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A B S T R A C T

Mitochondrial reactive oxygen species (ROS) production, specifically at complex I (Cx I), has been widely
suggested to be one of the determinants of species longevity. The present study follows a comparative approach
to analyse complex I in heart tissue from 8 mammalian species with a longevity ranging from 3.5 to 46 years.
Gene expression and protein content of selected Cx I subunits were analysed using droplet digital PCR (ddPCR)
and western blot, respectively. Our results demonstrate: 1) the existence of species-specific differences in gene
expression and protein content of Cx I in relation to longevity; 2) the achievement of a longevity phenotype is
associated with low protein abundance of subunits NDUFV2 and NDUFS4 from the matrix hydrophilic domain of
Cx I; and 3) long-lived mammals show also lower levels of VDAC (voltage-dependent anion channel) amount.
These differences could be associated with the lower mitochondrial ROS production and slower aging rate of
long-lived animals and, unexpectedly, with a low content of the mitochondrial permeability transition pore in
these species.

1. Introduction

Complex I (Cx I) (NADH-ubiquinone oxidoreductase; EC 1.6.5.3) is
an electron entry point in the mitochondrial respiratory electron
transport chain (ETC). Cx I catalyses NADH oxidation reducing ubi-
quinone to ubiquinol, importantly contributing to the proton motive
force used to synthesize ATP by the oxidative phosphorylation [1]. Cx I
also produce reactive oxygen species (ROS), initially superoxide radi-
cals, which can damage all cellular components. Although at least 11
sites producing ROS have been identified, Cx I and complex III (Cx III)
are conventionally recognized as the major sources of ROS at the ETC
[2]. Mitochondrial ROS production (mitROSp) has been considered one
of the main effectors responsible for aging and longevity [3,4].

Low rates of mitROSp have been described in many long‐lived
mammalian and bird species [3–5]. These studies generally demon-
strated the existence of a negative correlation between mitROSp and
longevity. Among the two main ROS generating ETC complexes, the

low ROS production of various long-lived species has been localized at
Cx I [6–8]. Interestingly, different pro-longevity nutritional and phar-
macological interventions like dietary (DR) and methionine restriction,
and rapamycin treatment have been also associated with decreased
mitROSp at Cx I [3,9]. Although is a matter of controversy, within
complex I longevity-related ROS production has been observed in the
hydrophilic domain [10], which could be due either to the flavin
semiquinone, to some of the eight different FeS clusters of this domain
[11–13] or both to flavin and FeS centers.

The underlying mechanism responsible, at least in part, for the low
mitROSp of some long‐lived species has been attributed to a smaller
degree of electronic reduction of Cx I under basal conditions [4,8].
Additional studies demonstrated that a lower Cx I content could also
explain the low ROS production of those long-lived species [14,15].
Pro-longevity nutritional interventions also induced decreased Cx I
content concomitantly with a lower mitROSp [10,16–19].

Mammalian Cx I is the largest component of the ETC built of 45
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different subunits in mammals [1]. The conserved L-shaped core,
formed by 14 subunits sufficient for catalysis, is surrounded by 31 ac-
cessory subunits forming an interlinked shell with unclear function
[20,21]. Among the 14 core subunits, the 7 mitochondrial-encoded ND
subunits are present in the hydrophobic membrane domain, and the
other 7 nuclear-encoded (NDUF) subunits are present in the hydrophilic
matrix domain [22]. The 31 supernumerary NDUF accessory subunits
are also nuclear coded [20]. However, it is totally unknown if some
particular Cx I subunits, especially some NDUF subunits of the Cx I
hydrophilic domain, could be involved in the determination of the
longevity-related low complex I ROS production of long-lived animal
species.

