
Am J Transl Res 2020;12(4):1239-1254
www.ajtr.org /ISSN:1943-8141/AJTR0103012

Original Article
Promising diagnostic and prognostic value  
of six genes in human hepatocellular carcinoma

Guanqi Zhang1, Zhengchun Kang2, Hongliang Mei3, Zhiyuan Huang3, Hanjun Li4

1Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China; 
2Department of Colorectal Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China; 
3Department of General Surgery, General Hospital of Central Theater Command of PLA, Wuhan 430070, Hubei, 
P.R. China; 4Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. 
China

Received September 30, 2019; Accepted November 15, 2019; Epub April 15, 2020; Published April 30, 2020

Abstract: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Ample data have been 
reported to unravel the carcinogenesis over the past decades. Although pinpointing the cause of the HCC is chal-
lenging, this in and of itself may not be an insuperable problem. Indeed, the emergence of novel molecular targets 
has given rise to targeted therapy for HCC. Compared to traditional treatments, drugs with molecularly targeted 
agents are considered an optimal way to treat HCC. However, targeted approaches are currently limited among 
HCC patients. In our work, we explored more potential genes for targeted treatment of HCC. Initially, differentially 
expressed genes (DEGs) were identified in gene expression profiling interactive analysis (GEPIA) and NetworkAna-
lyst. Subsequently, 10 key genes were selected through enrichment analysis and PPI network construction. Based 
on the GEPIA and Oncomine databases, six upregulated genes were selected. High protein expression of these six 
genes were confirmed through the Human Protein Atlas database. In addition, these six genes were associated with 
unfavorable overall survival and progression-free survival based on Kaplan-Meier plotter bioinformatics. Moreover, 
gene expression was closely related to the tumor stages and pathological grades, as determined with UALCAN. More 
importantly, PTTG1, UBE2C, and ZWINT were identified as potential targets of anti-cancer drugs using cBioPortal. 
qPCR and western blot assays were used to show the high expression levels of the latter three genes in HCC cell 
lines. Collectively, these findings are expected to provide a theoretical basis for and give novel insights into clinical 
research of HCC.
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Introduction

Globally, hepatocellular carcinoma (HCC) is a 
malignant tumor with poor survival statistics 
that commonly occurs in patients with cirrhosis 
[1]. A failure to understand the molecular mech-
anism of HCC largely contributes to the HCC 
incidence worldwide [2]. Currently, many strate-
gies are available to extend the survival time  
of HCC patients, such as transplantation [3], 
surgical resection [4], as well as target drugs 
including sorafenib, lenvatinib, or regorafenib 
[5]. Although precision medicine, which uses 
molecularly targeted therapy against malignant 
tumors, speeds progress toward the discovery 
of novel molecular targets with the diagnostic 
and prognostic value [6], the management of 
patients with HCC remains problematic [7, 8]. 
For example, patients with advanced HCC have 

limited options for treatment, leading to a  
relatively low reported 5-year survival rate [9]. 
In a nutshell, suggesting that these treatment 
options preclude an unfavorable prognosis is 
far-fetched. Given that the angiogenesis and 
molecular mechanisms underlying HCC have 
not been unraveled clearly, revealing more 
potential biomarkers that might be used in HCC 
targeted treatment strategies is a pressing 
need.

Notably, a host of cancer studies were under-
pinned by ample network data, including The 
Cancer Genome Atlas (TCGA) [10], Gene Expre- 
ssion Omnibus (GEO) [11], Kyoto Encyclopedia 
of Genes and Genomes (KEGG) [12], protein-
protein interactions (PPIs) [13], and other net-
work analyses. Tools that used to be out of 
reach are now easily accessible, enabling biolo-
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gists and scientists to identify more universally 
predictive markers than those previously identi-
fied [14]. Most of the suggested genomic bio-
markers are reported to play potential prognos-
tic roles in tumors. For example, the role of 
miR-452-5p in the tumorigenesis of prostate 
cancer has been determined based on the 
TCGA and GEO databases [15]; HOXC10 has 
been established as an important GEO media-
tor of invasion in cervical cancer by means of 
gene expression analysis [16]; and breast can-
cer-related transcription factors have been 
identified using gene co-expression network 
analysis [17]. Bioinformatics methods also 
allow classification of large gene lists system-
atically. This enables researchers to assemble 
a summary of the most enriched genes in an 
effort to address the challenge of functionally 
analyzing large gene lists. Currently, combining 
biological research with a variety of bioinfor-
matics methods is giving rise to the emergence 
of a series of key genes that are differently 
expressed in tumors. For instance, for the treat-
ment of colorectal cancer, the top 10 hub genes 
have been identified from the PPI network and 
sub-networks revealed that these genes are 
involved in significant pathways and can serve 
as molecular targets and diagnostic biomark-
ers [18]; a group of key genes has been deter-
mined to be critical to bladder cancer using 
GEO, KEGG, and the PPI network [19]; co-
expression network analysis has been used to 
identify six hub genes associated with progres-
sion and prognosis of human clear cell renal 
cell carcinoma [20]; and a 12-gene set has 
been shown to allow for prediction of survival  
in non-small cell lung cancer patients [21]. 
Meanwhile, some researchers have shown that 
relevant genes play a paramount role in HCC 
initiation, progression, and prognostics based 
on multiple genetic analysis platforms. In par-
ticular, the silencing of NONHSAT122051 or 
NONHSAT003826 has been shown to signifi-
cantly attenuate the mobility of HCC cells based 
on genome-wide transcriptional evaluation 
[22]. More importantly, PVT1 and polo-like 
kinase 1 have been found to influence the clini-
cal characteristics and prognostic significance 
of HCC through a series of network databases 
[23, 24]. Based on a wide range of network 
analysis platforms, a substantial number of 
genes can be identified dependent on a large 
sample size; for example, one research study 
found a total of 273 differentially expressed 
genes (DEGs) and 16 hub genes that are con-
sidered as candidate biomarkers for HCC based 
on microarray technology and bioinformatics 

