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Abstract

Motivation: Single-cell RNA-sequencing (scRNA-seq) has enabled studies of tissue composition at

unprecedented resolution. However, the application of scRNA-seq to clinical cancer samples has

been limited, partly due to a lack of scRNA-seq algorithms that integrate genomic mutation data.

Results: To address this, we present CONICS: COpy-Number analysis In single-Cell RNA-Sequencing.

CONICS is a software tool for mapping gene expression from scRNA-seq to tumor clones and phyloge-

nies, with routines enabling: the quantitation of copy-number alterations in scRNA-seq, robust separ-

ation of neoplastic cells from tumor-infiltrating stroma, inter-clone differential-expression analysis and

intra-clone co-expression analysis.

Availability and implementation: CONICS is written in Python and R, and is available from https://

github.com/diazlab/CONICS.

Contact: aaron.diaz@.ucsf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) is being rapidly adopted

to model expression kinetics during dynamic biological processes.

However, there are unaddressed challenges to applying scRNA-seq

to clinical cancer samples. Firstly, distinguishing neoplastic cells

(daughter cells of the tumor-initiating cell) from tumor-infiltrating

stromal and immune cells is an open problem. Secondly, while sub-

populations of cells from non-malignant tissue are typically defined

by their ontogeny, differentiation status, or unique expression pro-

file, the sub-populations of interest in the context of cancer are sub-

clones defined by DNA mutations.

The inability to separate neoplastic cells from stroma is a

significant barrier to the use of scRNA-seq on clinical samples. In

non-malignant tissue, transcriptomic clustering and dimensionality-

reduction techniques are often employed to identify sub-populations.

However, separating cells by gene expression alone is not satisfactory

in tumor samples, since neoplastic cells often express gene programs

that are similar to infiltrating stroma.

Several studies have used expressed point mutations to stratify neo-

plastic cells (e.g. Kim et al., 2015). However, point mutations can be

challenging to quantify in individual cells, due to variability in coverage

(Tirosh et al., 2016) and emerging evidence suggests that large-scale

copy-number variants (CNVs) are robustly detectible in scRNA-seq

(Müller et al., 2017; Venteicher et al., 2017). COpy-Number analysis

In single-Cell RNA-Sequencing (CONICS) implements algorithms to

identify large-scale CNVs in scRNA-seq. This provides a rigorous way

to separate neoplastic cells for downstream analysis.

Sequencing only the 3’ ends of genes is often used as a cost-

saving measure, to increase the throughput of cells interrogated (e.g.

mRNA capture-bead protocols). Expressed point mutations in the

5’ ends of genes may not be covered by 3’ sequencing. However,

large-scale CNVs can be identified without full-transcript coverage.
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CONICS includes algorithms to triage cells from a scRNA-seq

assay, based on the presence of CNVs detected in an orthogonal

DNA sequencing experiment. CONICS integrates tumor-normal

fold-changes with the minor-allele frequencies of point mutations,

to estimate false-discovery rates (FDRs) in CNV classification.

Additionally, CONICS includes routines to perform downstream

phylogeny assessment and gene co-expression analysis.

2 Results

2.1 Quantification of copy-number alterations in

scRNA-seq
To illustrate the use of CONICS, we performed scRNA-seq and

exome sequencing (exome-seq) on a glioblastoma biopsy (SF10281),

and a patient-matched blood control (Supplementary Material).

This produced 96 novel scRNA-seq libraries, and exome-wide

DNA sequencing data (EGAD00001003114). The expression of an

individual gene may not correlate with its copy-number status,

but we and others have shown that CNV status and average

gene-expression levels do strongly correlate for megabase-sized

alterations, in single cells (Hou et al., 2016; Müller et al., 2016;

Venteicher et al., 2017).

CONICS exploits this result to triage single cells, based on CNV

calls from an orthogonal platform, such as exome-seq. The inputs

for CONICS are a scRNA-seq dataset to be tested for CNVs, a

scRNA-seq dataset to use as a control, as well as annotations of

CNV regions and point mutations to be quantified in single cells.

CONICS includes routines for estimating the global correlations

between CNV status and gene expression in single cells (Fig. 1A,

top-left). Moreover, CONICS estimates the CNV status of a given

test cell, at a given significance threshold, via comparison to

the control scRNA-seq dataset. In our example, non-malignant

adult-human brain scRNA-seq (Darmanis et al., 2015) was used as

a control (Fig. 1A, top-right).

For users who do not have DNA sequencing data and/or may

not have a control scRNA-seq dataset, we also provide CONICSmat

(Supplementary Material). CONICSmat is a separate R package

that provides some of the functionality of CONICS. However,

CONICSmat requires fewer inputs and software dependencies.

2.2 FDR estimation and validation
To estimate the FDR of CNV assignments, CONICS provides a rou-

tine to perform 10-fold cross-validation of CNV classification.

CONICS also provides a routine to estimate FDR via an empirical

test, using a gold-standard scRNA-seq experiment, if available. For

example, we used non-malignant fetal-human brain scRNA-seq

(Diaz et al., 2016) to estimate FDRs of CNV calls in our glioblast-

oma scRNA-seq (Fig. 1A, bottom).

Additionally, CONICS compares average allele frequencies of

point mutations on CNV regions. Taken together with a clustering

based on gene expression, these metrics enable the robust separation

of neoplastic cells from tumor-infiltrating stromal and immune cells

(Fig. 1B).

2.3 Mapping gene expression to sub-clones and

phylogenies
CONICS contains routines to facilitate phylogeny and co-expression

network analysis, based on clones inferred from CNV calls. In par-

ticular, CONICS implements the Fitch–Margoliash method to build

phylogenies from inferred CNV calls. Other phylogenic techniques

can alternatively be employed, using the CNV and point-mutation

incidence matrices produced by CONICS as a starting point.

CONICS also provides code to estimate co-expression networks

within a given clone. SCDE (Kharchenko et al., 2014) is used to

adjust correlation coefficients for cell-dropout rates. From this,

CONICS produces local co-expression networks which can then be

compared between inferred clones (Fig. 1C).
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