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Abstract

The thermal-based Two-Source Energy Balance (TSEB) model partitions the evapotranspiration 

(ET) and energy fluxes from vegetation and soil components providing the capability for 

estimating soil evaporation (E) and canopy transpiration (T). However, it is crucial for ET 

partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, as the 

latter determines the available energy for water and heat exchange from soil and canopy sources. 

These two factors become especially relevant in row crops with wide spacing and strongly 

clumped vegetation such as vineyards and orchards. To better understand these effects, very high 

spatial resolution remote-sensing data from an unmanned aerial vehicle were collected over 

vineyards in California, as part of the Grape Remote sensing and Atmospheric Profile and 

Evapotranspiration eXperiment and used in four different TSEB approaches to estimate the 

component soil and canopy temperatures, and ET partitioning between soil and canopy. Two 

approaches rely on the use of composite Trad, and assume initially that the canopy transpires at the 

Priestley–Taylor potential rate. The other two algorithms are based on the contextual relationship 

between optical and thermal imagery partition Trad into soil and canopy component temperatures, 

which are then used to drive the TSEB without requiring a priori assumptions regarding initial 

canopy transpiration rate. The results showed that a simple contextual algorithm based on the 

Héctor Nieto, hector.nieto@irta.cat. 

NASA Public Access
Author manuscript
Irrig Sci. Author manuscript; available in PMC 2020 April 30.

Published in final edited form as:
Irrig Sci. 2019 ; 37(3): 389–406. doi:10.1007/s00271-018-0585-9.N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript



inverse relationship of a vegetation index and Trad to derive soil and canopy temperatures yielded 

the closest agreement with flux tower measurements. The utility in very high-resolution remote-

sensing data for estimating ET and E and T partitioning at the canopy level is also discussed.

Introduction

The use of unmanned aerial vehicles (UAVs) for estimating water use and crop stress has 

been gaining much interest in recent years. This is due in part to a tremendous increase in 

the availability of UAVs and advancement in sensor technology that supports UAV 

platforms. The very high-resolution data obtained with UAVs can provide estimates of both 

leaf canopy temperatures and background soil/ground cover temperatures. Methods are 

under development to apply very high-resolution UAV imagery for precision ET monitoring 

(e.g., Zipper and Loheide 2014; Hoffmann et al. 2016; Ortega-Farías et al. 2016). Others are 

using high-resolution thermal imagery in a crop water stress index (CWSI) approach for 

estimating leaf water potential for irrigation scheduling (Bellvert et al. 2016).

Few models have had the capability to compute robust fluxes over a variety of surface 

conditions and at the same time partition fluxes from the vegetated canopy and underlying 

soil/substrate layer. One such modeling approach is the Two-Source Energy Balance (TSEB) 

land surface scheme that contains a level of complexity that makes it robust for many 

different landscapes (Kustas and Anderson 2009). The TSEB land surface scheme has been 

integrated into a multi-scale model operating at regional scales (Anderson et al. 2011) and 

recently implemented in a data fusion scheme allowing for daily ET estimates at 30 m 

resolution (Cammalleri et al. 2013, 2014), much more useful for agricultural water 

management.

However, for certain high-valued crops, such as vineyards as well as orchards, information 

needs to be at plant or irrigation sector level to identify levels of plant stress and how it 

varies at the vine/tree level over a field. Water deficit, nutrient deficiencies, or disease/pest 

infestation which all lead to plant stress can be detected from elevated plant temperatures 

that deviate from the surrounding observed plant temperatures. This allows for variable rate 

application of water, nutrients, or fungicide/pesticide within a field. For irrigation 

management in vineyards, knowing the water use of the inter-row (consisting of a cover crop 

or bare soil) and vine crop is important, since it relates to water availability in the root zone. 

Thus, having thermal and visible/near-infrared imagery that is fine enough resolution to 

discriminate between interrow and vine will provide the means to properly partition the 

energy fluxes and ET between the two sources. In addition, compared to moderate-

resolution data from Landsat, for example, the finer resolution imagery can more accurately 

identifying features in a vineyard affecting overall water use (Xia et al. 2016).

TSEB partitions the surface energy fluxes between nominal soil and canopy sources using 

estimates of soil (TS) and canopy temperatures (TC). Because direct measurements of 

canopy temperatures are rarely available, in most applications, these component 

temperatures have been derived from a measurement of the bulk composite surface 

radiometric temperature Trad. When only a single observation of composite Trad is available 

(i.e., measurement at a single angle), the estimation of TC or TS requires some assumptions. 
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One approach developed for TSEB (Norman et al. 1995) starts with an initial estimate of TC 

that assumes plants are transpiring at a potential rate, as defined by the Priestley and Taylor 

(1972) formulation, and thus requires a reasonable estimate of the energy used for 

transpiration. The green fraction of vegetation (fg) has become an important parameter 

within this approach, since it acts as a scaling factor for the potential transpiration, by taking 

into account the phenological development of the vegetation. For example, Guzinski et al. 

(2013) showed an improvement of TSEB accuracy by adjusting the magnitude of fg in 

forested ecosystems and in crops during senescence. In alternate forms of the TSEB model, 

direct estimates of soil and canopy temperatures obtained without employing any 

assumptions based on the canopy transpiration have been used (Chehbouni et al. 2001; 

Kustas and Norman 1997; Morillas et al. 2013; Song et al. 2015). Several approaches for 

such retrieval have been proposed by measuring soil and canopy temperatures separately 

(Morillas et al. 2013) or by analytically solving Eq. 1 with observations of Trad at two 

different viewing angles (Kustas and Norman 1997).

In this paper, the TSEB land surface scheme is applied to UAV high-resolution data 

collected during Intensive Observation Periods (IOPs) for the Grape Remote sensing and 

Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). Our hypothesis is that 

using high enough spatial resolution imagery, both TS and TC can be estimated directly 

without the need for an initial assumption of potential transpiration or greenness status, and 

hence compute better estimates of turbulent fluxes than using coarser scale composite Trad. 