analysis [6]. Intriguingly, two molecular targets, 
EGFR and VEGFR, have been shown to influ-
ence drug effectiveness [25]. However, more 
potential genes that are associated with tar-
geted therapy need to be found to provide more 
effective treatment in HCC. 

In the current study, a series of bioinformatics 
approaches were applied to identify potential 
marker genes in HCC. Initially, DEGs analysis 
was identified in GEPIA based on TCGA sam- 
ples and further confirmed in NetworkAnalyst. 
Afterwards, enrichment analysis and PPI net-
work construction were performed to select key 
genes. Further, six upregulated genes in HCC 
were identified using GEPIA and Oncomine, and 
genes with high protein expression were further 
confirmed via the Human Protein Atlas data-
base. In addition, the prognostic values of the 
six genes were analyzed using Kaplan-Meier 
plotter bioinformatics. Moreover, the correla-
tion between gene expression and clinical rele-
vance were explored using UALCAN. Lastly, 
PTTG1, UBE2C, and ZWINT were identified as 
potential targets of anti-cancer drugs using 
cBioPortal, and high expression levels of these 
genes were found through qPCR and western 
blot assays. 

Materials and methods

Cell culture

Human HCC cell lines (MHCC97H, Hep3B, and 
HuH7) and a normal cell line (LO2) were 
obtained from the American Type Culture 
Collection (ATCC, Manassas, VA, USA), and all 
cells were maintained in Dulbecco’s Modified 
Eagle’s Medium (DMEM) (Gibco, Carlsbad, CA, 
USA) supplemented with 10% fetal bovine se- 
rum (FBS) (Thermo Fisher Scientific, Waltham, 
MA, USA) in a humidified atmosphere of 5% 
(v/v) CO2 and 95% air at 37°C.

Identification of DEGs

Gene Expression Profiling Interactive Analysis 
(GEPIA: http://gepia.cancer-pku.cn/index.html) 
[26] based on TCGA was used to identify DEGs 
with a criteria of P < 0.05 and |log2FC| > 2. 
Genes were further explored using Network- 
Analyst (http://www.networkanalyst.ca) [27] 
and visualized using the Cytoscape software.

Expression correlation analyses

ONCOMINE, a genome-wide expression analy-
ses platform, offers users multiple analysis 
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functions that compute gene expression signa-
tures, clusters, and gene-set modules [28]. In 
our study, ONCOMINE was applied for further 
confirmation of DEGs. 

Enrichment analyses

Metascape is a free gene annotation and analy-
sis resource that helps biologists make sense 
of one or multiple gene lists [29]. To understand 
the function of these DEGs, Gene ontology (GO) 
enrichment and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment 
analyses were performed using Metascape. P < 
0.01 was considered to indicate a significantly 
enriched DEG.

PPI network construction and module analysis

The protein-protein interaction network of 
these DEGs was analyzed using the Search  
Tool for the Retrieval of Interacting Genes 
(STRING, http://string.embl.de/) and visualized 
using Cytoscape [30]. In addition, the Molecu- 
lar Complex Detection (MCODE) app plugin of 
Cytoscape was applied to verify important 
modules.

Protein expression analysis

The Human Protein Atlas (http://www.protein-
atlas.org/) is a publicly available database with 
millions of high-resolution images showing the 
spatial distribution of proteins in normal human 
tissues and different cancers [31]. In our study, 
this database was used to validate the expres-
sion of the real hub genes on transcriptional 
and translational level.

