human Ki67 corroborated the presence
of tumor cells in the lung parenchyma.

To confirm the ability of seeded cells to develop
metastases, we examined the impact of TF regulation by
vimentin on overall long-term metastasis formation. MDA-
MB-231 cells silenced or not for vimentin were thus
intravenously injected in SCID mice for 3 weeks to allow
metastatic growth (Fig. 2c). Immunofluorescence against
human Ki67 confirmed the presence of developed lung
metastases in these long-term metastasis assays. Quantifi-
cation revealed that mice injected with control cells dis-
played a higher level of human GAPDH in the collected
lungs compared with mice injected with cells silenced for
vimentin.
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Fig. 3 Stabilization of TF mRNA by vimentin. a RT-qPCR analyses
of TF in various cellular systems transfected with a nontargeting
control siRNA (Ctrl Sil) or an siRNA against vimentin (Vim Sil).
b RT-qPCR analyses of TF in MDA-MB-231, EGF-treated MDA-

Vimentin stabilizes TF mRNA
In the light of the clear regulation of TF by vimentin, we
explored further the molecular mechanism underlying this

regulation. We first observed that vimentin silencing
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decreased TF mRNA level in all cellular systems exam-
ined (Fig. 3a). Most importantly, silencing vimentin in
MDA-MB-231 cells or EMT-induced cells (MDA-MB-
468, A549 and PMC42-LA) was found to increase
the decay of TF mRNA after actinomycin D treatment
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Fig. 4 Regulation of TF mRNA 3’-UTR by vimentin. a RNA-
immunoprecipitation assays. a MDA-MB-231 cell lysates were sub-
jected to immunoprecipitation with a vimentin antibody (IP Vim).
RNA was extracted from the immunoprecipitate and subjected to RT-
qPCR for TF, 18S or TBP. b MDA-MB-231 cell lysates were sub-
jected to immunoprecipitation with a vimentin (IP Vim) or a cyto-
keratin 8/18 antibody (IP CK8/18) and extracted RNAs were subjected
to RT-qPCR for TF. Results from a representative experiment are
shown. c Cell lysates from Ctrl or TGF-p1-treated A549 cells were
subjected to immunoprecipitation with a vimentin antibody (IP Vim).

(Fig. 3b), suggesting that vimentin contributes to stabilize
TF mRNA.

Vimentin regulates TF mRNA 3’-UTR

In order to determine whether vimentin could interact with
TF mRNA, we took advantage of the MDA-MB-231 cells,
which express high levels of both vimentin and TF to
perform RNA immunoprecipitation (RIP) analyses. We
observed that TF mRNA is enriched in a cellular protein
fraction immunoprecipitated with a vimentin antibody,
while other RNAs (18S or TBP) (Fig. 4a, panel a), exam-
ined as controls, are not enriched. This enrichment of TF
mRNA also appeared to be specific to vimentin since it was
not observed when analyzing a cytokeratin 8/18 immuno-
precipitate (Fig. 4a, panel b). An enrichment of TF mRNA
in the vimentin immunoprecipitate was also observable in
TGF-B1-induced A549 cells (Fig. 4a, panel c). These data
suggest that vimentin may, directly or indirectly, complex
TF mRNA and increase its stability.

Supportively, a binding of vimentin to the 3’-UTR of
specific mRNAs, enhancing their stability, has been

RNA was extracted from the immunoprecipitate and subjected to RT-
gPCR for TF. Immunoprecipitation conditions with control IgG were
included in all experiments. b TF 3’-UTR-luciferase reporter assays.
MDA-MB-231, EGF-treated MDA-MB-468 and TGF-f1-treated
A549 cells were transfected with a reporter vector containing the
firefly luciferase coding sequence inserted upstream the 3’-UTR of TF
mRNA. The vector also expresses the renilla luciferase as an internal
control. Results are expressed as the ratio firefly luciferase/renilla
luciferase.

reported in the literature [51]. To evaluate whether such a
mechanism could similarly intervene on TF mRNA, we
employed a TF 3’-UTR reporter vector containing the firefly
luciferase coding sequence located upstream of the 3/-UTR
of the TF mRNA. Transfecting this construct in MDA-MB-
231, EGF-treated MDA-MB-468 and TGF-p1-treated A549
cells silenced for vimentin revealed a diminution of luci-
ferase activity (Fig. 4b). These data taken together suggest
the existence of a mechanism by which vimentin impairs a
negative regulatory mechanism occurring in the 3’-UTR
region of the TF mRNA.