However, because of the much finer resolution of the UAV data, associated with this is an 

increase in complexity of modeling of key processes which include the radiation 

transmission and wind attenuation through the vine canopy, which has non-uniform vertical 

leaf area distribution (e.g., often most of the LAI is concentrated in the upper half of the vine 

canopy). In addition, the original TSEB formulations were developed to be applied at the 

micrometeorological scale with variables for aerodynamic resistance terms relating to scales 

on the order of 102 m and radiation and radiometric temperatures at resolutions that contain 

a mixture of canopy and soil/substrate contributions (Xia et al. 2016). Therefore, it is of 

interest to evaluate TSEB (or any other resistance energy-based model) at finer scales which 

are required in precision irrigation (Bellvert et al. 2016).

Materials

The UAV imagery was collected over two Pinot noir blocks located within the Borden 

vineyard near Lodi, CA (38.29 N 121.12 W), in Sacramento County as part of the GRAPEX 

project. The two adjacent vineyards differ in the age and maturity of the vines, with the 

north and south vineyards being planted in 2005 and 2008, respectively. The management of 

the two vineyards, which include the timing and amount of irrigation, pruning activities, 

cover crop management, and application of agrochemicals, also differed from season to 

season and between the blocks due to variation in weather and climate conditions.

In both fields, the configuration of the trellising system and interrow is the same. The vine 

trellises are 3.35 m apart and run east–west. There is an individual vine planted every 1.52 

m, with the two main vine stems attached to the first cordon at a height of 1.45 m above 

ground level (agl). There is a second cordon at 1.9 m agl, where vine shoots are managed. 
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Typically, the vines reach a maximum height of between 2.0 and 2.5 m agl during the 

growing season with the vine biomass concentrated in the upper half of the total canopy 

height. The typical vine canopy width is nominally 1 m mid-season. Pruning of the vines is 

mainly performed to remove shoots growing significantly into the interrow. However, the 

amount and timing of pruning have varied between growing seasons, so that leaf area and its 

vertical distribution were not the same in each growing season. Finally, a crop covering the 

interrow is present in spring; then, it is usually mowed between May and June and cured in 

summer becoming dead stubble.

Three-to-four Intensive Observation Periods (IOPs) were conducted every year since 2014 

(typically in April June, July, and/or August) coinciding with different grapevine 

phenological stages. However, due to the UAV system availability as well as budget 

constraints, not all years had the same number of IOPs or had UAV imagery collected. For 

this study, UAV imagery was collected in 2014 during the early August IOP, in 2015 during 

the early June IOP as well as in the late July IOP, and in 2016 during the early May IOP (see 

Table 1). The times of acquisition were approximately 1–2 h after local sunrise (07:00–08:00 

PDT), during the Landsat 7/8 overpass time (nominally 11:45 PDT) and in the afternoon 

near peak atmospheric demand (between 15:00 and 16:00 PDT). The UAV system flew at 

450 m agl, resulting in 0.15 m pixel resolution in the visible and near-infrared bands and 

0.60 m resolution in the thermal infrared. The visible and near-infrared sensors wavebands 

are similar to the Landsat blue, green, red, and near-infrared channels, while the thermal-

infrared spans the 8–14 micrometer wavelengths, with a Field of View of 49°and a reported 

accuracy of 1 K. Before the flight, the thermal camera onboard the UAV was calibrated by 

comparing its values with a NIST traceable blackbody. Later, during the flight, in situ 

blackbody temperatures were acquired over homogeneous warm and cold reference targets 

using a second thermal camera, to evaluate the atmospheric contribution at the UAV 

mounted camera. Finally, an assessment of temperature was also performed using both Trad 

derived from pyrgeometers on the EC system and concomitant Landsat Trad. More details 

about the a vicarious calibration/validation of the atmospheric effects on the UAV thermal 

camera is described by Torres-Rua (2017). Finally, the structure from motion approach used 

for the image ortho-rectification and mosaicking allowed the generation of a 

photogrammetric 3D point cloud that was also used in this study.

The eddy covariance/energy balance systems were located approximately 20 m inside the 

vineyard at the east edge to have an adequate fetch for the prevailing winds from the west. A 

detailed description of the measurements and their post-processing is described by Alfieri et 

al. (2018). Briefly, the tower at each site is instrumented with an infrared gas analyzer 

(EC150, Campbell Scientific,1 Logan, Utah) and a sonic anemometer (CSAT3, Campbell 

Scientific) co-located at 5 m agl to measure the concentrations of water and carbon dioxide 

and wind velocity, respectively. The full radiation budget was measured using a four-

component net radiometer (CNR-1, Kipp and Zonen, Delft, The Netherlands) mounted at 6 

m agl. Air temperature and water vapor pressure at 5 m agl were measured using a Gill-

1The use of trade, firm, or corporation names in this article is for the information and convenience of the reader. Such use does not 
constitute official endorsement or approval by the US Department of Agriculture or the Agricultural Research Service of any product 
or service to the exclusion of others that may be suitable
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shielded temperature and humidity probe (HMP45C, Vaisala, Helsinki, Finland). Subsurface 

measurements include the soil heat flux measured via a cross-row transect of five plates 

(HFT-3, Radiation Energy Balance Systems, Bellevue, Washington) buried at a depth of 8 

cm, soil temperature measured via thermocouples buried at a depth of 2 cm and 6 cm, and 

soil moisture content measured via a soil moisture probe (HydraProbe, Stevens Water 

Monitoring Systems, Portland, OR) buried at a depth of 5 cm. Overall closure error of both 

EC system during the 3 year study period is around 85%. When looking at the individual 

closure errors during the UAV acquisitions, a larger variability in the energy balance closure 

is observed, with the largest closure error occurring for the afternoon flight on May 2nd 

2016 (66%). For the rest of overpasses in Table 1, the closure is above 80%.

Methodology

The TSEB land surface energy balance scheme was developed to explicitly account for the 

differences in aerodynamic coupling between the soil/substrate, the canopy layer (Norman et 

al. 1995), and the surface layer above the canopy. Figure 1 illustrates the basic set of 

equations used in TSEB to solve for the energy balance of both the soil/substrate and 

vegetation canopy layers, assuming that canopy and soil resistances to heat and water 

transport are in “series”. The TSEB “series” version was chosen over the Norman et al. 