On the other hand, the mitochondrial permeability transition pore
(mPTP) is a protein complex that permits diffusion of molecules of
molecular mass up to 1500 Da across the mitochondrial inner mem-
brane [23,24]. Many substrates can pass from mitochondrial matrix to
cytosol through this pore. The mPTP opening is promoted through
oxidation of lipids and proteins of mitochondrial membrane by ROS
[23] and is related to pathological stages. However, some studies sug-
gest that mPTP opening by mitROS can also drive the progression of
aging [23,25]. It has been hypothesized that mPTP comprises inner and
outer mitochondrial membrane proteins such as the ATP synthase, key
in the channel formation, and a diversity of regulatory components
including the voltage‐dependent anion channel (VDAC), the pro-death
Bcl-2 family member proteins Bax and Bak, the translocator protein
(TSPO), the hexokinase (HK), the adenine nucleotide translocase
(ANT), the phosphate carrier (PiC), and the cyclophilin-D [26–28], all
of which have been studied as candidates for exact molecular mPTP
identity which remains uncertain. Recent studies have shown that de-
creased VDAC promotes longevity by decreasing mitochondrial per-
meability in C. elegans [29].

The purpose of this study was to investigate the abundance of Cx I
hydrophilic domain selected subunits and VDAC as possibly related to
the low mitROSp of long‐lived mammalian species. We used droplet
digital PCR (ddPCR) and western blot methods to define the steady-
state levels of gene expression and protein content of mitochondrial
electron transport chain Cx I subunits and VDAC in heart tissue of eight
mammalian species showing more than one order of magnitude of
difference in longevity, from 3.5 years in mice to 46 years in horses. Cx
I hydrophilic subunits were selected based on: i) previous partial pro-
teomic studies of the ETC revealing the subunits more acutely de-
creasing in dietary restriction or varying in aged or longevity mutant
mice [10]; ii) their core (NDUFV2 and NDUFS3) or supernumerary
(NDUFS4 and NDUFS5) character; iii) their especial situation in the
electron path of the hydrophilic domain (NDUFV2); or iv) their lack of
variation in those longevity models to be potentially used as a reference
(NDUFA9). Abundance of the VDAC component of the mPTP was also
measured due to its possible relationship with mitROSp and aging.

2. Results

2.1. Multivariate statistics reveals a species-specific Cx I profile

Multivariate statistics was applied to determine whether specific Cx
I subunits gene expression (ndufv2, ndufs3, ndufs4 and ndufs5) and
protein content (NDUFV2, NDUFS3, NDUFS4 and NDUFA9) differ
among mammals. Non-supervised principal component analysis (PCA)
revealed the existence of a species-specific gene and protein profile of
the Cx I, capable to explain up to 65.4% samples variability (Fig. 1A). A
hierarchical clustering of the samples represented by a heat map re-
vealed specific Cx I patterns for rodents (mouse, rat and guinea pig) and
non-rodents (rabbit, pig, cow and horse) (Fig. 1B and C). These results
were confirmed by performing a supervised analysis, such as partial
least squares discriminant analysis (PLS-DA) (Fig. 1D). Cross-validation
values of PLS-DA model scored a maximum Q2 of 0.3 and R2 of 0.4
when using only one component (Fig. 1E). Permutation tests (1000

repeats) yielded a low p = 0.02, indicating that none of the distribu-
tions formed by the permuted data was better than the observed sta-
tistic based on the original data (Fig. 1F). The inter-group dis-
criminating power of the different measured features is evaluated by a
variable importance projection (VIP) score > 1.5, which was obtained
only for NDUFV2 (Fig. 1G). These results were supported by applying a
Random Forest (RF) classification algorithm which revealed a species
overall classification error of 0.26, being ndufv2 the variable with the
highest contribution to classification accuracy (Fig. 1H and I).

2.2. The species-specific Cx I profile is associated with animal longevity

Gene expression and protein content of Cx I were also correlated
with mammalian longevity. Specifically, long-lived animals showed
decreased gene expression of ndufv2 and ndufs3 (Fig. 2A). Moreover,
protein content of NDUFV2 and NDUFS4 were also decreased in long-
lived mammals (Fig. 2B). Yet no correlation between protein content
and gene expression was found (Supplementary Fig. 1).

2.3. The VDAC content is associated with animal longevity

VDAC is a component of the mitochondrial permeability transition
pore (mPTP) and is commonly used as a loading control for mi-
tochondrial proteins. In order to check its suitability when comparing
different animals, we've compared total VDAC content by performing
an ANOVA analysis. Unexpectedly, we've found that total VDAC con-
tent changes across the different animal species and is negatively cor-
related with animal longevity (Fig. 3A). Furthermore, VDAC total
content was positively correlated with NDUFV2 and NDUFS4 protein
content (Fig. 3B and C, Supplementary Fig. 1).