Vimentin interferes with miR-dependent TF mRNA
regulation

In line with this concept, several authors reported a negative
regulation of TF mRNA at its 3/-UTR through miRNA-
dependent mechanisms, both in tumoral and nontumoral
cellular backgrounds [52-59]. We thus further examined
whether vimentin could interfere with a miRNA-dependent
regulation of TF. Combining a TargetScan [60] search
(Version 7.1) with literature data, we identified 17 miRs that

SPRINGER NATURE
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Fig. 5 Modulation of miR-dependent TF mRNA regulation by
vimentin. a Schematic representation of potential miR binding sites on
the 3’-UTR of TF. Seven putative miR binding regions have been
identified by TargetScan and literature search, and have been mutated
(designated M1 to M7 on the map). b Luciferase reporter assays using
the TF 3’-UTR reporter vectors mutated for the different binding sites
of potentially interacting miRs. Results are expressed as a ratio
between the luciferase activity in the Vim Sil condition and in the Ctrl

could potentially target 7 regions in the 3’-UTR of TF
mRNA (Fig. 5a). We then generated several 3’-UTR-luci-
ferase reporter vectors mutated at each of the potential
binding sites of these miRNAs and evaluated the effect of
vimentin silencing on the expression of these constructs in
MDA-MB-231 cells. In this assay, the M1 construct was the
only one for which the activity was less affected by
vimentin silencing (Fig. 5b).

The M1 construct harbors a mutation in a potential
binding site for several members of the miR-520 family, as
validated for miR-520g by D’Asti et al. in human
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pre-miR. d RT-qPCR analyses of TF and coagulation assays per-
formed on MDA-MB-231 or MDA-MB-468 cells treated or not with
EGF, and co-transfected with a vimentin siRNA (Vim Sil) or a control
siRNA (Ctrl Sil) and a TSB1 encompassing the M1 region or a TSB
control.

medulloblastoma cell lines [55]. In addition, we found that
major members of the miR-520 family are expressed in our
cellular models and we observed that their abundance is not
dramatically modulated neither by EMT induction nor by
vimentin silencing (Supplementary Fig. 3). We also showed
that increasing miR-520g cellular content by transfecting
pre-miR-520g in MDA-MB-231 cells or in the EMT-
induced MDA-MB-468 cells decreased TF mRNA to a
level that nevertheless did not drop further down after
vimentin silencing (Fig. 5c). As predicted by miRDB [61],
the M1 site of TF 3’-UTR is also a potential target of other
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miRs and we therefore cannot exclude the involvement of
other miRs.

Considering this diversity and potential redundancy of
miRs regulating TF, we rather aimed at interfering directly
at the level of the M1 binding site in the TF mRNA. We
thus used a Target Site Blocker (TSB1) designed to target
the M1 sequence, thereby inhibiting miR binding. We
showed that, both in MDA-MB-231 and in MDA-MB-468
cell models, TSB1 hindered the decrease of TF mRNA
induced by vimentin silencing. Notably, TSBI1 restored
higher coagulant activity in the vimentin-silenced cells,
demonstrating a functional role of this vimentin/miR/TF
regulatory axis (Fig. 5d).

This set of data thus specifies a role for vimentin in
preventing a miR-dependent negative regulation of TF
mRNA. The M1 region in the TF 3’-UTR plays a key role in
mediating the impact of vimentin on TF mRNA expression
and on cell coagulant activity.

Discussion

We here report a novel EMT-driven regulatory mechanism
of TF expression in tumor cells by which vimentin protects
TF mRNA from a miR-dependent downregulation. Our
results further support a functional contribution of this
vimentin-TF regulatory axis in providing tumor cells with
enhanced coagulant properties and an increased competence
to accomplish early metastasis.

If molecular relationships linking EMT and TF expres-
sion remain underexplored, diverse soluble factors and
transcription factors, with recognized implication for EMT,
have been shown to regulate TF in different cellular con-
texts. Thus, TF expression is induced both in normal cells
(mostly vascular or fibroblastic-type cells and monocytes
after injury or infection) and in tumor cells by a variety of
inflammatory and growth factors including VEGF, TNFa,
IL-1B, IL-6, or IL-8 [20]. Oncogenic pathways such as
EGEFR, c-Met, KRAS, loss of PTEN, or P53 also contribute
to regulate TF expression [12, 20, 62, 63]. More directly
linking EMT and TF expression and in line with our
observations, Pr. Rak’s laboratory previously reported a
modulation of TF expression in tumor cells by EGFR
activation and E-cadherin blockade [64]. Our previous work
additionally evidenced a prominent role of EMT transcrip-
tion factors ZEB1 and Snail in the regulation of TF
expression in tumor cells [21]. Considering the important,
though not complete, phenotypic and molecular overlaps
identified between EMT-derived cells and cancer stem cells
(CSQO), it is important to note that TF expression has also
been associated to CSC markers, and that TF has recently
been examined as a target for strategies aiming at eradi-
cating tumor cells and CSCs in tumors [25-27, 65, 66].