Clinical analyses of hub genes 

Survival analysis was achieved using Kaplan-
Meier plotter (KM plotter: http://kmplot.com/
analysis/). The correlation between gene 
expression and clinical relevance was analyzed 
using the UALCAN (https://ualcan.path.uab.
edu/index.html) online dataset. The cBioPortal 
for Cancer Genomics (http://cbioportal.org) 
offers several different ways of visualizing dis-
crete genetic (CNAs or mutations) and continu-
ous events, such as data regarding mRNA or 
protein abundance as well as DNA methylation 
for generating OncoPrint, a way to visualize vari-
ous genomic alterations in a set of genes over 
multiple patients by heatmap [37]. In our study, 

gene-centric drug-target information was ana-
lyzed to investigate the drug-target interaction 
of genes. 

RNA extraction and qPCR

Total RNA was extracted from the HCC cells 
using TRIzol reagent (Thermo Fisher Scientific) 
according to the manufacturer’s protocol. 
Relative expression levels of candidate genes 
and GAPDH were identified by qPCR using an 
Applied Biosystems 7500 Fluorescent Quan- 
titative PCR System (Applied Biosystems, Fos- 
ter City, CA, USA). The sequences for qPCR 
were as follow: PTTG1, forward: 5’-TGAATGCG- 
GCTGTTAAGACCT-3’, reverse: 5’-TTTGATTGAAG- 
GTCCAGACCCC-3’; UBE2C, forward: 5’-GATGA- 
CCCTCATGGCAGTGG-3’, reverse: 5’-CCACACAA- 
GGGGCTTGCTA-3’; ZWINT, forward: 5’-CTTCTG- 
TCGGCTCGTGT-3’, reverse: 5’-CCTGGTTGAGTT- 
TGTGG-3’. All reactions were run at least three 
times.

Protein extraction and western blot analysis

Cells were cleaned twice with ice-cold PBS and 
then lysed for 20 min in cold lysis buffer 
(Beyotime Institute of Biotechnology). Cell 
debris was removed by centrifugation (12,000 
rpm/min) for 30 min at 4°C. Total protein 
lysates (20 μg) were subjected to an electric 
field (electrophoresis) in denaturing 10% sodi-
um dodecyl sulfate-polyacrylamide and trans-
ferred to a membrane for subsequent incuba-
tion with antibodies against PTTG1 (A8307), 
UBE2C (A5499), ZWINT (A10914), and GAPDH 
(AC033) from ABclonal Biotechnology (Wuhan, 
P. R. China) for western blot analysis.

Statistical analyses

The data were expressed as the mean ± stan-
dard error of the mean. Statistical significance 
between groups was analyzed by a one-way 
ANOVA using GraphPad Prism 5.0 software 
(GraphPad Software, Inc. CA, USA). A value of P 
< 0.05 was accepted as statistically significant. 
All experiments were performed as triplicates. 

Results

DEGs identification

For the identification of DEGs, GEPIA, a new 
and powerful web-based tool, was applied 
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because it is a visualization website based on 
the TCGA database. The DEGs analysis in HCC 
was conducted with a criteria of P < 0.05 and 
|log2FC| > 2 and GEPIA was searched to re- 
trieve data on the DEGs. A map of the 262 over-

lapping DEGs was obtained (Figure 1). DEGs 
were further validated using NetworkAnalyst 
and visualized using Cytoscape software. The 
collected genes included 117 upregulated 
DEGs and 145 downregulated DEGs (Table 1).

Figure 1. DEGs identification. GEPIA, as a new and powerful web-based tool, was applied because it is a visualiza-
tion website based on the TCGA database. The DEGs analysis in HCC was conducted with a criteria of P < 0.05 and 
|log2FC| > 2 and then GEPIA was searched to retrieve data on the DEGs. A map of the 262 overlapping DEGs was 
obtained. DEGs were further validated using NetworkAnalyst and visualized using Cytoscape software. As shown 
in Table 1, the collected genes included 117 upregulated DEGs and 145 downregulated DEG. DEGs, differentially 
expressed genes. HCC, hepatocellular carcinoma; FC, fold change; GEPIA, Gene Expression Profiling Interactive 
Analysis; TCGA, The Cancer Genome Atlas.
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Enrichment analysis and PPI network construc-
tion

Using STRING tools, GO enrichment and KEGG 
pathway enrichment analyses were performed 
using Metascape to further investigate the bio-
logical function of each DEG. P < 0.01 was con-
sidered to indicate a significantly enriched DEG. 
A network of GO and KEGG enriched terms  
colored by P-values was generated (Figure 2A 
and 2B). The retrieved data is also provided in 
Table 2. Specifically, the DEGs were significant-
ly enriched in the following GO terms: response 
to toxic substance (P < 0.001), drug catabolic 
process (P < 0.001), mitotic nuclear division (P 
< 0.001), regeneration (P < 0.001), aging (P < 
0.001), lipid catabolic process (P < 0.001), 
response to bacteria (P < 0.001), steroid meta-
bolic process (P < 0.001), maternal aggressive 
behavior (P < 0.001), triglyceride metabolic pro-
cess (P < 0.001), response to extracellular 
stimulus (P < 0.001), protein-lipid complex 
remodeling (P < 0.001), and extracellular struc-
ture organization (P < 0.001). The 13 most 
enriched GO terms of the DEGs were obtained 
in patients with HCC (Figure 2A and 2B). KEGG 
pathway analysis showed significant signaling 
pathways associated with DEGs in HCC pursu-
ant to P-value, as presented in Table 3.