2.4. ndufv2 and VDAC correlate with longevity after controlling for
phylogenetic relationships

Animal species are evolutionarily related, and closely related spe-
cies often have similar traits due to inheritance from a common an-
cestor. Most of statistical analysis, such as linear regression, assume the
independence of the data, which might not be accomplished from data
obtained from these close-related species. In order to find associations
between longevity and gene expression and protein content of selected
Cx I subunits and VDAC protein content, we have applied a phyloge-
netic comparative method, such as phylogenetically generalised least
squares (PGLS) regression. A phylogenetic tree allowing to evolutionary
relate the species in our study was inferred and is constructed in
Supplementary Fig. 2A.

First of all, under the assumption of a Brownian motion model of
evolution (a branching, random walk of trait values from an ancestral
value at the root to the tips of the tree [30]), we have estimated the
Pagels λ. It allows to measure phylogenetic signal and indicates the
relative extent to which a traits’ correlation among close relatives
match a Brownian motion model of trait evolution. Pagels λ range from
0 to 1, where λ = 1 indicate that trait similarities between species are
influenced by phylogenetic relationships; λ = 0 indicate that trait si-
milarities between species are independent of phylogenetic relation-
ships; and 0< λ<1 indicate different levels of phylogenetic signal.
According to the estimated λ value, we have classified the measured
traits according to its association degree with phylogenetic relation-
ships: i) independent (λ = 0): ndufs5 and NDUFS3; ii) low dependence:
ndufs3 and NDUFA9; iii) mild dependence: ndufv2 (λ = 0.65), NDUFV2
(λ = 0.81) and VDAC (λ = 0.53); and strong dependence (λ = 1):
ndufs4 and NDUFS4. Finally, we have applied a PGLS regression, which
revealed that only gene expression of ndufv2 (p = 0.041, r = −0.80)
(Supplementary Fig. 2B) and protein content of VDAC (p = 0.015,
r = −0.79) (Supplementary Fig. 2C) were positively correlated with
animal longevity after controlling for phylogenetic relationships.
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Fig. 1. Multivariate statistics reveals a species-specific gene expression and protein content of Cx I. A) Principal component analyses (PCA) representation of
gene expression and protein content of CI subunits. X: Principal component 1 (PC1); Y: Principal component 2 (PC2); Z: Principal component 3 (PC3). B) Hierarchical
clustering of individual animal samples according to gene expression and protein content of CI. C) Hierarchical clustering of animal species according to average
sample values of gene expression and protein content of CI. D) Partial least squares discriminant analysis (PLS-DA) representation of gene expression and protein
content of CI. X: Component 1 (C1); Y: Component 2 (C2); Z: Component 3 (C3). E) Cross validation (CV) analyses (10-fold CV method) of the PLS-DA model. F)
Permutation test (1000 repeats) using separation distance. G) Variable importance projection (VIP) scores indicating the elements which contribute the most to
define the first component of a PLS-DA. H) Random Forest (RF) classification algorithm. I) VIP scores for RF.
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3. Discussion

3.1. Longevity-associated Cx I profile

In this investigation we have found that the mitochondrial Cx I
profile is associated with mammalian longevity. Our model revealed
that Cx I accounts for 40% of inter-species variation, being ndufv2 gene
expression and protein content, followed by NDUFS4 protein, the
highest longevity predictor. To the best of our knowledge, ours is the
first study elucidating the genetic changes in particular Cx I subunits
across mammals of different orders revealing new insights on animal
longevity.

3.2. Low Cx I content in long-lived mammalian species

Mitochondrial-related genes have been positively selected in long-
living invertebrates [31] and mammals, including rodents [32], bats
[33] and primates [34]. Our results showed a decreased matrix Cx I
subunits gene expression in the same direction that protein content.
These findings agree with previous studies that show a positive selec-
tion during evolution of gene expression of Cx I subunits, as well as
genes that regulate its assembly [35]. Our study design revealed de-
creased gene expression and/or amount of particular Cx I subunits,
suggesting that longevity is associated with a genetic modulation tar-
geted to maintain a lower content of those hydrophilic Cx I matrix
domain subunits.

