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Abstract

Purpose—To examine the interlaboratory variability in CLint values generated with human 

hepatocytes and determine trends in variability and clearance prediction accuracy using 

physicochemical and pharmacokinetic parameters.

Methods—Data for 50 compounds from 14 papers were compiled with physicochemical and 

pharmacokinetic parameter values taken from various sources.

Results—Coefficients of variation were as high as 99.8% for individual compounds and variation 

was not dependent on the number of prediction values included in the analysis. When examining 

median values, it appeared that compounds with a lower number of rotatable bonds had more 

variability. When examining prediction uniformity, those compounds with uniform in vivo 
underpredictions had higher CLint, in vivo values, while those with non-uniform predictions 

typically had lower CLint, in vivo values. Of the compounds with uniform predictions, only a small 

number were uniformly predicted accurately. Based on this limited dataset, less lipophilic, lower 

intrinsic clearance, and lower protein binding compounds yield more accurate clearance 

predictions.

Conclusions—Caution should be taken when compiling in vitro CLint values from different 

laboratories as variations in experimental procedures (such as extent of shaking during incubation) 

may yield different predictions for the same compound. The majority of compounds with uniform 

in vitro values had predictions that were inaccurate, emphasizing the need for a better mechanistic 

understanding of IVIVE. The non-uniform predictions, often with low turnover compounds, 

reaffirmed the experimental challenges for drugs in this clearance range. Separating new chemical 

entities by lipophilicity, intrinsic clearance, and protein binding may help instill more confidence 

in IVIVE predictions.
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INTRODUCTION

Clearance is one of the most fundamental pharmacokinetic parameters, and its accurate in 
vivo prediction is necessary for compound prioritization and first-in-human estimates. 

However, the surprising inaccuracy in predictions from in vitro to in vivo extrapolation 

(IVIVE) has recently been reviewed (1,2).

The typical IVIVE process involves measuring an intrinsic clearance (CLint) in microsomes 

or hepatocytes and applying biological scaling factors and a model of hepatic disposition to 

estimate an in vivo hepatic clearance (CLH). In an attempt to eliminate the systematic error 

with IVIVE, groups have begun applying regression or empirical based scaling factors (3).

When examining the widespread IVIVE error, significant interlaboratory in vitro variability 

has been noted (1,4,5). While variability may result from interdonor differences, pooled lots 

are now commonly used to reduce lot-to-lot variation, or may result from differences in the 

biological scaling factors applied, efforts have been directed toward reaching a consensus 

(6,7). There could also be variation due to the use of fresh vs. cryopreserved hepatocytes, 

however previous studies have not found significant differences (8,9).

When collating in vivo hepatic clearance values from intravenous studies, Stringer et al. (5) 

found low variability; however, upon examining in vitro hepatocyte CLint values, the authors 

found large coefficients of variation (CVs), which increased with increasing CLint. Nagilla et 
al. (4) noted the paucity and variability of in vitro literature data, explaining that CLint values 

should be taken from a consistent assay rather than arbitrarily chosen from different 

literature sources. Now that more data have been generated, we reexamine the 

interlaboratory variability, and search for trends with variability and physicochemical and 

pharmacokinetic parameters. We also examine trends in prediction accuracy for compounds 

with uniform in vitro values.

METHODS

A total of 14 papers were examined (Table I) and overlapping values were found for 50 

compounds with data generated in human hepatocytes (Supplementary Table I). All in vitro 
CLint values were scaled to a predicted CLint,in vivo (Eq. 1) using consistent scaling factors of 

120 × 106 hepatocytes/g liver and 21.4 g liver/kg body weight, and the fraction unbound in 

the hepatocyte incubation (fuhep) values taken from the Wood et al. (2) database:

Predicted CLint,  invivo = CLint,invitro
fuℎep

⋅ 120 ⋅ 21.4 (1)

Coefficients of variation (CV) were determined as standard deviation divided by the average.

Values for hepatic clearance (CLH,in vivo) (ml/min/kg), fraction unbound in the blood and 

plasma (fub, fup), and intrinsic clearance (CLint, in vivo) (ml/min/kg) were taken from Wood 

et al. (2). CLint, in vivo values were calculated using the well-stirred model (since the 

difference in bias between the well-stirred and parallel tube model, the two extremes for 

models of hepatic disposition, was determined to be minimal) (2).
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The ChEMBL database (https://www.ebi.ac.uk/chembl) (21) was used to obtain values for 

molecular weight (MW), logP, logD, polar surface area (PSA), number of hydrogen bond 

donors (HBD), number of hydrogen bond acceptors (HBA), number of rotatable bonds, and 

number of aromatic rings.