In addition, PPIs among the DEGs were predict-
ed. The related nodes and edges were identi-
fied in the PPI network, and, subsequently, six 
module networks were analyzed by MCODE. 
Comparing the module genes with the signaling 
pathway associated genes, we found that the 
module genes were mainly enriched in binding 
of metallothionein and the cell cycle. Based on 
the frequency of module genes in enrichment 
analyses and the number of enrichment genes 
in each cluster, important genes were identi-

fied, as shown in Table 4. Clusters one and  
six were eventually selected for analysis, and 
union sets consisting of eight important genes 
in cluster one and three genes in cluster six, 
were further screened (Figure 2C). Thereby, 
CCNB1, CDC20, CCNB2, CDK1, SPC24, CENPW, 
ZWINT, PTTG1, AURKA, and UBE2C were identi-
fied as genes of interest.

Upregulation of genes in HCC

To analyze the expression of the 10 genes, the 
GEPIA web-based tool with the TCGA database 
was used to compare the differences in expres-
sions of the hub genes by normal and tumor  
tissues. The GEPIA database showed higher 
expression levels of CCNB1, CDC20, CCNB2, 
CDK1, SPC24, CENPW, ZWINT, PTTG1, AURKA, 
and UBE2C in HCC tissues compared with cor-
responding normal HCC tissues (Figure 3, P < 
0.05). The data suggested that the 10 genes 
were highly expressed in HCC tissues.

Validation of key genes expression in HCC

To verify the above results, the expression lev-
els of the 10 genes were collected in the 
Oncomine database, which showed several 
missing values in microarray data. Based on 
the median rank and P-value, PTTG1, CCNB1, 
CDK1, AURKA, UBE2C, and ZWINT were chosen 
for further research (Figure 4, P < 0.001).

Protein expression in tissues with immunohis-
tochemistry

To analyze protein expression patterns in nor-
mal human tissues and HCC tissues, the 
Human Protein Atlas database was applied. 
The Human Protein Atlas provides a map show-
ing the distribution and relative abundance of 

Table 1. The collected genes included 117 upregulated DEGs and 145 downregulated DEGs
Regulation DEGs (|log2FC| > 2)
Upregulated (n = 117) PDZK1IP1, LINC00152, TSPAN8, RRM2, HSPB1P1, MIR4435-2HG, ALG1L, LCN2, CXCL10, CAPG, TROAP, UBE2T, 

CD34, ZWINT, VWF, FTH1P20, MUC13, EEF1A2, NQO1, RP11-452N17.1, CENPF, PRC1, CDK1, TK1, GBA, RP11-
334E6.12, RP5-890E16.4, IFI27, HLA-H, HULC, CENPM, BIRC5, EPS8L3, E2F1, RBP7, COL4A1, BLVRA, ROBO1, 
ST8SIA6-AS1, AC104534.3, LGALS4, PPIAP22, APOC2, HNRNPCP2, HMGA1, FTH1P8, RP11-1143G9.4, MMP11, 
SPC24, NUDT1, RNASEH2A, ACSM1, CTB-63M22.1, CCNB2, FABP5, HKDC1, TMEM150B, ERICH5, MCM5, MCM2, 
GMNN, TM4SF4, KIFC1, AC005255.3, RP11-667K14.4, S100A10, CKS1BP3, CENPW, KIAA0101, HLA-A, TYMS, 
EIF5AP4, MYBL2, UBE2S, CAP2, AURKA, UBE2SP2, RGCC, CPVL, LAPTM4B, TMSB10, LAMC1, H3F3AP4, AURKB, 
THBS4, CD74, AC239868.2, AC239868.3, BOLA2B, KPNA2