The core Cx I structure is highly conserved across animal species
[36] and maintains a fixed stoichiometric relationship of 1:1 in their
forming subunits [37]. Since we have found different protein content of
the core subunits NDUFV2 and NDUFS4 in different animal species, we

suggest that the lowest amount of core subunits determines the total
amount of fully assembled Cx I. Accordingly, several studies extra-
polated changes in specific Cx I subunits to total Cx I content variations
[14,18,38,39]. Furthermore, we are measuring the total content of
these proteins, but not its intracellular location. Therefore, we cannot
discard that these stoichiometric differences are due to the presence of
free subunits at the mitochondrial matrix. Supporting the latter, it has
been described different protein turnover rates for each Cx I subunit (up
to 4.6-fold difference), which is higher in matrix subunits compared to
those located in the membrane [40].

Although ROS can be produced at many different mitochondrial
sites, studies including those with endogenous reporters in the absence
of inhibitors have localized the main ROS generator sites at the hy-
drophilic Cx I domain and at Cx III [2,41]. Among these two, the low
ROS production of long-lived species and dietary restricted animals has
been localized at Cx I [3,6–9], particularly to its matrix hydrophilic
domain [10] which catalyses oxidation-reduction reactions, while the
hydrophobic membrane domain catalyses proton pumping (Fig. 4). ROS
production at the hydrophilic Cx I domain can occur either at the flavin
(IF site) or at some of its FeS clusters [11–13], which can also further
contribute to secondary ROS formation due to Fe liberation under
oxidative stress [1]. Adscription of ROS production to the IF site has
been based on experiments increasing or decreasing flavin reduction
concomitant with increases and decreases in ROS production respec-
tively. However, these experiments can't rule out Cx I FeS clusters as
potential ROS generators because they are located downstream of the
flavin, and then increases and decreases in FeS reduction will also occur
in those experiments. Studying the amounts of particular Cx I subunits
of the hydrophilic Cx I domain can further localize the sites, subunits
and genes responsible for the longevity related decrease in mitROSp.

Fig. 3. VDAC-1 changes across animal longevity
and its association with Cx I subunits and animal
longevity. A) Pearson correlation between VDAC-1
protein content and animal longevity.
R2(VDAC) = 0.18. B) PGLS regression between
VDAC-1 protein content and animal longevity ac-
cording to phylogenetic tree reported in Fig. 3A. C)
Pearson correlation between VDAC-1 and complex 1
subunits. Linear regression (LR) model was per-
formed when significant relationships were found.
R2(VDAC vs. NDUFV2) = 0.13; R2(VDAC vs.
NDUFS4) = 0.19. Minimum signification level was
set at p<0.05. Protein content was log-transformed
to accomplish the assumptions of normality. D)
Longevity model of longevity modulation via Cx I,
ROS and VDAC.
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3.3. Low abundance of NDUFV2 and NDUFS4 subunits is associated with
mammalian longevity

The functional role of the Cx I accessory subunits is fragmentary and
not clear [21,22] although it has been proposed that they have reg-
ulatory roles participating in Cx I stabilization, assembly, subunit in-
teractions or limitation of ROS production [21].

Among the CxI subunits selected, NDUFVS3 and NDUFS5 did not
show correlation with species longevity in spite of their decrease in DR
and in the long-lived ICRFa mouse strain (moderate decreases), and the
increase in NDUFS3 with age in C57Bl/6 mice [10]. The lack of cor-
relation with longevity observed for NDUFS5 is not strange however,
since recent description of the near atomic structure of bovine and
ovine Cx I at around 4 Å resolution by cryoEM localized NDUFS5 at the
bottom of the hydrophobic domain near the intermembrane space
[20,21], far away from the Cx I hydrophilic domain sites of ROS pro-
duction. Concerning NDUFS3, it is an accessory subunit without co-
factor that does not take part directly on the main electron transfer but
rather provides the platform required for complex assembly [22]. The
lack of correlation of the NDUFA9 subunit with species longevity was
expected since it did not show correlation in other longevity models
[10], it is a subunit essential for activity that binds NADPH to indirectly
regulate the terminal N2 cluster [22], and is present at the bottom of
the hydrophilic domain near the hinge connecting the two Cx I do-
mains. This protein also has a structural function because it stabilizes
the junction between the membrane and matrix domains of Cx I [42].