Values for the steady state volume of distribution (VDss) (l/kg) and mean residence time 

(MRT) (hr) were found for 45 compounds in Obach et al. (22).

Classification within the Biopharmaceuticals Drug Disposition Classification System 

(BDDCS) was determined using Benet et al. (23) and Hosey et al. (24).

Main metabolizing enzyme information was found for 33 compounds in El-Kattan et al. (25)

The relationship between variability and the properties was evaluated by examining the 

coefficient of correlation R2.

The accuracy of predictions was determined based on whether the predicted CLint values fell 

within two fold of the observed CLint values (Eq. 2).

0.5 ≤ observed CLint
predicted CLint

≤ 2 (2)

RESULTS

Coefficients of Variation and Physicochemical Parameters

Data for 50 compounds were evaluated and each compound had values from 2 to 9 sources. 

Of the 50 compounds, 17 had n = 2, preventing a statistically relevant CV from being 

calculated. For the remaining 33 compounds, the CVs ranged from 8.53–99.8%. The 

potential for CV dependence on the number of values (n) was examined first. Pindolol with 

the second lowest CV of 19.0% had data from three sources, and triazolam with the second 

highest CV of 99.4% similarly had data from three sources. Imipramine, with n = 5 had the 

lowest CV of 8.53%. Therefore, a high value of n did not necessarily cause high CV values 

as shown in Fig. 1a. The fold difference between the highest and lowest predictions for each 

compound was also examined and there did not appear to be a dependence on n (Fig. 1b).

Sixteen physiochemical and pharmacokinetic properties were examined in relation to CV 

(Fig. 2) and there were no direct correlations here as the highest R2 value was only 0.071. 

The 5 largest correlations are reported in Table II. The data were then divided into a lower 

CV group (CV < 50%) and higher CV group (CV ≥ 50%) and median parameter values were 

examined (Table III). The largest relative difference was seen with fub and fup values, 

followed by the number of rotatable bonds. In the lower CV half, 29% of compounds had ≥7 

rotatable bonds compared to 6.3% of compounds with higher CV.

BDDCS class, molecular species, and main metabolizing enzymes were also examined. 

BDDCS Class 1 drugs appeared to have a wider range of CV values than Class 2 drugs (Fig. 

3a). When examining molecular species, neutral drugs had the highest CV values (Fig. 3b). 
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Looking at main metabolizing enzymes, compounds metabolized by CYP3A4 appeared to 

have the highest CV values (Fig. 3c). For CYP3A4 substrates, 38% had a CV > 90%, while 

no CYP2D6, CYP1A2, CYP2C, and UGT substrates had CVs > 90%.

Given the difference seen between BDDCS classes, the data were also split by class 1 and 

class 2 compounds (n = 21 and 11 respectively). Examining the same physiochemical 

properties with CV for both classes, there were no correlations for BDDCS class 1 

compounds (every R2 value was less than 0.10). For BDDCS class 2 though, there were 

potential trends (Fig. 4a). The number of HBA and HBD and number of aromatic rings had 

the largest correlations, however the smaller number of compounds should be noted. The 

lack of correlation with BDDCS class 1 compounds is shown in Fig. 4b for comparison.

Uniformity of Predictions and Physicochemical Parameters

Next the variability relating to the accuracy of predictions was examined. Accurate 

predictions are typically defined as predictions that fall within two fold of observed values 

(16,26,27). Here, if a compound had predictions all falling either within two-fold or outside 

two-fold, it was categorized as “uniform”. If a compound had some predictions falling 

within two-fold, and some falling outside two-fold, it was categorized as “non-uniform”. 

The same properties were then examined to determine if any drive the difference between 

the two categories.

Returning to the 50 compiled compounds, there were 31 uniform compounds and 19 non-

uniform compounds. Of the uniform predictions, 6 (19%) were accurate predictions, and 25 

(81%) were inaccurate underpredictions. The most distinct difference between the uniform 

and non-uniform categories was seen with CLint, in vivo. Compounds with uniform 

predictions typically had higher CLint,in vivo values (Fig. 5). Furthermore, 37% of non-

uniform predictions had CLint, in vivo values <10 ml/min/kg compared to 10% of uniform 

predictions.