(1995) “parallel” version based on two main reasons: (i) overall the “series” version has 

shown larger robustness than the “parallel” version in a wide range of environments and 

conditions (Guzinski et al. 2014; Kustas et al. 2016; Li et al. 2005) and (ii) we expect that 

the turbulence created by the row-interrow system will enhance the heat and water exchange 

between soil and canopy, i.e., the hotter and drier bare soil will add extra heat to the canopy–

air interface, which is explicitly (and mathematically) represented by a resistance system in 

series. Key inputs are the surface radiometric temperature (Trad) at a view angle (θ) and the 

canopy cover fraction (fC) which is related to the leaf area index (LAI). The system of 

equations for the energy balance of the soil/substrate and canopy is constrained through the 

effective soil (TS) and canopy (TC) temperatures estimated from radiometric temperature 

balance equation in Fig. 1 and constrained by the soil (Rs) and canopy (Rx) aerodynamic 

resistances to sensible (H) heat fluxes from the soil and canopy surfaces. These combine to 

yield the total sensible heat flux determined by the temperature difference between the 

canopy air space TA and the surface layer TAC and associated surface layer aerodynamic 

resistance (RA). The soil and canopy temperatures constrain the sensible heat fluxes, net 

radiation (Rn), and soil heat flux (G) with the added initial estimate of canopy latent heat 

flux (λEC) or transpiration based on either the Priestley–Taylor (PT), Penman–Monteith 

(PM), or light-use efficiency (LUE) parameterization (see Kustas and Norman 1999; 

Colaizzi et al. 2014; Anderson et al. 2008). Finally, the latent heat flux from the soil, λES, is 

computed as the residual flux. Although a crop cover is present, and photosynthetically 

active in sprint, for this study, this layer is considered together with the underlying soil as an 

ensemble source of heat and water exchange, i.e., TC corresponds to the grapevine 

temperature, whereas TS represents the background/interrow (soil+cover crop) temperature.
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Retrieval of canopy and soil temperatures

We evaluated two TSEB approaches that make use of composite radiometric temperature, 

namely, TSEB-PT (PT for Priestley–Taylor) and DTD (Dual-Temperature Difference) along 

with two other approaches that exploit fine-scale spatial imagery, thermal infrared, and 

multispectral, to derive estimates of canopy and soil temperature.

Priestley–Taylor iterative retrieval, TSEB‑PT—Given the difficulty of obtaining pure 

component temperatures, Norman et al. (1995) found a solution to retrieve TS and TC using 

a single observation of the directional radiometric temperature Trad(θ). Assuming that a 

composite Trad containing temperature contributions from the plant canopy and soil/

substrate is what is typically provided by a radiometer, Eq. 1 decomposes the composite 

Trad(θ) temperature between its components TS and TC :

σT rad
4 (θ) = fC(θ)σTC

4 + 1 − fC(θ) σTS
4 (1)

with fC(θ) being the fraction of vegetation observed by the sensor. Since Eq. 1 consists of 

two unknowns and only one equation, an iterative process to find HS, TS,, HC, and TC is 

defined based upon an initial guess of potential canopy transpiration, and under the 

assumption that during daytime hours, condensation should not occur. The canopy sensible 

heat flux is estimated based on the Priestley and Taylor (1972) potential transpiration (Eq. 

2):

λEC = αPTfg
Δ

Δ + γ Rn, C, (2)

where αPT is the Priestley–Taylor coefficient, initially set to 1.26, fg is the fraction of 

vegetation that is green and hence capable of transpiring, Δ is the slope of the saturation 

vapor pressure vs. temperature, and λ is the psychrometric constant. TC is then computed by 

inverting the equation for turbulent transport of heat (see Norman et al. (1995)) between the 

surface and the reference height above the surface. With a first estimate of TC, soil 

temperature is computed from Eq. 1, and then, soil sensible and latent heat fluxes are 

estimated. At this stage, if the soil latent heat flux is non-negative, a solution is found; 

otherwise, canopy transpiration is reduced via an incremental decrease in αPT which effec 

tively increases TC and reduces TS until a realistic solution is found (no condensation-

negative values of λE occurring on either the soil or the canopy). For more details, the 

reader is referred to Norman et al. (1995) and Kustas and Norman (1999).

Dual‑time‑difference TSEB, DTD—The DTD model described in Norman et al. (2000) 

is a further development of the TSEB-PT modeling scheme. DTD similarly divides the 

observed composite Trad into TC and TS and computes surface energy balance components 

following virtually the same procedure. However, DTD uses two Trad observations, one 

nominally 1.5 h after sunrise (Trad,0) and another during the daytime (Trad,1) with the TSEB 

formulation to reduce errors in deriving an atmospherically and emissivity-corrected Trad 

and availability of local air temperature observations. Using both tower-based and satellite 

observations, the utility of DTD has been evaluated over a variety landscapes showing 

advantages in reducing errors compared to applying TSEB when there is uncertainty in local 
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air temperature observations (Kustas et al. 2012; Guzinski et al. 2013). In the more recent 

“series” implementation of DTD (Guzinski et al. 2014, 2015), the sensible heat flux at these 

two times, assuming that H after sunrise is minimal, is expressed as in Eq. 3:

H1 = ρcp
T rad, 1 θ1 − T rad, 0 θ0 − TA, 1 − TA, 0

1 − f θ1 RS, 1 + RA, 1
+

HC, 1 1 − f θ1 RS, 1 − f θ1 Rx, 1
1 − f θ1 RS, 1 + RA, 1

.
(3)

Similar to TSEB-PT, Eq. 3 requires an a priori value of canopy latent or sensible heat flux 

(HC,i). Therefore, the same iterative process based on a first guess of potential Priestley–

Taylor transpiration is needed in DTD.

In the application of TSEB with composite radiometric temperature, Trad for TSEB-PT and 

DTD is derived by taking the original 0.6 m thermal UAV images and aggregating the 0.6 m 

pixels to 3.6 m using average of the 0.6 m blackbody radiances. The value of 3.6 m 

corresponds to the minimum pixel size from the original 0.6 m that incorporates radiative 

temperature contributions from both the vine and interrow sources existing within the 3.35 

m row width dimension.