The remaining two subunits studied, the NDUFV2 and NDUFS4
proteins, showed negative correlation with species longevity. In prin-
ciple, regulation of ROS production should be left for accessory subunits
because the central core is needed for the most fundamental function,
electron transfer coupled to H+ pumping and ATP production.
However, NDUFV2, which was lower in long-lived species both at
mRNA and protein levels, is a special case because it does not take part
in the main electron path of the hydrophilic domain of Cx I. Instead, the
highly conserved off-pathway N1a FeS cofactor of NDUFV2 can take
one electron from FMN but cannot give it to N3 because the distance
from N1a (in subunit NDUFV2) to N3 (19.4 to 22.3 Å, Fig. 4) is too long
compared to the maximum distance for physiological electron transfer
between redox centers, 14 Å [43]. It has been proposed that N1a can
function to prevent excessive ROS production [44,45]. The very low
one electron potential of N1a (around −370mV) compared to all the
other isopotential FeS clusters (N3 to N6b at around −250 mV) makes

it highly susceptible to one electron reduction of oxygen to superoxide
radical (Fig. 4). The low NUDFV2 (and N1a) amount present in long-
lived species agrees with the hypothesis that it can serve to limit ROS
production, since the smaller the NDUFV2 amount, the less the number
of electrons transferred from FMN to N1a, and thus less would reduce
O2 to O2

.-, while more electrons would follow the central path from the
flavin to N3 and then the rest of the FeS until N2 (Fig. 4). This could
help to explain the smaller amount of ROS produced per unit electron
flow in long-lived species. This mechanism is simple and avoids the
need for electrons to travel bidirectionally between the flavin and N1a
[44]. Therefore, we postulate that the amount of NDUFV2 subunit
could serve to modulate ROS production in each species in accordance
with its longevity and would help to explain the functional significance
of the off-path situation of cluster N1a. Interestingly, it has been found
that phosphorylation of NDUFV2 tyrosine 118 decreases ROS produc-
tion leading to cardioprotection after ischemia-reperfusion [46].

The supernumerary non cofactor containing NDUFS4 was the other
subunit showing less protein level amount in long-lived species, al-
though its mRNA levels did not show significant differences. Such low
level agrees with its strongly decreased levels in long-lived DR mice
[10]. The accessory NDUFS4 subunit is located where the NADH de-
hydrogenase domain meets the rest of the hydrophilic arm [21] and is
not likely to play a catalytic role but it is important for assembly of the
complex [47]. Various NDUFS4 mutations lead to total loss of Cx I
activity [48].

It is known that mammalian NDUFSV1, V3, S1, S4 and S6 interact
with NDUFV2 [20,21]. Among all those, only NDUFS4 shows a strong
decrease in DR [10] the rest being invariant or showing only modest
decreases. Therefore, although NDUFS4 does not have an electron
transport cofactor, it could modulate ROS production through its in-
teraction with NDUFV2, which would be affected by the lower NDUFS4
levels of long-lived species. In agreement with this possibility, it is
known that cAMP associated serine phosphorylation of NDUFS4 by PKA
lowers ROS production and increases Cx I activity [49], and heart-
specific NDUFS4 knockout mice have normal heart energetics and
function together with less ROS generation and better functional re-
covery after ischemia-reperfusion while reintroduction of NDUFS4
abolishes this protection [50].

Although our finding of smaller amounts of NDUFV2 and NDUFS4
can contribute to decrease Cx I ROS production in long-lived species,
association of complex I within supercomplexes could perhaps also
contribute to ROS regulation. Possible functional roles of respiratory