The present work, identifying the canonical EMT marker
vimentin as a regulator of TF expression, further strength-
ens this narrow relationship between EMT and TF expres-
sion. Increasing data indeed today show that, more than
being a structural protein of the cytoskeleton, vimentin may
also directly regulate gene expression. A signaling role of
vimentin has thus been demonstrated, involving direct
protein—protein interactions with molecular intermediates of
signaling pathways [47, 48]. In direct support of our
observations, vimentin has also been shown to bind and
stabilize specific mRNAs including collagen al (I) and o2
(I) mRNA in fibroblasts, osteoblastic alkaline phosphatase
mRNA in endothelial cells, the opioid receptor mRNA in
neuroblastoma cells, or the heme-regulated inhibitor mRNA
in leukemia cells [51, 67-69], though the precise mechan-
isms involved in these posttranscriptional regulations
remain unclear. We here report an original mechanism
supporting that vimentin stabilizes TF mRNA and interferes
with a miR-dependent-negative regulation at its 3’-UTR.
Accordingly, a regulation of TF mRNA by several specific
miRs has previously been reported [58, 59]. For instance,
miR-126, miR-19a, and miR-223 were shown to decrease
TF levels in endothelial cells in a context of diabetes or
inflammation [52, 53, 70], and miR-20b was found to
regulate TF in embryonic stem cells [54] or in a context of
lupus erythematosus [71]. Few studies also reported a miR-
dependent regulation TF in cancer contexts [55-57]. Thus,
miR-19 was identified as a miR highly expressed in poorly
invasive MCF-7 breast tumor cells that contributes to
maintain low level of TF in these cells when compared to
invasive MDA-MB-231 expressing low levels of miR-19
and higher levels of TF [56]. In line with these observations,
we observed, in the context of vimentin/EMT-positive
MDA-MB-231 cells, that a mutation in the potential binding
site of miR-19 (corresponding to our M3 mutant) in the TF
3/-UTR reporter vector does not hinder the diminution of
luciferase activity observed after vimentin silencing. Our
results indeed rather pointed to the M1 site as being
implicated in the vimentin/miR-dependent regulation of TF
mRNA. Accordingly, D’Asti et al., working with human
medulloblastoma cell lines, previously identified this site as
mediating a negative regulation of a TF 3’-UTR reporter by
miR-520g [55]. The authors further showed that exogenous
miR-520g downregulates TF levels and coagulant activity
in the medulloblastoma model. We similarly observed an
effect of exogenous pre-miR-520g on TF expression in the
breast tumor cell context. Nevertheless, as predicted by
miRDB, the M1 site of TF 3’-UTR is also a potential target
of other miRs (i.e. miR-3609 and several miR-548 family
members) and we cannot exclude a contribution of other
miRs in the vimentin/TF regulation axis. Regardless of
the nature of miRs involved, our observation that a
TSB encompassing the M1 binding site hinders the

SPRINGER NATURE



3688

M.-E. Francart et al.

downregulation of TF mRNA induced by vimentin silen-
cing thus confirmed the results obtained with the M1 mutant
3’-UTR reporter and corroborated the existence of a
mechanism by which vimentin interferes with a miR-
dependent negative regulation of TF.

In addition, our results support a functional role of this
vimentin/TF regulatory axis in providing tumor cells with
enhanced coagulant activity and increased metastatic colo-
nization abilities. Silencing vimentin indeed inhibited the
coagulant properties of tumor cells and co-transfecting the
TSBI1 attenuated this effect. Vimentin silencing also
decreased the ability of tumor cells to accomplish metastatic
colonization when injected as CTCs in experimental
metastasis assays. These data bridge two independent sets
of literature data including ours supporting, on one hand,
that EMT-shifted CTCs represent a subpopulation of CTCs
with enhanced metastatic competence and, on the other
hand, that TF-dependent coagulant properties of CTCs
facilitate their survival in the blood stream and metastatic
colonization [10-12, 30]. Accordingly, we previously
reported the existence of CTCs co-expressing vimentin and
TF in the blood of breast cancer patients [21].