Downregulated (n = 145) UROC1, IGF2, MOGAT2, GLS2, DBH, C7, MT1L, MEG3, HBA2, KDM8, CHRD, MST1P2, S100A8, APOA4, NNMT, 
FAM65C, DCN, CXCL2, APOF, CDHR2, CYP2C8, LINC00844, CYP2C19, GDF2, SDS, CCL14, MST1L, RP11-434D9.1, 
OXT, MT1JP, ECM1, DNASE1L3, MTND4P20, ATF5, RP11-290F5.1, GNAO1, PZP, HEPN1, MT1A, AC005077.14, CFHR3, 
CYP2E1, INS-IGF2, LINC01370, RP11-6B4.1, FOS, CXCL12, SAA2-SAA4, RDH16, SFRP5, ENO3, CYP2B6, PCK1, 
IGHA1, ANGPTL6, LY6E, ADAMTS13, CYP26A1, LCAT, NPIPB5, DPT, PRSS53, RP3-342P20.2, PLGLA, PLIN4, RP4-
564F22.6, CYP2A6, AADAT, LYVE1, OIT3, LINC01348, AVPR1A, LRCOL1, CYP39A1, C8orf4, GCKR, HAND2, KCNN2, 
MME, HGF, LPA, C3P1, AC104809.2, STAB2, RP11-326C3.2, FLJ22763, FAM83A-AS1, TNFSF14, OR10J6P, TMEM27, 
AC068535.3
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Figure 2. Enrichment analysis and PPI network construction. A, B. A network of GO and KEGG enriched terms colored by P-values was generated. The retrieved data 
correspond with Table 2. The 13 most enriched GO terms of the DEGs were obtained in patients with HCC (P < 0.001), as follows: response to toxic substance, drug 
catabolic process, mitotic nuclear division, regeneration, aging, lipid catabolic process, response to bacteria, steroid metabolic process, maternal aggressive be-
havior, triglyceride metabolic process, response to extracellular stimulus, protein-lipid complex remodeling, and extracellular structure organization. KEGG pathway 
analysis showed significant signaling pathways associated with DEGs in HCC pursuant to P-value, as presented in Table 3. C. Based on the frequency of module 
genes in enrichment analyses and the number of enrichment genes in each cluster as shown in Table 4, cluster one and cluster six were screened for analysis. 
According to the union set of important eight genes in cluster one and three genes in cluster six, CCNB1, CDC20, CCNB2, CDK1, SPC24, CENPW, ZWINT, PTTG1, 
AURKA, and UBE2C were selected. GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. MCODE, Molecular Complex Detection; HCC, hepatocel-
lular carcinoma.
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proteins in normal human tissues and HCC  
tissues (Figure 5). The results suggest that 
PTTG1, CCNB1, CDK1, AURKA, UBE2C, and 
ZWINT were upregulated in HCC tissues com-
pared with the corresponding normal tissues.

Predictive targets for HCC prognosis

To explore the prognostic values of the PTTG1, 
CCNB1, CDK1, AURKA, UBE2C, and ZWINT 
genes, the Kaplan-Meier plotter bioinformatics 
analysis platform was used. We found that high 
expression levels of these six genes were as- 
sociated with an unfavorable overall survival 
and progression-free survival (PFS) of HCC 
patients (Figure 6, P < 0.05). The results there-
fore showed that PTTG1, CCNB1, CDK1, AU- 
RKA, UBE2C, and ZWINT might serve as poten-
tial targets for HCC prognosis in patients.

The correlation between gene expression and 
clinical relevance

To analyze the correlation between gene ex- 
pression and clinical relevance, UALCAN was 
used based on the TCGA database. Retriev- 
ed data showed that PTTG1, CCNB1, CDK1, 
AURKA, UBE2C, and ZWINT were associated 
with different tumor stages and pathological 
grades in HCC patients (Figure 7A and 7B). 

PTTG1, UBE2C and ZWINT as the targets for 
anti-cancer drugs

Alteration in the frequency of six genes muta-
tions in HCC was analyzed using cBioPortal. 
The data suggests that the six genes were 
altered in 93 (26.96%) of 345 patients (Figure 
8A). In addition, OncoPrint was used to provide 
a visual summary of alterations across a set of 
HCC samples. PTTG1 was altered in approxi-
mate 11%, and the main type of alteration was 
mRNA upregulation (Figure 8B). A network con-
tained 56 genes (6 real hub genes and 50 most 
variant genes) (Figure 8C). TP53 was signifi-
cantly vital in the network (Figure 8D). As for 
the relationship between anti-cancer drugs and 
hub genes, we found that CCNB1, CDK1, and 
AURKA were targets of cancer drugs. However, 
there was no drug targeting to the rest of the 
three hub genes, PTTG1, UBE2C, and ZWINT, 
which might serve as novel therapeutic targets 
for patients with HCC. Moreover, qPCR and 
western blot assays suggested that PTTG1, 
UBE2C, and ZWINT were highly expressed in 
MHCC97H, Hep3B, and HuH7 cell lines (Figure 
8E and 8F). These findings suggest that PTTG1, 
UBE2C, and ZWINT might be considered as 
future targets for anti-cancer drugs.