Fig. 4. Low NDUFV2 and NDUFS4 in long-lived
species can decrease mitROSp from the hydro-
philic domain of Cx I. The figure shows the
pathway of electron transfer. The human nomen-
clature for Cx I subunits (NDUF) is used. Electron
transfer is indicated by solid arrows from FMN to Fe
S clusters N1a, N3, N1b, N4, N5, N6a, N6b and N2
which reduces the quinone. The conserved off-
pathway bifurcation from the flavin to FeS cluster
N1a (in NDUFV2) is shown as alternative to main
electron transfer to N3. Edge-to-edge distances be-
tween cofactors indicated in Å correspond to those
described for the mammalian ovine enzyme studied
by cryo-Electron Microscopy [20]. The distance be-
tween iron-sulphur clusters N1a and N3 (T. thermo-
philus, Sazanov 2015) is too long for physiological
electron transfer to occur either edge-to-edge
(19,4 Å) or centre-to-centre (22.3 Å, shown inside
brackets). Therefore, the electron transferred from
FMN to 2Fe2s cluster N1a could then reduce oxygen
to superoxide radical at NDUFV2. A low amount of
NDUFV2 in long-lived species would divert less
electrons from the main pathway and would thus

lead to a lower rate of complex I ROS production. A lower amount of the accessory subunit NDUFS4 in long-lived species can also downregulate ROS generation at
N1a through its known interaction with NDUFV2.
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supercomplexes remain controversial, proposals including roles in sta-
bility of individual complexes, CoQ substrate channeling between Cx I
and Cx III2, prevention of protein aggregation, and reduction in ROS
production. Various authors have suggested that assembly of Cx I into
supercomplexes prevents excessive ROS production during oxidation of
NADH-linked substrates because more efficient CoQ channeling helps in
maintaining the chain in a more oxidized state [51,52]. However, de-
spite progress in the determination of the structures of respiratory su-
percomplexes their physiological role is not yet understood [22] and
more research is needed to clarify if they could also contribute to
modulate mitROSp in relation to animal longevity.

3.4. There is an association between mitROSp and VDAC content in animal
longevity

ROS production promotes the opening of the mitochondrial per-
meability transition pore mPTP [25] which is related to mitochondrial
swelling and fragmentation, ischemia-reperfusion injury, and cell death
[1,50,53]. Specifically, ROS generation and reverse electron transport
through Cx I increase the sensitivity of mPTP opening [54]. Previous
studies have shown that dietary restriction decreases both mPTP
[55,56] and mitROSp at Cx I [3,9]. Since mPTP opening is promoted
through oxidation of mitochondrial membrane lipids and proteins by
ROS [23], the decrease in mitochondrial permeability in DR could be
due to the decrease in mitROSp that occurs in this dietary manipula-
tion.

VDAC is a component of mPTP [26–28,57]. Some studies indicate
that VDAC content regulates the opening of mPTP in response to
modifications in mitROSp [23,25]. Since decreases in Cx I content
correlate with reduction in mitROSp [10,16–19], Cx I content could
regulate the mPTP opening mediated by mitROSp modifications.

On the other hand, our results show that a lower VDAC content is
associated with mammalian longevity. Furthermore, VDAC is positively
correlated with NDUFV2 and NDUFS4 Cx I subunits which are present
at higher levels in short-lived animals. Thus, we hypothesize that a
lower level of NDUFV2 and NDUFS4 would lead to lower complex I
ROSp, lower ROS-mediated VDAC modification and lower mPTP in
long-lived animal species (Fig. 3). This agrees with the recent descrip-
tion that high VDAC levels lead to mPTP and to a shortened lifespan
[29], as well as with the decrease in mPTP observed in dietary re-
striction studies [55,56].

3.5. Dealing with Cx I and VDAC variations in evolutionary-related species

Comparative studies across species with different lifespan are a
powerful source of information to identify mechanisms linked to ex-
tended longevity [58,59]. However, those studies come up with several
technical limitations. Specifically, in terms of protein recognition, the
presence of SNPs inducing little sequence or amino acid changes might
alter protein structure, even in highly conserved structure, possibly
affecting antibody recognition. Since we lack of methods to improve
inter-species antibody reactivity, we have increased the number of re-
peated measurements up to 7, in order to capture higher inter-in-
dividual variability in each specie, and measured gene expression using
a very sensible technique in order to confirm those results. However, we
didn't find significative correlations between gene expression and pro-
tein content. Although we cannot omit technical issues, the lack of
correlation doesn't necessarily invalidate the presented results. Ac-
cordingly, it had been reported that mRNA and protein content doesn't
need to be necessarily correlated [60], even in mammals [61]. Fur-
thermore, a comparative study has demonstrated an increasing protein
divergence with higher evolutionary distance, since expression diver-
gence seems to be more stable [62], which agrees with the obtained
data.