All together, these data support the existence of a
mechanism by which vimentin can protect TF mRNA by
interfering with a miR-dependent negative regulation
mechanism of TF mRNA. Such a mechanism could con-
tribute to equip EMT + CTCs expressing vimentin with
higher coagulant properties, thereby facilitating early colo-
nization processes.

Material and methods
Cell culture

Human breast MDA-MB-468 cancer cell line was obtained
from the ATCC (Manassas, VA). MDA-MB-231 and A549
luciferase-expressing clones were purchased from Caliper
Life Sciences (Waltham, MA). The breast cancer PMC42-LA
subline was obtained from Dr. M.L. Ackland (Deakin Uni-
versity, Burwood, Australia) [72]. All cell lines were used
within ten passages after authentication (STR DNA typing,
Leibniz-Institute DSMZ), and were mycoplasma free. Cells
were cultured in DMEM (Gibco, Thermo Fisher Scientific,
Waltham, MA) supplemented with 10% FBS or in RPMI
(Gibco, Thermo Fisher Scientific) supplemented with 10%
FBS for PMC42-LA. For EMT induction, inducible cell lines
were treated for 48 h with 20 ng/ml recombinant EGF (Sigma-
Aldrich, Saint-Louis, MO) or 5 ng/ml recombinant TGF-$1
(R&D Systems, Minneapolis, MN).

Human skin fibroblasts were isolated from normal
human dermis explants and amplified in DMEM supple-
mented with 7% FBS. These cells were kindly provided by
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Drs Alain Colige and Charles Lambert (Laboratory of
Connective Tissue Biology, University of Liege, Belgium).

RT-qPCR, western blotting analyses, and flow
cytometry detection of cell-surface TF

RT-qPCR was performed on RNA extracted from cell
cultures with High Pure RNA Isolation Kit, reverse tran-
scribed using the first-strand cDNA Synthesis kit and
amplified on the LightCycler480 with the Universal Probe
Library system (all kits are from Roche, Basel, Switzer-
land). Primer sequences are provided in Supplementary
Table 2.

For western blotting analyses, total proteins were sepa-
rated on 10% SDS-polyacrylamide electrophoresis gels and
transferred to PVDF membranes. The antibodies used are
listed in Supplementary Table 3.

For the detection of cell surface-associated TF, cells were
detached with trypsin-EDTA, labeled with a FITC-
conjugated monoclonal antibody against human TF (Sup-
plementary Table 3) and analyzed with the FACS Cantoll
(GIGA-Imagery platform).

siRNA transfection

Cells were transfected with RNAiMax (Invitrogen, Thermo
Fisher Scientific) and 20 nM of the siRNA duplexes 24 h
after plating. Specific 19-nt sequences were selected in the
coding sequence of vimentin to generate 21-nt sense and
21-nt antisense strands of the type (19N) TT (N, any
nucleotide). The siRNA sequences were purchased from
Eurogentec (Liege, Belgium) and are listed in Supplemen-
tary Table 4. Cells were harvested for subsequent analyses
48 h after transfection.

For actinomycin D (Sigma-Aldrich) experiments, cells
were transfected with Vim Sil or Ctrl Sil 24 h before the
addition of 10 ug/ml actinomycin D in their culture media
for different time periods (up to 24 h).

Target site blockers (TSB) and pre-miR transfection

For TSB transfection experiments, a first transfection was
performed for 6 h with RNAiMax and 20 or 50 nM of the
TSB for MDA-MB-468 or MDA-MB-231 cells, respec-
tively. Cells were then co-transfected for 18 h with RNAi-
Max and 20 or 50 nM of the TSB together with 20 nM of
siRNA duplexes. TSB sequences were purchased from
Qiagen (Hilden, Germany) and are listed in Supplementary
Table 5. For pre-miR experiments, cells were co-transfected
for 24 h with RNAiMax and 20 nM of the pre-miR together
with 20 nM of siRNA duplexes. Pre-miR precursors were
purchased from Ambion (PM10365 and AM17110, Life-
Technologies, Carlsbad, CA).
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RNA Immunoprecipitation

RIP was performed with the EZ-Magna RIP RNA-Binding
Protein Immunoprecipitation Kit™ (Millipore, Burlington,
MA) according to the instructions of the manufacturer. Ten
micrograms of antibodies (listed in Supplementary Table 3)
was used to precipitate proteins of interest. Control IgG
were used as controls. RNA was extracted from the
immunoprecipitate and analyzed by RT-qPCR for the
mRNA of interests. Results are normalized to the IgG
control condition.