Table 2. The network of GO and KEGG enriched terms
Term Description Count Log10 (P)
GO:0009636 Response to toxic substance 30 -15.07
R-HSA-5661231 Metallothioneins bind metals 8 -14.19
M5885 NABA MATRISOME ASSOCIATED 33 -13.19
GO:0042737 Drug catabolic process 16 -12.57
R-HSA-69278 Cell Cycle, Mitotic 23 -9.06
GO:0140014 Mitotic nuclear division 16 -8.06
R-HSA-453279 Mitotic G1-G1/S phases 12 -7.91
GO:0031099 Regeneration 13 -7.54
GO:0007568 Aging 16 -7.34
GO:0016042 Lipid catabolic process 16 -7.17
R-HSA-2173782 Binding and Uptake of Ligands by Scavenger Receptors 7 -7.03
R-HSA-166658 Complement cascade 7 -6.03
GO:0009617 Response to bacterium 21 -5.84
GO:0008202 Steroid metabolic process 14 -5.78
GO:0002125 Maternal aggressive behavior 3 -5.53
GO:0006641 Triglyceride metabolic process 8 -5.4
GO:0009991 Response to extracellular stimulus 17 -5.2
GO:0034368 Protein-lipid complex remodeling 5 -5.16
hsa00232 Caffeine metabolism 3 -5.14
GO:0043062 Extracellular structure organization 15 -5.08
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Discussion

In the present study, the initial results displayed 
a great number of DEGs in HCC using GEPIA 
and NetworkAnalyst. This indicates that this 
group of genes might play roles in HCC. Although 
there have been a number of research studies 
about HCC in the last couple of decades, the 
molecular mechanisms of HCC are still unclear. 
Therefore, the most pressing need facing this 
disease is identification of more potential tar-
gets for HCC treatment. 

The traditional biological research approach 
investigates only one gene or a few genes at a 
time [32]. In contrast, based on bioinformatics 
methods, our study obtained a host of DEGs 
that were further analyzed via GO enrichment 
analysis and KEGG pathway enrichment analy-

sis. We found that the DEGs were significantly 
enriched in the following processes: response 
to toxic substances, metallothionein binding of 
metals, matrisome association, drug catabolic 
process, cell cycle, mitotic nuclear division, 
mitotic G1-G1/S phases, regeneration, aging, 
lipid catabolic process, binding and uptake of 
ligands by scavenger receptors, complement 
cascade, response to bacteria, steroid meta-
bolic process, maternal aggressive behavior, 
triglyceride metabolic process, response to 
extracellular stimulus, protein-lipid complex 
remodeling, caffeine metabolism, and extracel-
lular structure organization. In addition, to 
screen the top key genes in HCC among the 
numerous DEGs, a PPI network was construct-
ed. Combined, key genes (CCNB1, CDC20, 
CCNB2, CDK1, SPC24, CENPW, ZWINT, PTTG1, 
AURKA, and UBE2C) were selected. The find-

Table 3. KEGG pathway analysis showed significant signaling pathways associated with DEGs in HCC
Term Count DEGs
Metallothioneins bind metals 49 MT1A, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, MT2A, CDK1, CYP1A2, FOS, 

NUDT1, APOA4, NQO1, GSTM1, HBA1, HBA2, HBB, AKR1B10, GDF2, HFE, 
LCN2, S100A8, HAMP, ADRA1A, AVPR1A, C7, CXCL10, OXT, PTH1R, SAA1, 
CCL14, CXCL12, THY1, CD24, CCNB1, CRHBP, ADAMTS13, CDKN2A, GPC3, 
SFN, IGF2, SPP1, CCNB2, CDHR2, MEG3, E2F1, HMGA1, UBE2C

NABA MATRISOME ASSOCIATED 49 CRHBP, FCN2, GDF2, GPC3, CXCL2, HGF, HGFAC, IGF2, CXCL10, LGALS4, LPA, 
MDK, MMP11, PZP, S100A8, S100A10, CCL14, CCL20, CXCL12, SFRP5, FCN3, 
CHRD, TNFSF14, CXCL14, CLEC4M, COLEC10, ADAMTS13, MST1L, CLEC1B, 
MUC13, ANGPTL6, CLEC4G, INS-IGF2, CD34, CD74, DBH, ECM1, IGHA1, SAA1, 
THBS4, THY1, PLVAP, HFE, LY6E, OXT, SPP1, HAMP, ROBO1, PLA2G2A

Cell Cycle, Mitotic 52 BIRC5, CCNB1, CDK1, CDC20, CDKN2A, CENPF, E2F1, MCM2, MCM5, MYBL2, 
RRM2, AURKA, TK1, TOP2A, TYMS, CCNB2, AURKB, PTTG1, UBE2C, ZWINT, 
GMNN, CENPM, SPC24, SFN, CENPW, FOS, CDKN3, UBD, ATF5, UBE2S, RGCC, 
TCIM, KDM8, PRC1, CD74, IGF2, GLS2, HGF, SPP1, HFE, HAMP, AVPR1A, 
S100A8, CXCL12, CAPG, DCN, GBA, S100A10, CLTRN, ADRA1A, CXCL10, 
TNFSF14