Accuracy of Predictions and Physicochemical Parameters

Finally, all 31 compounds with uniform predictions were further examined. It is expected 

that new understandings of mechanisms will help reduce the current IVIVE underprediction, 

but for now, it is important to know which new compounds may yield results that will be 

accurate, and which may not. Here only 6 compounds had accurate predictions, limiting the 

power of the evaluation. Despite this, there were accuracy distinctions when considering 

logD, CLint, in vivo, and fup (Table IV). Of the accurate predictions, 83% had a logD of <1.0 

compared to 28% of inaccurate predictions. 42% of compounds with logD of <1.0 had 

accurate predictions and 5.0% of compounds with logD ≥1.0 had accurate predictions. For 

CLint, in vivo, 31% of compounds with CLint, in vivo < 100 ml/min/kg had accurate predictions 

compared to 6.7% with CLint, in vivo ≥ 100. Finally, for fup, 11% of predictions with fup < 

0.1 were accurate compared to 33% of predictions with fup ≥ 0.1.

DISCUSSION

Variability in the in vitro data generated and used for IVIVE can significantly affect 

clearance predictions. This compilation found varying reported data for 50 compounds. Of 
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these, 33 had n ≥ 3, and CV values for the same compound were as high as 99.8%. Trends 

were sought in hopes of determining in the future which new compounds may yield more 

reliable predictions than others. However, after confirming that variability was not dependent 

on n, no direct trends appeared with the physicochemical properties examined.

Upon more generally splitting the compounds into low and high CV groups though there 

appeared to be marked relative differences in the median values for fub and fup and the 

average number of rotatable bonds. After further examining the binding values though, an 

obvious trend did not appear. For fub, 35% of the low CV group had high protein binding (fu 

≤ 0.05) and 31% of the high CV group also had high binding. A similar result was seen with 

fup where 47% of the low CV group had high protein binding and 38% of the high CV 

group did also. A difference did hold for rotatable bonds where in the lower CV half, 29% of 

compounds had ≥7 rotatable bonds compared to 6.3% of compounds with higher CV. It has 

previously been shown that decreasing rotatable bond count is paralleled by increasing 

permeation rate (28), and here this may lead to larger variability. Wood et al. (29) previously 

examined the importance of the unstirred water layer (UWL) on clearance predictions with 

hepatocytes. Given that the UWL has been shown to reduce the apparent permeability of 

highly permeable compounds, the authors showed that shaking of incubations can lead to 3 

to 5-fold higher CLint values (29). Perhaps the increase in variability noted with lower 

rotatable bond counts (and thus higher permeability) could be related to experimental 

differences for incubation shaking among laboratories and moving forward, this factor 

should be considered for new chemical entities.

Interestingly BDDCS class 1 drugs had a larger CV range than BDDCS class 2 drugs and 

neutral drugs had more variation than acidic or basic. Although the number of drugs with 

main metabolizing enzyme information was more limited, CYP3A4 substrates had higher 

CV values, perhaps due to the potential of extrahepatic metabolism. When examining R2 

values with class 2 drugs and different properties, the number of HBA and HBD stood out, 

which has also been shown to be related to permeation rate (28,30). As more data are 

generated and shared, it would be useful to reevaluate these potential trends and their 

statistical significance with a larger sample size.

Some compounds had large CV values, however upon further examination, no matter which 

value was used, the predictions would have fallen outside of two-fold of the observed value 

and been considered inaccurate. For instance for triazolam that had a CV of 99.9%, data 

from three sources underpredicted by 3.8, 14, and 29 fold. For these cases, the compounds 

were deemed to have “uniform” predictions. The main difference noted between uniform 

and non-uniform compounds was that uniform compounds had higher CLint, in vivo values. 

The majority of the uniform compounds were uniformly inaccurate (80%), and all of these 

inaccurate compounds were underpredicted. This is not unexpected given the high 

inaccuracy previously reported (1,2) and emphasizes the need to find a mechanistic reason 

for the underprediction. It has been noted that compounds with high CLint,in vivo commonly 

have large error (2,31,32), which explains why these compounds would have uniform 

inaccurate predictions. More low clearance (CLint, in vivo < 10 ml/min/kg) compounds fell in 

the non-uniform category, confirming the experimental challenges for low turnover 

compounds (5,33).
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Finally, trends in accuracy for the 31 compounds with uniform predictions were examined. 