Contextual TSEB for component temperature estimation, TSEB‑2T—If the soil 

and canopy temperatures can be derived from the LST imagery collected at high enough 

resolution, then the energy fluxes can be derived directly from the component temperatures 

without the need for a separate parametrization for the canopy transpiration (Norman et al. 

1995). In this case, we obtained canopy and soil temperatures by searching for pure 

vegetation and soil pixels in a contextual spatial domain (Fig. 2). That is, in a 3.6 × 3.6 m 

grid, we assign for each of these cells the canopy and soil temperatures corresponding to the 

average temperature for the 0.6 m pixels that are considered, respectively, bare soil/cover 

crop stubble and pure vegetation. The selection criterion for detecting pure soil NDVIsoil is 

based on the empirical relationship between NDVI and in situ LAI, with NDVIsoil is LAI = 0 

the extrapolation of that curve for. On the other hand, pure vegetation NDVI (NDVIveg) is 

the mean value of pixels classified as pure vegetation using a support vector machine binary 

supervised classification of the 0.15 m multispectral imagery. However, it may be the case 

that no pure pixels at the native resolution (0.6 m) are found in a 3.6 m spatial domain, either 

due to very dense vegetation (e.g., lack of bare soil/substrate pixels) or very sparse 

vegetation (e.g., lack of pure vegetation pixels). If that is the case, and assuming that there is 

a linear relationship between NDVI and Trad, we extrapolate to the pure vegetation or soil 

NDVI value the linear fit of the NDVI-Trad pairs within the 3.6 m mixed-pixel to estimate 

the Trad extrapolated value for the pure vegetation (or soil) within the 3.6 m aggregated pixel 

resolution.

Data‑mining sharpening of temperature, TSEB‑2T‑DMS—We made use of a data-

mining fusion algorithm (Gao et al. 2012) to sharpen the original LST imagery (0.60 m) and 

to match the finer spatial resolution of the (VIS/NIR) UAV images (0.1 5 m). This was 

performed under the assumption that sharpened temperature would allow a better 

discrimination between soil and canopy temperatures. Once Trad was produced at 0.15 m, 
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soil and canopy temperatures were then derived at 3.6 m using the same approach described 

above and summarized in Fig. 2.

TSEB submodels

There have been additional modifications and refinements suggested to algorithms of TSEB 

for row crops related to radiation partitioning (Colaizzi et al. 2012a, c) and soil heat flux 

(Colaizzi et al. 2014). A description of the refinements made for application to vineyards is 

described below. One pertains to the radiation modeling similar to Colaizzi et al. (2012a), 

while another incorporates a new within canopy wind profile formulation that accounts for 

non-uniform vertical profile of leaf area (Massman et al. 2017). Finally, the aerodynamic 

soil-resistance term uses new coefficients based on results from Kustas et al. (2016) over 

rough soil surfaces.

Radiation formulation partitioning for row crop submodel—We developed a 

simplified method to derive the clumping index in row crops such as vineyards. The new 

clumping index is based on the geometric model by Colaizzi et al. (2012a, c), but instead of 

considering the crops as elliptical hedgerows, we assumed a rectangular canopy shape, 

which simplifies the trigonometric calculations. A comparison of a different radiation 

models with ground truth radiation measurements described by Parry et al. (2018) supports 

the use of this modified radiation scheme. The clumping index is defined as the factor that 

modifies the leaf area index (LAI) of a real canopy (F) in a fictitious homogeneous canopy 

with LAIeff= ΩF such as its gap fraction is the same as the gap fraction of the actual canopy 

(G(θ,ϕ)). This effective LAI is then used as input in the Campbell and Norman (1998) 

canopy radiative transfer model to estimate soil and canopy net radiation. The inputs needed 

in the revised radiation model are described in Fig. 3.

Wind profile attenuation formulation submodel—The new canopy wind profile 

model proposed by Massman et al. (2017) eliminates the assumptions of uniform vertical 

distribution of leaf area and wind attenuation with depth throughout the canopy layer. 

Therefore, this model provides a more physically realistic method for calculating wind speed 

attenuation for canopies with arbitrary foliage distribution and leaf area. An additional input 

compared to previously used canopy wind profiles, such as Goudriaan (1977) used in the 

TSEB formulation to date, is the relative canopy foliage distribution. In our study site, with 

an overstory comprised of grapevines clumped due to the trellis system, we estimated our 

canopy foliage distribution using the histogram of height fields obtained from the 

photogrammetric dense cloud points. Such foliage distribution could also be estimated using 

full-waveform LiDAR data (Mallet and Bretar 2009) or by fitting the foliage density from 

discrete-return LiDAR systems (Coops et al. 2007). Nieto et al. (2018) found that when 

Massman et al. (2017) wind attenuation model is embedded within TSEB using 2015 in situ 

tower-based land surface temperature data, there is an improvement in the agreement with 

measured H fluxes, specially early in the growing season when canopy grapevine in not fully 

developed.

Soil‑resistance parametrization—Kustas et al. (2016) showed that in the case of sparse 

and heavily clumped vegetation and/or when the soil surface is very rough, the values for the 
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coefficients in the soil and canopy (Rx) aerodynamic resistance parameters for heat transport 

(see Fig. 1) are likely to deviate from the typical values proposed in Kustas and Norman 

(1999) and Norman et al. (1995). For these vineyards, the soil aerodynamic resistance is 

assumed to be affected by the presence of a grass layer which turns to senescent grass 

stubble in June. Therefore, we used in the estimation for RS the value for a rough soil 

surface suggested in Kondo and Ishida (1997) and supported by the results in Kustas et al. 

(2016) for a rocky soil surface.

Soil heat flux—Some of the UAV images were acquired later in the afternoon when the 

assumption of a constant ratio between G and Rn,S is less reliable (Santanello and Friedl 

2003; Colaizzi et al. 2012b). Agam et al. (2018) showed the uncertainties and challenges in 

modeling soil heat flux in this type of open canopy surface. Nevertheless, based on 

comparisons Rn,S between the measured soil heat flux and the estimated Rn,S in Nieto et al. 

(2018), a modified G vs. formulation was adopted that takes into account the daily temporal 

behaviour of the G∕Rn,S ratio. We found that a double asymmetric sigmoid function better 

fits the observations than the sinusoidal function proposed by Santanello and Friedl (2003) 

(Fig. 4).