Mitotic G1-G1/S phases 13 CCNB1, CDK1, CDKN2A, E2F1, MCM2, MCM5, MYBL2, RRM2, TK1, TOP2A, 
TYMS, GMNN, NUDT1

Binding and Uptake of Ligands by Scavenger Receptors 43 COL4A1, HBA1, HBA2, HBB, SAA1, MARCO, STAB2, APOA4, CYP1A2,PCK1, 
AKR1B10, ACSM1, UROC1, BLVRA, ENO3, ACSL4, GCKR, GSTM1, NNMT, 
TYMS, AADAT, HKDC1, BOLA2B, NQO1, HGF, THBS4, CDK1, LCN2, CD34, CRP, 
GLS2, BCO2, CD74, RRM2, S100A10, C9, GBA, SLC22A1, TK1, VWF, APOC2, 
HFE, IGHA1

Complement cascade 11 C7, C9, CRP, FCN2, FCN3, COLEC10, CFHR3, IGHA1, VWF, RGCC, MARCO

Caffeine metabolism 7 NAT2, CYP1A2, CYP2A6, CYP3A4, TK1, CYP2A7, AKR1B10

Table 4. Six modules from PPI networks analyzed by MCODE
Cluster Official Gene Symbol
1 CEBPF, CCNB1, CDC20, CCNB2, CDK1, SPC24, CENPW, AURKA, RIRC5, ZWINT
2 CYP2B6, CYP39A1, CYP2A7, CYP26A1, CYP2E1, CYP2C8, CYP3A4, CYP1A2, CYP2C19
3 TOP2A, SDS, ENO3, ACSL4, RRM2
4 CXCR10, CCL20, CXCL12, CXCL2
5 GCGR, ADRA1A, OXT, AVPR1A
6 PTTG1, AURKA, UBE2C
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Figure 3. Upregulation of genes in HCC. The GEPIA web-based tool with the TCGA database was used to compare the differences in expressions of the hub genes 
by normal and tumor tissues. The GEPIA database showed higher expression levels of CCNB1, CDC20, CCNB2, CDK1, SPC24, CENPW, ZWINT, PTTG1, AURKA, and 
UBE2C in HCC tissues compared with corresponding normal HCC tissues, respectively (P < 0.05). It suggested that these hub genes CCNB1, CDC20, CCNB2, CDK1, 
SPC24, CENPW, ZWINT, PTTG1, AURKA, and UBE2C might be related with HCC. GEPIA, Gene Expression Profiling Interactive Analysis; TCGA, The Cancer Genome 
Atlas; HCC, hepatocellular carcinoma.
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Figure 4. Validation of key genes expression in HCC. The expression levels of the 10 genes were collected in the 
Oncomine database. The results showed several missing values in microarray data. Based on the median rank and 
P-value, PTTG1 (Median Rank, 23.5; P-value, 5.78E-12), CCNB1 (Median Rank, 170.0; P-value, 2.66E-8), CDK1 
(Median Rank, 61.0; P-value, 2.87E-10), AURKA (Median Rank, 55.5; P-value, 1.10E-11), UBE2C (Median Rank, 
61.5; P-value, 1.78E-11), and ZWINT (Median Rank, 30.5; P-value, 1.87E-23) were chosen for further research (P < 
0.001). HCC, hepatocellular carcinoma.

Figure 5. Protein expression in tissues with imimmunohistochemistry. Protein expression patterns in normal human 
tissues and HCC tissues were analyzed. The Human Protein Atlas database was applied. The Human Protein Atlas 
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provides a map showing the distribution and relative abundance of proteins in normal human tissues and HCC tissues. Based on the data, it showed that PTTG1, 
CCNB1, CDK1, AURKA, UBE2C, and ZWINT were upregulated in HCC tissues compared with the corresponding normal tissues. The results suggested protein expres-
sions of PTTG1, CCNB1, CDK1, AURKA, UBE2C, and ZWINT were higher in HCC tissues. HCC, hepatocellular carcinoma.
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Figure 6. Predictive targets for HCC prognosis. A, B. The prognostic values of the PTTG1, CCNB1, CDK1, AURKA, UBE2C, and ZWINT genes were explored. The 
Kaplan-Meier plotter bioinformatics analysis platform was used. We found that with high-level expression gene PTTG1, patients had an unfavorable overall survival 
(OS) and progression-free survival (PFS) compared with corresponding low expression level group. Similarly, the results from the rest of genes CCNB1, CDK1, AURKA, 
UBE2C, and ZWINT were observed, which corresponded with PTTG1. The findings showed that the high expression levels of these six genes PTTG1, CCNB1, CDK1, 
AURKA, UBE2C, and ZWINT were associated with an unfavorable overall survival (OS) and progression-free survival (PFS) of HCC patients. Thereby, our data sug-
gested that PTTG1, CCNB1, CDK1, AURKA, UBE2C, and ZWINT might function as potential targets for HCC prognosis in patients. HCC, hepatocellular carcinoma.