More or less confidence could theoretically be placed in a new compound’s extrapolation 

results if any trends exist and accordingly more or less experiments may be needed. Of the 

50 drugs examined, only 6 compounds had uniform accurate predictions, limiting the power 

of the evaluation. Of the accurate compounds, there were 5 accurate BDDCS class 1 and 0 

accurate class 2 compounds (the 6th accurate compound was class 3) supporting the 

hypothesis that class 1 drugs would have more accurate predictions (1). Based on this dataset 

it appears that less lipophilic, lower intrinsic clearance, and lower protein binding 

compounds have more accurate predictions. The intrinsic clearance finding agrees with the 

idea of CLint dependent underprediction mentioned earlier, and the protein binding finding 

agrees with previous studies concluding that highly bound compounds have more inaccuracy 

(34,35). It will be useful to reevaluate these trends as more uniform, accurate data are 

generated for compounds.

CONCLUSIONS

This investigation highlights the interlaboratory variability in generated CLint values and the 

need for consistent and improved methodologies. Compounds with lower rotatable bond 

counts and therefore higher permeability had more variability, perhaps due to experimental 

differences in incubation shaking and the role of the unstirred water layer. Compounds with 

uniform predictions typically had higher CLint, in vivo values and uniform underpredictions, 

confirming a lack of mechanistic understanding with IVIVE; while compounds with non-

uniform predictions typically had lower CLint, in vivo values, reaffirming the current 

experimental challenges for compounds falling within this clearance range. While only a 

limited number of uniform predictions were accurate, lipophilicity, intrinsic clearance, and 

protein binding may be determinants of accurate IVIVE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

BDDCS Biopharmaceutics Drug Disposition Classification System

CLint Intrinsic clearance

CLH Hepatic clearance

CV Coefficient of variation

fu Fraction unbound

HBA Number of hydrogen bond acceptors
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HBD Number of hydrogen bond donors

IVIVE In vitro to in vivo extrapolation

MRT Mean residence time

MW Molecular weight

PSA Polar surface area

VDss Steady state volume of distribution
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Fig. 1. 
The dependence of CV (a) and the largest fold difference (b) on n.
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Fig. 2. 
Trends between various physicochemical and pharmacokinetic properties and CV.
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Fig. 3. 
Trends between CV and BDDCS class (a), molecular species (b), and main metabolizing 

enzyme (c).
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Fig. 4. 
The highest correlations of CV with physicochemical properties for BDDCS class 2 

compounds (a) and the lack of correlation for BDDCS class 1 compounds (b).
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Fig. 5. 
Relationship between compounds with uniform vs. non-uniform predictions and 

CLint, in vivo.
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Table I

Human Hepatocyte Data Examined for this Evaluation

Source Human Hepatocytes Donors

Akabane et al. (10) Cryopreserved Individual, 9–11 donors

Blanchard et al. (11) Cryopreserved Individual, 2 donors

Floby et al. (9) Fresh Individual, 7 donors

Hallifax et al. (8) Fresh Individual, 5 donors

Hallifax et al. (12) Cryopreserved Individual, 5 donors

Jacobson et al. (13) Cryopreserved Pooled, 2 donors

Lau et al. (14) Cryopreserved Pooled, 5+ donors

Lu et al. (15) Cryopreserved Pooled, 4 donors

McGinnity et al. (16) Fresh Individual, 1–90 donors

Naritomi et al. (17) Cryopreserved Individual, 5–7 donors

Riley et al. (18) Not Reported Individual, 3+ donors

Soars et al. (19) Cryopreserved Individual, 3 donors

Sohlenius-Sternbeck et al. (20) Cryopreserved Pooled, 2–5 donors

Sohlenius-Sternbeck et al. (3) Cryopreserved Pooled, 5 donors
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Table II

Highest Correlations, R2, of CV with Parameters

#Rot Bonds #Aromatic Rings fuhep fup #HBD & HBA

CV 0.071 0.059 0.037 0.031 0.027
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Table IV

Properties of Compounds with Accurate, Uniform Predictions

Parameter #Accurate #Inaccurate %Accurate

LogD

<1.0 5 7 41.7%

≥1.0 18 5.26%

CLint, in vivo

<100 5 31.3%

≥100 14 6.67%

fup

<0.1 2 17 10.5%

≥0.1 4 8 33.3%
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