
Sequence analysis

hts-nim: scripting high-performance genomic

analyses

Brent S. Pedersen* and Aaron R. Quinlan*

Department of Human Genetics, Department of Biomedical Informatics, and USTAR Center for Genetic Discovery,

University of Utah, Salt Lake City, UT 84112, USA

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on February 23, 2018; revised on April 10, 2018; editorial decision on April 25, 2018; accepted on April 27, 2018

Abstract

Motivation: Extracting biological insight from genomic data inevitably requires custom software.

In many cases, this is accomplished with scripting languages, owing to their accessibility and brev-

ity. Unfortunately, the ease of scripting languages typically comes at a substantial performance

cost that is especially acute with the scale of modern genomics datasets.

Results: We present hts-nim, a high-performance library written in the Nim programming language

that provides a simple, scripting-like syntax without sacrificing performance.

Availability and implementation: hts-nim is available at https://github.com/brentp/hts-nim and the

example tools are at https://github.com/brentp/hts-nim-tools both under the MIT license.

Contact: bpederse@gmail.com or aaronquinlan@gmail.com

1 Introduction

For genomics applications, it can be preferable to release command-

line tools over programming libraries because it limits the functionality

exposed to users, and provides the opportunity for hidden optimiza-

tions that guarantee speed regardless of use and eases distribution.

However, command-line tools often have a limited range of functional-

ity in an effort to minimize complexity and feature-creep. In contrast,

genomics programming libraries place a greater burden of expertise on

the user, but offer flexibility in the types of analyses that be conducted.

In order to provide fast, customized genomics analyses with a simple

language, we expose the htslib library in the nim programming lan-

guage in a library called hts-nim. Nim compiles to C, offers very good

performance and provides garbage collection, control over memory re-

use and a simple syntax that is easy for most programmers that are al-

ready familiar with common scripting languages such as Perl and

Python. The combination of syntax and performance make it a com-

pelling alternative to existing htslib libraries like pysam, htsjdk and

rust-htslib.

We have previously published mosdepth (Pedersen and Quinlan,

2017) which extensively leverages hts-nim and is now a widely-used

tool. Here, we present the underlying hts-nim library and demon-

strate how it enables the creation of fast, easy to write tools for the

analysis of genomics datasets. We present an example of the syntax

along with three useful command-line tools as examples. The source

code for each tool is available at https://github.com/brentp/hts-nim-

tools, and each script includes command-line parsing and error-

handling, while also being sufficiently concise to be readable in a

few minutes. The first example allows filtering a BAM/CRAM file

with a simple expression language, the second counts reads in gen-

omic regions and the third is a quality-control tool to ensure that

regions are not missing from Variant Call Format (VCF; Danecek

et al., 2011) files.

2 Approach

hts-nim is written in the nim programming language; low-level bind-

ings from nim to htslib are created automatically using a tool called

c2nim; then, hand-written and tested code is used for the user-

exposed layer. This layer hooks into the garbage collection so that a

user of hts-nim does not need to explicitly clean up objects or free

memory as would be required in C. As much as possible, the inter-

face exposed in hts-nim allows memory reuse to avoid pressure on

the garbage collector. However, the user is also free to write code

that result in more allocations for the sake of simplicity. For ex-

ample, when accessing the base qualities of an alignment from a

BAM file, the user passes in a seq variable that is filled by the

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3387

Bioinformatics, 34(19), 2018, 3387–3389

doi: 10.1093/bioinformatics/bty358

Advance Access Publication Date: 30 April 2018

Applications Note

https://github.com/brentp/hts-nim
https://github.com/brentp/hts-nim-tools
https://github.com/brentp/hts-nim-tools
https://github.com/brentp/hts-nim-tools
https://academic.oup.com/

base_qualities method in an alignment object; that seq variable is

then filled inside the method and returned to the user. This allows

the user to control the memory allocations, by either reusing the

same container for every alignment, or allocating a new one before

each call to the base_qualities method. The design of hts-nim and

the nim programming language itself provide many opportunities

for optimization like this that allow trade-offs between speed and

memory.

3 Examples

3.1 Syntax
As an example of using the library, we present the code below that

shows how a user could open, iterate and filter a BAM.

3.2 BAM/CRAM filtering
It is common to filter alignment files using samtools (Li et al., 2009);

here, we introduce a complementary tool built with hts-nim. It uses

a simple expression language, kexpr by Heng Li, to parse and

evaluate user-specified expressions. This expression-language is in a

separate module, but it easily integreated with hts-nim. The docu-

mentation for the tool indicates the fields that are available for filter-

ing, but briefly, flags are prefixed with is_ and tags are prefixed with

tag_. This exposes a type of filtering that is not available in sam-

tools. What follows is example usage searching for paired-end align-

ments whose ends align in the expected orientation and come from a

molecule that is at least 200 bp:

3.3 Counting alignments in genomic regions
We have previously released mosdepth (Pedersen and Quinlan,

2017), which leverages hts-nim to calculate the average per-base

coverage across the genome and within a given set of regions.