Figure 7. The correlation between gene expression and clinical relevance. A, B. The correlation between gene expression and clinical relevance was identified. 
UALCAN was used based on the TCGA database. Based on the data from UALCAN, we found that higher expression of PTTG1, CCNB1, CDK1, AURKA, UBE2C, and 
ZWINT showed higher stages (stage 1, stage 2, stage 3, and stage 4) and pathological grades (grade 1 tumor, grade 2 tumor, grade 3 tumor, and grade 4 tumor) 
compared with normal group, respectively. The data suggested that higher expression levels of PTTG1, CCNB1, CDK1, AURKA, UBE2C, and ZWINT were associated 
with different tumor stages and pathological grades in HCC patients. HCC, hepatocellular carcinoma.
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Figure 8. PTTG1, UBE2C and ZWINT as the targets for anti-cancer drugs. A. Alteration in the frequency of six genes mutations in HCC was analyzed using cBioPortal. 
The data suggested that the six genes were altered in 93 (26.96%) of 345 patients. B. OncoPrint was used to provide a visual summary of alterations across a set of 
HCC samples. PTTG1 was altered in approximate 11%, and the main type of alteration was mRNA upregulation. C. A network contained 56 genes (6 real hub genes 
and 50 most variant genes). D. TP53 was significantly vital in the network. E, F. The relationship between anti-cancer drugs and hub genes was explored, which 
showed that CCNB1, CDK1, and AURKA were targets of cancer drugs. However, there was no drug targeting to the rest of the three hub genes, PTTG1, UBE2C, and 
ZWINT, which might serve as novel therapeutic targets for patients with HCC. Furthermore, qPCR and western blot assays suggested that PTTG1, UBE2C, and ZWINT 
were highly expressed in MHCC97H, Hep3B, and HuH7 cell lines. HCC, hepatocellular carcinoma.
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ings implied that 10 vital genes might be partly 
responsible for HCC. To further investigate the 
expression levels of these 10 genes, the GEPIA 
web tool based on TCGA was used. High expres-
sion was found for all 10 genes with GEPIA. In 
contrast, only six genes (PTTG1, CCNB1, CDK1, 
AURKA, UBE2C, and ZWINT) were shown to be 
overexpressed in the Oncomine database. In 
addition, the Human Protein Atlas database, 
commonly used for the examination of protein 
expression, showed upregulation of six genes, 
suggesting that these were more active in HCC. 
The results were in accordance with the previ-
ous studies that showed that overexpression of 
PTTG1 in HCC is associated with angiogenesis 
and poor prognosis [33], a decrease of CCNB1 
inhibits cell proliferation, migration, and inva-
sion in HCC [34], inhibition of CDK1 limits the 
proliferation of HCC [35], AURKA promotes can-
cer metastasis and cancer stem cell properties 
in HCC [36], and UBE2C functions as a poten-
tial oncogene by enhancing cell proliferation, 
migration, invasion, and drug resistance in  
HCC [37]. Among these genes, CCNB1, CDK1, 
and AURKA are currently being targeted with 
sorafenib [38]. Thus far, sorafenib, an oral mul-
titargeted tyrosine kinase inhibitor, is the only 
approved, first-line targeted drug against ad- 
vanced HCC [39, 40]. Unfortunately, drug effec-
tiveness is often hindered by the development 
of resistance, contributing to a poor prognosis 
[41]. Mechanisms of resistance to sorafenib 
remain to be fully revealed. Hence, exploration 
of more alternative targeted treatments for 
overcoming sorafenib resistance in HCC is a 
pressing matter. In our study, PTTG1, UBE2C, 
and ZWINT were selected and associated with 
anti-cancer drug targets. High expression lev-
els of PTTG1, UBE2C, and ZWINT were found in 
HCC cell lines. Of note, PTTG1 belongs to the 
PTTG gene family and is overexpressed in vari-
ous human cancers including HCC [42]; howev-
er, the pathogenic implications of PTTG1 for 
anti-cancer drugs is largely unknown. Likewise, 
UBE2C and ZWINT were found to serve as 
potential oncogenes by enhancing cell prolifer-
ation, migration, and invasion in HCC [37, 43]. 
Therefore, building a relationship between 
these three genes and anti-cancer drugs is 
tempting. Our findings provide foundation for 
the further clinical studies on new targeted 
agents for HCC. 

Overall, this comprehensive bioinformatics 
analysis provides idea list of potential candi-

dates that may be used in HCC targeted treat-
ment. In our study, numerous DEGs were identi-
fied in large scale samples. Six key genes were 
screened out and shown to be upregulated in 
HCC. Furthermore, these genes were linked 
with unfavorable prognostics, progression-free 
survival, and clinically relevant factors. Although 
PTTG1, UBE2C, and ZWINT were ultimately 
determined to be as potential targets for anti-
cancer drugs, further molecular biological 
experiments are needed to confirm the underly-
ing molecular mechanism and to uncover the 
clinical significance in targeted therapy of HCC.
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