Estimation of ancillary inputs with UAV data

All spatial distributed inputs (i.e., temperatures and canopy properties) used in TSEB were 

provided at 3.6 m spatial resolution. This magnitude was chosen as the closest multiple of 

the 0.6 m TIR resolution that covers the width between grapevine rows (3.35 m). 

Furthermore, we assume that this spatial resolution is compatible to the micrometeorological 

length scales appropriate for application of the aerodynamic and radiation formulations 

developed for TSEB (Xia et al. 2016). Therefore, it is assumed the calculation of the 

resistances to heat transport, radiation, and wind attenuation within the canopy layer follow 

the TSEB procedure in partitioning of fluxes and temperatures between interrow and vine 

canopy sources.

Leaf Area Index and fractional cover—Multiple linear regression between in situ LAI 

measured with a LiCOR plant canopy analyzer at multiple locations (including southeast to 

northwest transects of both north and south vineyards (Kustas et al. in press)) and metrics 

derived from the UAV imagery (Pope and Treitz 2013; Zhao and Popescu 2009) were used 

to derive spatial maps of LAI. The most significant metric was the NDVI computed from the 

multispectral imagery, but other covariates derived from the 3D point cloud were also 

included in these empirical models. These other 3D structural metrics were especially 

relevant in the flights in May 2016, in which a significant amount of photosynthetically 

active cover crop in the inter-row was present, and hence, NDVI by itself could not fully 

explain the variability in canopy LAI.

On the other hand, fractional cover was estimated as the proportion of grapevine/bare soil 

within each 3.6 m cell, based on a binary supervised classification of the 0.15 multispectral 

imagery. Canopy width, which is used as input for radiation transmission submodel (Fig. 3), 

was then computed as 3.35fC, with 3.35 being the width between rows.
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Canopy height and relative foliage density—Canopy height (hC), required for 

estimating radiation transmission in row crops (Fig. 3) and the relative foliage density 

(fa(z∕hC), required for the Massman et al. (2017) canopy wind attenuation model, were both 

estimated from the 3D UAV photogrammetric point cloud described by Aboutalebi et al. 

(2018). Estimates of hC were derived as the difference between the 99th and 1st percentile 

height of all point clouds within each 3.6 m cell. The relative foliage density, on the other 

hand, was computed as the frequency histogram of all point heights between the 99th and 1st 

percentile, and nor malized so fa zfa, max/ℎC = 1 at the maximum frequency value. A 

percentile was used instead of absolute minimum and maximum heights to remove possible 

outliers in the photogrammetric point cloud.

Results

The UAV spatially distributed TSEB fluxes were evaluated against the measured EC fluxes 

(Fig. 5) after pixel aggregation, considering the estimated pixel contribution from the EC 

footprint at the time of the flight overpass, which was estimated using the two-dimensional 

flux footprint developed by Detto et al. (2006). Although there are diverging arguments on 

which energy balance closure method is more robust, based on current and previous 

measurements observed in arid and more humid and advective environments, we consider 

that λE is not as reliably measured as H, see Li et al. (2005) for a more extensive discussion 

on this topic. Therefore, the lack of closure in the EC fluxes was compensated by adding the 

residual closure to the latent heat flux.

Table 2 lists the error statistics for the estimated turbulent fluxes using the different proposed 

models, while Fig. 5 illustrates the agreement between the various TSEB model outputs and 

the EC measurements at the overpass time. Overall, the models that used the estimated the 

component temperatures soil/interrow and canopy temperatures (TSEB-2T and TSEB-2T-

DMS) yielded a closer agreement with measured H as indicated by the lower RMSE values 

in H (50 and 58 vs. 70 and 78 Wm−2 for TSEB2T and TSEB2T-DMS vs. DTD and TSEB-

PT, respectively). A similar result was obtained for λE, where RMSE in component 

temperature models yielded values lower than 65 Wm−2, while composite-based models 

showed larger RMSE around 80 Wm−2. In particular, TSEB2T with RMSE for H and λE on 

the order of 50 Wm−2, and correlation of 0.8 to 0.9 with observed fluxes, appears to 

outperform all other models. No significant differences were found between models in 

estimating G and Rn, with only TSEB2T giving slightly lower RMSE and bias than the other 

three approaches.

Spatio‑temporal trends in evapotranspiration partitioning

In Fig. 6, the frequency histograms of evapotranspiration partitioning (i.e., λEC∕λE) between 

models for each flight and site are illustrated. Except for the flight in May 2016, the 

distribution of λEC∕λE is considerably different between models. In general, TSEB2T and 

DTD usually compute larger values of λEC∕λE compared to TSEB2T-DMS and TSEB-PT. 

Furthermore, the models compute a higher λEC∕λE for the flights in June and July 2015, for 

the south site.
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Likewise, Fig. 7 shows the comparison of ET partitioning using the UAV imagery and the 

corresponding tower-based TSEB-PT used in Kustas et al. (2018) and Nieto et al. (2018) for 

the 4 flights illustrated in Fig. 6 with the output extracted from the flux tower footprint.

Discussion

The results of this study show a better agreement in turbulent flux partitioning when using 

the component temperatures as input to TSEB, particularly TSEB2T (see Table 2). Although 

this result was also shown in a recent study using satellite data (Song et al. 2016), this was 

not observed by Colaizzi et al. (2012b) using ground-based radiometric temperature 

observations. However, Colaizzi et al. (2012b) pointed out that one of the possible reasons of 

the poorer performance found using TSEB2T was the difficulty in measure TC during the 

earlier stages of crop development (cotton in their case). With the methodology used in our 

study, it is possible to overcome this issue and retrieve TC in sparse canopies, by combining 

multispectral and thermal-infrared data in a contextual algorithm. Finally, since the error 

statistics for the other two fluxes (Rn and G) did not show larger differences among models, 

one could assume that the use of component temperatures made an impact in better 

partitioning the available energy between sensible and latent heat fluxes. Actually, Ortega-

Farías et al. (2016) used UAV thermal-infrared imagery an irrigated olive orchard to measure 

directly TC and TS and found similar errors to our study (56 and 50 for Wm−2 for H and λE, 

respectively) with a patch (or parallel) resistance dual source energy balance model.