Dual-luciferase reporter assay

Cells transfected with vimentin siRNA as above were
subsequently transfected using lipofectamine 2000 or
LipoStem reagent (Invitrogen, Thermo Fisher Scientific) for
24h with the reporter vector containing the firefly
luciferase-coding sequence inserted upstream the 3’-UTR of
TF mRNA. This vector also carries the renilla luciferase
cDNA as an internal control (Genecopoeia Rockville, MD).
The firefly and renilla luciferase activities were measured
using the Dual-Luciferase” Reporter (DLR™) Assay Sys-
tem (Promega, Madison, WI) according to the instructions
of manufacturer. TF 3’-UTR vectors mutated for seven
seeding regions were generated by Genscript (Nanjing,
China). The sequences of the WT and the mutated TF 3'-
UTR are listed in Supplementary Table 6.

miRNA detection

Total RNA was extracted using the miRNeasy kit (Qiagen)
following the manufacturer’s protocol. Fifty nanograms of
RNA was reverse transcribed into cDNA using the qScript
miRNA cDNA Synthesis kit (Quanta Biosciences, Beverly,
MA), and RT-gPCR was conducted in triplicate using
Perfecta SYBR Green Super Mix (Quanta Biosciences).
Amplification was performed on an Applied Biosystems
7900 HT detection system (Applied Biosystems, Foster
City, CA). The relative miRNA levels were normalized to
two internal controls SNORD 44 and SNORD 48 using the
delta—delta Ct method. Primers were purchased from Inte-
grated DNA Technologies (Coralville, IA) (listed in Sup-
plementary Table 7).

Clotting assay

For the visual clotting assay, whole blood was collected
from healthy donors on 3.2% sodium citrate. Forty-eight
hours siRNA-transfected cells or TSB and siRNA co-
transfected cells were suspended in 600 pul of serum-free
DMEM (CaCl, 1.2mM) and exposed to 300 ul of blood.
Clot formation time was monitored. All clotting

experiments were performed at least three times during an
observation period of 4 h. Due to interpersonal variability
regarding clotting time, results from one representative
experiment are shown.

Mice models

All animal studies were approved by the Animal Ethics
Committee of the University of Liege (no. 1932, ULiege,
Belgium). BALB/c and SCID mice (7 weeks of age) were
purchased from Charles River Laboratories (Wilmington,
MA). After siRNA transfection, cells (1 x 10° cells per
mouse) were injected in the tail vein. The software G-power
was used to determine the adequate sample size per group.

To quantify CTC persistence/early seeding, mice were
sacrificed 24 h after intravenous (IV) injection. After tissue
disruption in MagNa lyser Green beads tubes (Roche), total
RNA was extracted from lungs with NucleoSpin RNA Midi
kit (Macherey-Nagel, Diiren, Germany). Human GAPDH
levels were quantified by RT-nested qPCR, as previously
described [21, 37], to evaluate tumor cell contents. In par-
allel, murine GAPDH was amplified from the same reverse-
transcribed RNA using specific murine GAPDH primers.
The sequences of the primers used are provided in Sup-
plementary Table 1. Human GAPDH levels were normal-
ized to the corresponding murine GAPDH levels for each
mouse. The values are normalized to mean expression in the
reference group in order to combine independent mice
experiments.

For the long-term model, mice were sacrificed 3 weeks
after IV injection and tumor content was evaluated in lungs
by human/murine GAPDH RT-qPCR analyses as described
above. Double immunofluorescence against Ki67 and Von
Willebrand factor (VWF) to label blood vessels was also
performed on paraffin-embedded mouse lungs as previously
described [37] (see details for antibodies in Supplementary
Table 3).

Statistical analysis

Results are expressed as mean = SEM (n =3, for in vitro
experiments). Statistical analyses were performed with
Prism software (GraphPad software). In vitro results
expressed as fold induction were analyzed with a two-tailed
one-sample t-test. Actinomycin D results were analyzed
with a Kolmogorov—Smirnov test. In vivo results were
analyzed with a two-tailed Mann—Whitney test. A P <0.05
was considered statistically significant. *P <0.05,
**P<0.01, *** P<0.001.
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