Skip to main content
. 2020 Apr 29;20:79. doi: 10.1186/s12911-020-1099-y

Table 2.

Comparison of classifiers for opioid misuse

Classifier ROC AUC
(95% CI)
F1 Precision/PPV (95% CI) Recall/Sensitivity (95% CI) Specificity (95% CI) NPV (95% CI) P value for model fit*
Rule-based NAa 0.76 0.68 (0.57, 0.78) 0.87 (0.76, 0.94) 0.79 (0.71, 0.86) 0.92 (0.85, 0.96) < 0.01
Logistic Regression CUI 0.91 (0.86, 0.95) 0.79 0.89 (0.77, 0.96) 0.71 (0.58, 0.81) 0.95 (0.90, 0.98) 0.86 (0.80, 0.91) 0.06
Logistic Regression Word 0.91 (0.86, 0.95) 0.72 0.86 (0.73, 0.94) 0.62 (0.49, 0.73) 0.95 (0.89, 0.98) 0.83 (0.76, 0.88) < 0.01
Convolutional Neural Network CUI 0.93 (0.90, 0.97) 0.81 0.82 (0.70, 0.90) 0.79 (0.68, 0.88) 0.91 (0.85, 0.95) 0.89 (0.83, 0.94) 0.51
Convolutional Neural Network Word 0.94 (0.91, 0.98) 0.84 0.94 (0.85, 0.99) 0.75 (0.63, 0.85) 0.98 (0.93, 1.00) 0.88 (0.82, 0.93) 0.42
Convolutional Neural Network Character 0.93 (0.90, 0.97) 0.79 0.88 (0.76, 0.95) 0.72 (0.60, 0.82) 0.95 (0.89, 0.98) 0.87 (0.80, 0.92) < 0.01
Deep Averaging Network CUI 0.83 (0.78, 0.88) 0.74 0.68 (0.57, 0.78) 0.87 (0.76, 0.94) 0.79 (0.71, 0.86) 0.92 (0.85, 0.96) < 0.01
Deep Averaging Network Word 0.80 (0.74, 0.86) 0.49 0.74 (0.56, 0.87) 0.37 (0.25, 0.49) 0.93 (0.87, 0.97) 0.74 (0.67, 0.80) < 0.01
Max Pooling Network CUI 0.93 (0.89, 0.96) 0.79 0.85 (0.73, 0.93) 0.74 (0.61, 0.83) 0.93 (0.87, 0.97) 0.87 (0.80, 0.92) 0.60
Max Pooling Network Word 0.91 (0.86, 0.96) 0.78 0.87 (0.76, 0.95) 0.71 (0.58, 0.81) 0.95 (0.89, 0.98) 0.86 (0.79, 0.91) 0.36
Deep Averaging + Max Pooling Network CUI 0.94 (0.91, 0.97) 0.81 0.92 (0.82, 0.98) 0.72 (0.60, 0.82) 0.97 (0.92, 0.99) 0.87 (0.80, 0.92) < 0.01
Deep Averaging + Max Pooling Network Word 0.94 (0.91, 0.97) 0.78 0.86 (0.74, 0.94) 0.72 (0.60, 0.82) 0.94 (0.88, 0.97) 0.87 (0.80, 0.92) 0.09

Logistic regression with a combination of unigrams and bigrams; PPV positive predictive value, NPV negative predictive value, ROC AUC area under the curve receiver operating characteristic, CUI concept unique identifier, CI confidence interval

*model fit by Hosmer-Lemeshow Goodness of Fit test where p > 0.05 demonstrate the model fit the data well

aNA not applicable because bivariate predictions (0/1) without predicted probabilities to plot ROC AUC