Even after dealing with technical issues, inter-species studies have
to face that evolutionary relationships don't allow for independence of

the data [63]. Therefore, it's important to elucidate whether a specific
trait correlates with longevity differences, or alternatively, these dif-
ferences arise because of the data similarity. To overcome this limita-
tion, several longevity cross-species studies in birds [64], bats [65],
primates [34], mammals [66,67] and vertebrates [68] have applied
phylogenetic comparative methods, such as PGLS. In our data, PGLS
revealed that ndufv2 gene expression and VDAC protein content
changes associated with longevity weren't due interspecies relation-
ships. Although robust, the main limitation of the methods for phylo-
genetic analysis is that they rely on the construction of a phylogenetic
tree, which is unknown. Phylogenies are estimated, mainly by aligning
homologue gene sequences and using models of mutation to infer most-
likely evolutionary histories. However, depending on the genes chosen,
how the sequences are aligned and which method is used to infer
evolutionary histories we get different phylogenies. And errors in
phylogenetic inferences propagate to errors in phylogenetic analyses
[30]. These limitations arise the need of the development of more ro-
bust bioinformatic methodologies for phylogenetic tree inferences.

4. Conclusions

Our study indicates that long-lived mammalian species have low
levels of NDUFV2 and NDUFS4 subunits of the hydrophilic domain of
complex I which could be responsible in part for their lower mitROSp
and superior longevity. The lower VDAC content of these animals could
also contribute to their high longevity due to lower ROS-mediated
opening of the mitochondrial permeability transition pore.

5. Methods

5.1. Animals

Mammalian species included in the study were male adult speci-
mens with an age representing their 15–30% of their longevity. The
recorded values for longevity (in years) were: mouse (Mus musculus),
3.5; rat (Rattus norvegicus), 4.5; gerbil (Meriones unguiculatus), 6.3
guinea pig (Cavia porcellus), 8; rabbit (Oryctolagus cuniculus), 13; pig
(Sus scrofa), 27; cow (Bos taurus), 30; and horse (Equus caballus), 46.
Rodents and rabbits were obtained from rodent husbandries and sa-
crificed by decapitation, whereas sheep, pigs, cow, and horses were
obtained from abattoirs. The animal care protocols were approved by
the Animal Experimentation Ethics committee of the University of
Lleida. Heart ventricles from 5-7 animals were removed and im-
mediately frozen in liquid nitrogen and transferred to −80 °C until
analyses.

5.2. Sample homogenization and quantification

Heart tissue (≈50 mg of whole tissue) was homogenized in a buffer
containing 180 mM KCl, 5 mM MOPS, 2 mM EDTA, 1 mM DTPAC
adjusted to pH = 7.4. Prior homogenization, 1 μM BHT and a mix of
proteases inhibitors (GE80-6501-23, Sigma, Madrid, Spain) and phos-
phatase inhibitors (1 mM Na3VO4, 1 M NaF) were added. After a brief
centrifugation (1000 rpm for 3 min at 4 °C), supernatants protein
concentration was measured using the Bradford method (500-0006,
Bio-Rad Laboratories, Barcelona, Spain).

5.3. Protein content determination

The amount of the specific Cx I subunits NDUFV2, NDUFS3,
NDUFS4, NDUFS5 and NDUFA9, as well as VDAC-1/Porin, were esti-
mated using western blot analyses as previously described [39]. An-
ticipating potential technical limitations mainly due to antibody re-
activity, and before performing the comparative approach, we have
evaluated the similarity of the protein sequences using a BLAST algo-
rithm (Supplementary Table 1). Although the exact target sequence of
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the commercial antibodies is unknown, we have found a high similarity
between sequences, and have chosen the most appropriate antibodies
available according to their proved or predicted reactivity against the
species of our study.