For GRAPEX, Xia et al. (2016) also tested TSEB-PT over the same site, in their case using 

manned airborne imagery collected in 2013. They obtained somewhat lower errors than 

those reported here, with 42 and 43 Wm−2 RMSE for H for the North and South sites, 

respectively)and 37 and 51 Wm−2 for λE. One possible explanation might be due to the 

larger uncertainty in Trad when using miniaturized thermal cameras onboard UAV systems, 

which usually require in situ calibration (Torres-Rua et al. 2018; Berni et al. 2009). Indeed, 

when applying TSEB with a time-difference temperature to remove possible bias in Trad, 

there is an improvement in the estimates of H using DTD compared to TSEB-PT. This, 

together with the similar results shown by Hoffmann et al. (2016), seems to confirm the 

utility of using the morning temperature rise of temperatures instead of absolute 

temperatures, as pointed out in other studies (Norman et al. 2000; Anderson et al. 2011; 

Guzinski et al. 2013). Finally, Fig. 5 shows that in this study, a larger range of conditions 

(e.g., Rn ranging from 200 to 700 Wm−2) is observed compared to the data set of Xia et al. 

(2016), which might also be contributing generally larger RMSE in the current study.

Regarding evapotranspiration partitioning between grapevine transpiration and ground 

evaporation, one of the most noticeable issues shown in Fig. 6 is the large difference in 

distribution and average values between the north and south sites during the flights of June 

2015 (Fig. 6c, d) and July 2015 (Fig. 6e, f). Inspecting the observed UAV Trad images for 

these two flights (Fig. 8), one can observe a significant difference in temperatures between 

the north and the south vineyards. These differences are not as evident for the flights in May 

2016 and August 2014, but for June and July, the differences are mostly likely due to 

warmer surface temperatures in the interrow for the south vineyard. This is due to the 

combined effect of a lower vegetation cover and generally drier soil conditions in this 
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younger vineyard which received less irrigation than the more mature north vineyard 

(Knipper et al. 2018). Both factors lead to a reduced soil evaporation and likely a more 

efficient irrigation.

Kustas et al. (this issue) applied the correlation-based flux partitioning method to the high-

frequency eddy covariance data to compare monthly values of λEC∕λE with TSEB estimates 

using tower-based T rad values derived from pyrgeometer upwelling and downwelling 

hemispherical longwave radiation. Monthly values for June and July 2015 were 0.83 and 

0.82 for the north vineyard, while the south vineyard yielded values of 0.84 and 0.9, 

respectively. Pixels extracted from the tower footprint area using TSEB2T yielded values 

most similar values to the findings of Kustas et al. (this issue) (results not shown). However, 

with only two dates and two sites, we cannot reach any definitive conclusion regarding 

partitioning performance. We can also see that the May 2016 acquisition tends to have lower 

λEC∕λE values than the June or July 2015 overpasses, most significantly for TSEB2T. This 

likely due to higher soil moisture from winter rains, a photosynthetically active cover crop 

but a relatively low vine biomass. For June and July acquisitions, the cover crop has gone 

through senescence and has been mowed (grass stubble) with a dry soil in the interrow 

(except for a bare soil area under the grapevine canopies staying relatively wet from frequent 

irrigation) all of which would increase λEC∕λE. The decrease in λEC∕λE value in August is 

not easily understood, although both the tower-based TSEB output and the values derived 

from the UAV imagery are in agreement regarding this trend. Ground and remote-sensing 

observations do indicate a decreasing in LAI from June to August, so this is contributing to 

the reduction in λEC∕λE. The monthly values of λEC∕λE from the correlation-based flux 

partitioning method with the high-frequency eddy covariance data for August 2015 does 

decrease from June and July, but not as markedly [see Kustas et al. (2018)]. That magnitude 

and trend in λEC∕λE observed by Kustas et al. (2018) seem to be in close agreement with 

TSEB2T for the north vineyard and closer to TSEB-PT for the south vineyard.

Figure 9 illustrates the histograms of TC and TS for the flights in July 2015 and August 2014 

at the north site, where the differences in λEC∕λE between TSEB-PT and TSEB2T are 

significant (in July 2015) and are similar (August 2014), respectively. The temperature 

distributions in Fig. 9 confirm that the larger λEC∕λE values from TSEB2T shown in Fig. 6 

are in agreement with a lower TC (i.e., higher λES) and higher Ts (i.e., lower λES) in 

TSEB2T compared to TSEB-PT. Similarly, the close agreement in λEC∕λE between 

TSEB2T and TSEB-PT for the August 2014 flight also agrees with the significant overlap in 

the TC and TS distributions, as illustrated in Fig. 9. Nevertheless, more independent 

measurements of λEC∕λE over the growing season are required to provide a thorough 

evaluation of the reliability of the various TSEB approaches in estimating ET partitioning 

Kustas et al. (2018)

Conclusions

This study explored different approaches to estimate the component soil and canopy 

temperatures to be used in the Two-Source Energy Balance Model. In addition to the 

Priestley–Taylor TSEB described in Norman et al. (1995) and its time-differencing approach 

the Dual-Temperature Difference model (Norman et al. 2000), we proposed two novel 
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methods to derive soil and canopy temperatures from very high spatial resolution imagery, 

only available from airborne manned or unmanned platforms. Results showed that the use of 

a simple contextual algorithm based on the correlation between NDVI and the radiometric 

temperature (TSEB2T) outperformed the other approaches when estimating the bulk 

turbulent fluxes (H and λE).

Due to the increasing interest in deriving crop stress and transpiration metrics for irrigation 

management, a qualitative analysis was done as well to evaluate the robustness of the 

methods in estimating ET partitioning. The TSEB2T approach seemed to produce λEc/λE 
estimates consistent with Kustas et al. (2018) running TSEB-PT using tower-based Trad 

observations for the north vineyard, less so for the south vineyard. However, more 

independent measurements are needed to confirm the utility of the various TSEB approaches 

in partitioning ET to T and E.