However, in some cases, it is preferable to know the count of reads

overlapping each region rather than the average per-base coverage.

The count-reads tool performs this operation by iterating over each

read in a BAM or CRAM file while checking that the alignment

meets the required flag and mapping quality constraints. The tool

then tests whether the alignment overlaps the genomic regions of

interest in a BED file provided on the command-line. The overlap

testing is done with a nim library we wrote to do very fast interval

lookups. Usage of this module looks like:

For each line in the exons.bed file, the tool will count the number

of overlapping reads and report the original BED line followed by

the overlap count to STDOUT. The user can also filter alignments

based upon specific alignment flags, but the default excludes reads

that are duplicates, failed quality-control, or secondary reads. We

compared this tool to bedtools coverage which has a similar func-

tionality–though BEDTools (Quinlan and Hall, 2010) also has add-

itional options. On an exome BAM file with 82 million reads and a

BED file with about 1.2 million regions, this tool–count-reads–took

3 min and 8 s of CPU time while bedtools coverage took about 5 min

and 22 s. Simply counting all reads with samtools view -c takes

1 min and 36 s. Rather than to compare exact times, this is to show

the relative speed of hts-nim and to highlight the ability to create

very fast, custom tools in a few lines of code.

3.4 Quality control variant call files
Projects with many samples will often split the genome into regions

for simple parallelization. It is possible that a few regions may result

in truncated or no output because of a silent or uncaught error. This

missing data can go unnoticed due the the large number of files and

the complexity of processing steps. Here, we introduce a tool,

vcf-check that takes a background VCF, e.g. from ExAC (Lek et al.,

2016) or gnomAD to establish a base-line expectation of the genom-

ic regions that are expected to have common variation. It then com-

pares chunks of the genome from the background and the query

VCF so that the user can find regions that have no representation in

the query VCF but have common variation in the backgrounds. We

have found this approximate metric to work well in finding regions

of the genome that are lost in processing for various reasons. An ex-

ample invocation of this tool looks like:

The tab-delimited output contains the count of variants above 0.1

allele frequency for both VCFs in each region. Missing regions from

the query will appear as consecutive rows with counts of 0 where the

corresponding counts from the background VCF are non-zero.

4 Discussion

We have demonstrated the breadth of hts-nim’s utility by introduc-

ing a set of tools for BAM and VCF processing. These tools are

Listing 1 Example syntax for BAM manipulation

import hts

var b: Bam # open a bam and index.

assert open(b, ‘some.bam’, index¼true)

for rec in b:

if rec.qual>10:

echo rec.chrom, rec.start, rec.stop

regional queries:

for rec in b.query(’6’, 308675, 328675):

if rec.flag.proper_pair:

echo rec.cigar

Listing 2 bam-filter example

hts-nim-tools bam-filter -threads 2\

’is_proper_pair && insert_size>200’

$input_bam>$out

Listing 3 count-reads example

hts-nim-tools count-reads -threads 2 -

mapq 10 exons.bed $input_bam>$bed

Listing 4 vcf-check example

vcf-check -maf 0.1 $gnomad_vcf

$query_vcf>$missed_txt

3388 B.S.Pedersen and A.R.Quinlan

available with documentation at https://github.com/brentp/hts-nim-

tools as a complement to the library documentation to aid users in

creating their own programs. The speed and simplicity of the lan-

guage combined with the utility provided by htslib (https://htslib.

org) will make this a valuable library.

Funding

This research was supported by awards to ARQ from the US National Human

Genome Research Institute (NIH R01HG006693 and NIH R01HG009141),

the US National Institute of General Medical Sciences (NIH R01GM124355)

and the US National Cancer Institute (NIH U24CA209999).

Conflict of Interest: none declared.

References

Danecek,P. et al. (2011) The variant call format and vcftools. Bioinformatics,

27, 2156–2158.

Lek,M. et al. (2016) Analysis of protein-coding genetic variation in 60, 706

humans. Nature, 536, 285–291.

Li,H. et al. (2009) The sequence alignment/map format and samtools.

Bioinformatics, 25, 2078–2079.

Pedersen,B.S. and Quinlan,A.R. (2017) Mosdepth: quick coverage calculation

for genomes and exomes. Bioinformatics, 34, 867–868.

Quinlan,A.R. and Hall,I.M. (2010) Bedtools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26, 841–842.

hts-nim 3389

https://github.com/brentp/hts-nim-tools
https://github.com/brentp/hts-nim-tools
https://htslib.org
https://htslib.org