Briefly, heart homogenates were mixed with a buffer containing
62.5 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 20% β-mercap-
toethanol and 0.02% bromophenol blue, and heated for 3 min at 95 °C.
Then, proteins were subjected to one-dimensional electrophoresis on
SDS and transferred to PVDF membranes. Membranes were maintained
in blocking solution containing Tris 2 M, NaCl 2.5 M, 5% BSA and
0.01% Tween for 1 h at room temperature. Immunodetection was
performed using antibodies against NDUFV2 (SAB2107279, Sigma,
Madrid, Spain), NDUFS3 (459130, ThermoFisher, Barcelona, Spain),
NDUFS4 (ab96549, Abcam, Cambridge, UK), NDUFS5 (ab188510,
Abcam, Cambridge, UK), NDUFA9 (459100, ThermoFisher, Barcelona,
Spain), and VDAC-1/Porin (ab15898, Abcam, Cambridge, UK).

Secondary antibodies were anti-mouse (GENA931, Sigma, Madrid,
Spain) and anti-rabbit (31460, ThermoFisher, Barcelona, Spain). Bands
were visualized using an enhanced chemiluminescence HRP substrate
(Millipore, MA, USA). Signal quantification and recording was per-
formed with ChemiDoc equipment (Bio-Rad Laboratories, Barcelona,
Spain). The protein amount was calculated from the ratio of their
densitometry values referred to its respective Coomassie staining
(1610436, Bio-Rad Laboratories, Barcelona, Spain) (Supplementary
Fig. 3). Due to technical issues (antibody recognition), NDUFA5 amount
is not reported. Lack of protein recognition might be due to technical
issues, not to missing proteins, such as for NDUFS3 in guinea pig.

5.4. Primers design

Gene cDNA sequences coding for the Cx I subunits NDUFV2
(ndufv2), NDUFS3 (ndufs3), NDUFS4 (ndufs4), NDUFS5 (ndufs5) and
NDUFA9 (ndufa9) were obtained from Ensmbl (http://www.ensmbl.
org). Due to gene cDNA sequences limitations for gerbil, that specie
wasn't included in the gene expression analyses. Degenerate primers
were designed to amplify conserved regions among mammalian se-
quences using the software PriFi [69], and are listed in Supplementary
Table 2. Primers were purchased from Isogen (LifeSciences, Utretch,
Netherlands).

5.5. Gene expression: Droplet digital PCR

Prior DNA amplification, RNA from 15 mg whole heart tissue was
extracted using RNeasy Fibrous Tissue Mini Kit (Qiagen, Hilden,
Germany), and retro-transcribed to cDNA using the High-Capacity
cDNA Reverse Transcription kit (Applied Biosystems, CA, USA).

For DNA absolute quantification (copies/μl), reaction mixture con-
tained 1x of EvaGreen ddPCR Supermix, 200 nM primers and
0.01–16 ng of template cDNA. For droplet generation, 20 μL of reaction
mixture and 70 μL of Droplet Generation Oil for EvaGreen were loaded
in the Droplet Generation Cartridge, which was placed into the Droplet
generator. From each PCR reaction mixture, 20 μL were transferred to a
96-well PCR plate, which was sealed with a foil heat using PX1 PCR
plate sealer. Amplification was performed in a C1000 Touch Thermal
Cycler following an initial DNA Polymerase activation (95 °C, 5 min),
and 40 cycles consisting of a DNA denaturation (95 °C, 30 s), primer
annealing (58 °C, 1 min) and extension (60 °C, 1 min). A final dye-
stabilization step was included (4 °C 5 min, and 90 °C 5 min). Droplets
were read with a QX200 Droplet Reader and analysed using QuantaSoft
software (Bio-Rad). The results from more than 12,000 droplets were
accepted and normalised to an appropriate housekeeping gene (ndufa9)
as suggested by previous work [10]. Values are reported as cDNA gene
units per cDNA housekeeping units. All equipment and reagents were
purchased from Bio-Rad (Bio-Rad Laboratories, Barcelona, Spain).

5.6. Statistics

Multivariate statistics was performed using Metaboanalyst software
[70]. Pearson correlation and Pearson partial correlation were per-
formed using RStudio (v1.1.453). Linear models and phylogenetic
generalised least squares regression (PGLS) were constructed using
RStudio (v1.1.453). The phylogenetic tree was constructed using taxa
names as described previously [71]. Functions used were included in
the package caper. Data was log-transformed and mean-centred prior
statistical analyses in order to accomplish the assumptions of linearity.
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