Surprisingly, using sharpening of temperatures (TSEB2TDMS) to achieve a more detailed 

map of temperatures (0.15 m) did not provide any greater benefit in estimating λE, although 

yielded similar results to TSEB2T, but in many cases, computed λEc/λE values tend to be 

much lower than the other TSEB approaches (Figs. 6 and 7). It is possible that the DMS-

sharpening method adds noise to the original 0.6 m thermal imagery making the retrieval of 

canopy and soil temperature more uncertainty and consequently less robust. Nevertheless, 

this method might still be useful for sharpening coarser imagery, for instance, when flying at 

higher altitudes to reduce costs, or over crops with narrower canopies

It is worth noting as well that TSEB model assumes a layer of more or less 

photosynthetically active vegetation (controlled by parametrizing its green fraction, fg), with 

a bare soil (or at least non-photosynthetic active) layer underneath. This issue presents a 

challenge in retrieving the soil and canopy temperatures and the λE partitioning when there 

is a photosynthetically active cover crop layer in the inter-row. Such is the case in many 

managed vineyards in California, where they use a crop cover to deplete the soil moisture 

after the winter rains, or in natural environments such as wooded savannahs having a grass 

understory. This study assumed that the crop cover contribution to the water fluxes is 

negligible, and thus, the crop was included in an bulk layer together with the underlying soil. 

However, in more humid areas, the water flux rate from the crop cover could be larger, likely 

making TSEB flux estimates more uncertain. Therefore, future research is planned for 

implementation of a simplified three-source model for flux partitioning between grapevine, 

crop cover, and soil.

Finally, a question that still remains unanswered and thus is a topic for future research is the 

number of flights and dates for operational irrigation scheduling, which would depend as 

well on grapevine variety and irrigation management strategy (Bellvert et al. 2016). 

Nevertheless, we think that these measurements should be complemented in all cases by 

satellite data (see Knipper et al. 2018), and the application of the multi-scale data fusion 

system in vineyards has been shown to provide significant information about the spatial 

variability in ET at 30 m resolution on a daily basis which is critical for accurate water use 

accounting (Semmens et al. 2016; Knipper et al. 2018). Therefore, the potential synergy of 

the unique information that can be provided by satellite (daily ET) and by airborne systems 
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(canopy level ET and E and T partitioning) needs to be thoroughly investigated to determine 

when there are situations, particularly for high-valued crops, that would greatly benefit crop 

yield and sustainability from combining information from both platforms.
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Appendix

A TSEB model

The basic equation of the energy balance at the surface can be expressed following Eq. 4:

Rn ≈ H + λE + G (4a)

Rn,S ≈ HS + λES + G (4b)

Rn,C ≈ HC + λEC (4c)

with Rn being the net radiation, H is the sensible heat flux, λE is the latent heat flux or 

evapotranspiration, and G is the soil heat flux. “C” and “S” subscripts refer to canopy and 

soil layers, respectively. The symbol “≈” appears, since there are additional components of 

the energy balance that are usually neglected, such as heat advection, storage of energy in 

the canopy layer, or energy for the fixation of CO2 (Hillel 1998)

The key in TSEB models is the partition of sensible heat flux into the canopy and soil layers, 

which depends on the soil and canopy temperatures (TS and TC, respectively). If we assume 

that there is an interaction between the fluxes of canopy and soil, due to an expected heating 

of the in-canopy air by heat transport coming from the soil, the resistances network in TSEB 

can be considered to be in series. In that case, H can be estimated as in Eq. 5 (Norman et al. 

1995, Eqs. A1–A3):

H = HC + HS = ρairCp
TAC − TA

Ra
= ρairCp

TC − TAC
Rx

+ TS − TAC
Rs

, (5)

where ρair is the density of the air (kghboxm−3),Cp is the heat capacity of the air at constant 

pressure (Jkg−1K−1), and TAC is the air temperature at the canopy interface, equivalent to the 

aerodynamic temperature T0, computed with Eq. 6 (Norman et al. 1995, Eq. 4):
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TAC =

TA
Ra

+ TC
Rx

+ TS
Rs

1
Ra

+ 1
Rx

+ 1
Rs

. (6)

Here, Ra is the aerodynamic resistance to heat transport (sm−1),Rs is the resistance to heat 

flow in the boundary layer immediately above the soil surface (sm−1), and Rx is the 

boundary layer resistance of the canopy of leaves (sm−1). The mathematical expressions of 

these resistances are detailed in Eq. 7 and in Norman et al. (1995) and Kustas and Norman 

(2000) and discussed in Kustas et al. (2016):

Ra =
ln zT − d0

z0H
− Ψℎ

zT − d0
L + Ψℎ

z0H
L

κ′u*
(7a)

Rs = 1
c TS − TA

1/3 + bus
(7b)

Rx = C′
LAI

lw
Ud0 + z0M

1/2
, (7c)

where u*is the friction velocity (ms−1) computed as

u* = κ′u
ln zu − d0

z0M
− Ψm

zu − d0
L + Ψm

z0M
L

.
(8)

In Eq., zu and zT are the measurement heights for wind speed u (ms−1) and air temperature 

TA (K), respectively. d0 is the zero-plane displacement height, and z0M and z0H are the 

roughness length for momentum and heat transport, respectively (all those magnitudes 

expressed in m), with z0H = z0M. exp (−kB−1) In the series version of TSEB, z0H is assumed 

equal to z0M, since the term Rx already accounts for the different efficiencies between heat 

and momentum transport (Norman et al. 1995), and therefore, kB−1 = 0. The value of κ′ = 

0.4 is the von Karman’s constant. The ψm(ζ) terms in Eqs. 7a and are the adiabatic 

correction factors for momentum. The formulations of these two factors are described in 

Brutsaert (1999) and Brutsaert (2005). These corrections depend on the atmospheric 

stability, which is expressed using the Monin–Obukhov length L (m):

L =
−u*

3ρair
kg H / TACp + 0.61E , (9)

where H is the bulk sensible heat flux (Wm−2), E is the rate of surface evaporation (kgs−1), 

and g is the acceleration of gravity (ms−2)

The coefficients b, c in Eq. 7b depend on turbulent length scale in the canopy, soil-surface 

roughness, and turbulence intensity in the canopy, which are discussed in Sauer et al. (1995), 
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Kondo and Ishida (1997) and Kustas et al. (2016). C′ is assumed to be 901/2 m−1 and lw is 

the average leaf width (m)

B Modifications to TSEB model for row crops

B.1 Radiation transmission in row crops

The clumping index for row crops is defined as the factor that modifies the leaf area index of 

a real canopy (F) in a fictitious homogeneous canopy with LAIeff˙ = ΩF such as its gap 

fraction is the same as the gap fraction of the real-world canopy (G(θ,ϕ))

Ω(θ, ϕ) = −log[G(θ, ϕ)]
κbe(θ)F , (10)

where κbe(θ) is the beam extinction coefficient through a plant with an ellipsoidal 

inclination distribution (Campbell 1986, 1990), θ is the zenith incidence angle, and Ψ is the 

relative azimuth angle between the incidence beam and the row direction

Our modelled real canopy consists of a horizontally infinite long prism with a total height hc 

(i.e., the canopy height) and a width wc (i.e., canopy width) that is placed above the ground 

at hb (i.e., the height of the first living branch). This canopy contains finite-sized leaves 

randomly placed (no clumping within the canopy) oriented according to a ellipsoidal leaf 

angle distribution function (Campbell 1990) with a total leaf area index F (Fig. 3).

Then, the real canopy gap fraction consists of the sunlit part of the bare soil that is not 

shaded by the canopy plus the gaps caused by the solar beam passing through the crop 

canopy (Eq. 11):

G(θ, ϕ) = fsc(θ, ϕ)exp −κbe(θ)F + 1 − fsc(θ, ϕ) . (11)

The solar canopy view factor fsc(θ,ϕ) is the fraction of soil that is cast by shadows (Colaizzi 

et al. 2012a) and in our case is estimated as

fsc(θ, ϕ) = wc + ℎc − ℎb tanθ sinϕ
L , (12)

where L is the row separation (m). For a vertical projection (θ= 0), Eq. 12 reduces to wc∕L, 

the fractional cover.

B.2 Massman et al. (2017) wind attenuation profile

Compared to previously used canopy wind profiles such as Goudriaan (1977) or Massman 

(1987), the additional key input required in Massman et al. (2017) wind attenuation model is 

the relative canopy foliage distribution, computed as in Eq. 13:

ℎa(ξ) = PAI fa(ξ)
∫0

1fa ξ′ dξ′
, (13)
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where 
fa(ξ)

∫0
1fa ξ′ dξ′

 is the relative canopy shape (i.e.,∑
fa(ξ)

∫0
1fa ξ′ dξ′

= 1 and ξ = z/hc and PAI is 

the plant (leaves+stems) area index. Massman et al. (2017) modelled fa(ξ) as a combination 

of asymmetric Gaussian curves, but fa(ξ) can also be estimated as a continuous curve 

obtained from canopy structure measurements or three-dimensional cloud points, such as in 

Nieto et al. (2018).

The canopy wind speed profile is then the product of two terms: one logarithmic profile (Ub) 

that is dominant near the ground and a second a hyperbolic cosine profile (Ut) that 

dominates near the top of the canopy, where the canopy foliage distribution plays a major 

role. Ancillary input in Ut is the the drag coefficient of the individual foliage elements (Cd), 

which is usually considered equal to 0.2 (Massman et al. 2017; Goudriaan 1977). Massman 

et al. (2017) model has as well the ability to consider variations of the drag coefficient due to 

either wind sheltering between foliage elements, or vertical variations independently of wind 

blocking. This effect can usually be disregarded in most canopies (Massman et al. 2017), so 

was it in this study.
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Fig. 1. 
Schematic representation of the two-source energy balance model
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Fig. 2. 
Example of contextual NDVI-Trad scatterplot used for finding canopy and soil temperatures 

for a 3.6 m grid. Each point corresponds to a 0.6 m pixel NDVI-Trad pair within a 3.6 m 

spatial domain. Canopy (soil) temperatures are retrieved first by averaging the Trad values 

above (below) a pure vegetation (soil) NDVI threshold, which corresponds to the greyed 

areas in the plot. If no pure pixels are found in those areas, the canopy (soil) temperature is 

found by extrapolating the linear fit between all NDVI-Trad pairs in the domain to the pure 

vegetation (soil) NDVI threshold
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Fig. 3. 
Canopy structure model for estimating the clumping index for incident radiation. hc and hb 

are the heights for the top and the base of the green canopy, respectively; wc is the canopy 

average width; F is the local leaf area index; L is the width between rows; and fsc, is solar 

canopy view factor, i.e., the fraction of soil that is cast by shadows
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Fig. 4. 
Empirical G∕Rn,S curve fit as a function of time of the day.Red line corresponds to the fitted 

Santanello and Friedl (2003), and blue line corresponds to the fitted curve used in this study. 

Following Colaizzi et al. (2012b), the regression curves were fitted only with the cases in 

which Rn,S > 0
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Fig. 5. 
Scatterplot of observed vs. predicted fluxes using the different TSEB model approaches. 

(a)TSEB-PT. (b)DTD. (c)TSEB-2T. (d)TSEB-2T-DMS
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Fig. 6. 
Frequency histograms for the modelled latent heat flux partitioning (λEC∕λE) with vertical 

dashed lines correspond to the average value of the distribution. Left panels correspond to 

the mature grapevine site (north), and right panels show the young grapevine site (south). 

Figures are sorted by month instead of chronologically
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Fig. 7. 
Footprint average of ET (λE/λE) partitioning for the different models tested (colored points) 

compared to the tower-based TSEB-PT used in Kustas et al. (this issue), (black line). Left, 

north vineyard. Right, south vineyard

Nieto et al. Page 27

Irrig Sci. Author manuscript; available in PMC 2020 April 30.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 8. 
Measured radiometric temperatures with the UAV system for the flights corresponding to 

Fig. 6. Two black outlines represent both vineyard limits, whereas the green stars show the 

location of the eddy covariance towers
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Fig. 9. 
Frequency histograms for the component temperatures (TC and TS) estimated in TSEB-PT 

(blue histogram) and TSEB2T (red histogram).Vertical dashed lines correspond to the 

average value of the distribution.
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