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Abstract

Purpose: Emergence of mismatch repair (MMR) deficiency is a frequent mechanism of acquired 

resistance to the alkylating chemotherapeutic temozolomide (TMZ) in gliomas. Poly(ADP-ribose) 

polymerase inhibitors (PARPi) have been shown to potentiate TMZ cytotoxicity in several cancer 

types, including gliomas. We tested whether PARP inhibition could re-sensitize MSH6-null MMR-

deficient gliomas to TMZ, and assessed the role of the base excision repair (BER) DNA damage 

repair pathway in PARPi-mediated effects.

Methods: Isogenic pairs of MSH6 wild-type and MSH6-inactivated human glioblastoma (GBM) 

cells (including both IDH1/2 wild-type and IDH1 mutant), as well as MSH6-null cells derived 

from a patient with recurrent GBM were treated with TMZ, the PARPi veliparib or olaparib, and 

combination thereof. Efficacy of PARPi combined with TMZ was assessed in vivo. We used 

genetic and pharmacological approaches to dissect the contribution of BER.

Results: While having no detectable effect in MSH6 wild-type GBMs, PARPi selectively 

restored TMZ sensitivity in MSH6-deficient GBM cells. This genotype-specific restoration of 

activity translated in vivo, where combination treatment of veliparib and TMZ showed potent 

suppression of tumor growth of MSH6-inactivated orthotopic xenografts, compared with TMZ 

monotherapy. Unlike PARPi, genetic and pharmacological blockage of BER pathway did not re-

sensitize MSH6-inactivated GBM cells to TMZ. Similarly, CRISPR PARP1 knockout did not re-

sensitize MSH6-inactivated GBM cells to TMZ.

Conclusions: PARPi restoration of TMZ chemosensitivity in MSH6-inactivated glioma 

represents a promising strategy to overcome acquired chemoresistance caused by MMR 
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deficiency. Mechanistically, this PARPi-mediated synthetic phenotype was independent of BER 

blockage and was not recapitulated by loss of PARP1.
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Introduction

Mismatch repair (MMR) is one of the critical pathways responsible for repair of base-base 

mismatches arising during DNA replication or otherwise caused by DNA damage. MMR 

deficiency resulting from inactivating MMR gene mutations not only predisposes cells to 

tumorigenesis, but also affects a tumor cell’s response to DNA damaging agents. MMR 

deficiency causes drug resistance to alkylating agents that mediate the formation of O6 

methylguanine-containing mismatches(1). Mechanistically, the recognition of alkylator-

induced O6meG:T mismatches by the multiprotein complex MutSα (comprised of the 

heterodimer of MSH2 and MSH6) is thought to result in repeated replacement of the 

mispaired thymidine, rendering a futile cycle of replication/repair, and ultimately 

programmed cell death(2,3). In the absence of a functional MMR response, O6-meG:T is not 

targeted for this “futile repair” cycle, and the cells avoid programmed cell death and survive, 

albeit with the accumulation of a massive number of DNA mis-pairs, resulting in a 

characteristic cytidine-to-thymidine “hypermutator” phenotype(4).

Temozolomide (TMZ) is the most commonly used alkylator for gliomas, with significant 

clinical activity in both lower-grade tumors carrying isocitrate dehydrogenase 1 (IDH1) 

mutations(5,6), as well as primary IDH1-wild-type glioblastoma (GBM) exhibiting 

methylation of the O6-methyguanine DNA methyltransferase (MGMT) promoter(7,8). 

Unfortunately, prolonged treatment with TMZ is often followed by the development of 

acquired resistance to TMZ, contributing to malignant progression, tumor recurrence and 

mortality. Inactivation of mismatch repair (MMR) genes, i.e., MSH2, MSH6, MLH1 and 

PMS2, has been identified in both IDH mutant(9,10) and IDH wild-type(11,12) recurrent 

malignant gliomas that have been previously treated, whereas these alterations are extremely 

rare in primary tumors(13,14). Studies have identified MSH6 inactivation as a key molecular 

mechanism of acquired TMZ resistance in glioma cells(15), and strong association between 

TMZ treatment and the development of MMR deficiency in patient tumors(16). 

Furthermore, MMR alterations after TMZ treatment of low-grade gliomas are considered a 

driver for malignant progression to higher grade and a post-TMZ hypermutator 

phenotype(14).

To potentiate TMZ cytotoxicity, combination therapies that modulate DNA repair pathways 

have been evaluated as a potential strategy to overcome TMZ resistance. TMZ induces not 

only Ome6G but also large numbers of N3-methyladenine and N7-methylguanine adducts 

that are rapidly processed by the base excision repair (BER) DNA repair pathway. N3-

methyladenine and N7-methylguanine lesions activate the nuclear enzyme poly (ADP-

ribose) polymerases (PARPs) which synthesize poly(ADP-ribose) chains (PARylation) and 

facilitate the recruitment of XRCC1, pol-beta and DNA ligase to the DNA strand break sites, 
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thus playing an critical role in the initiation of BER machinery. PARPi combinations have 

been shown to increase TMZ sensitivity in the treatment of various cancer cell types(17–20), 

and are under active investigation in IDH wild-type(21,22) and IDH mutant(23,24) gliomas. 

Because of the documented role of PARP in single-strand break repair and BER, PARP 

inhibitor (PARPi) mediated potentiation of TMZ sensitivity has been speculated to be due to 

its inhibition of BER, nevertheless direct evidence is lacking.

Here, we show that PARPis restore TMZ sensitivity in MSH6-inactivated, MMR-deficient 

TMZ resistant gliomas (both IDH wild-type and IDH mutant) in vitro and in vivo. Notably, 

this restoration effect is selectively observed in MSH6-inactivated cells, representing a 

genotype-specific synthetic phenotype. Furthermore, PARPi mediated restoration of TMZ 

sensitivity is independent of BER, as we show that genetic and pharmacological blockage of 

BER pathway enzymes and PARP1 knock-out fail to recapitulate this phenotype.

Materials and Methods

Cell and Compounds

Human glioblastoma cell line LN229 was obtained from the American Type Culture 

Collection (ATCC, Manassas, VA) and was authenticated in 2017 by comparison of STR 

profile to the ATCC public dataset. Gli36 was provided by Dr. Khalid Shah, Boston, MA. 

Normal Human Astrocyte (NHA) was purchased from ScienCell. LN229 and NHA were 

maintained in Delbecco’s modified Eagle medium (DMEM) with 4.5g/L glucose, L-

glutamine and sodium pyruvate supplemented with 10% fetal bovine serum and 1% 

Penicillin/Streptomycin/Amphotericin. Patient-derived glioma neurosphere lines (MGG4, 

MGG123, MGG152) were established from patient tumors and cultured in serum-free neural 

stem cell medium as described previously.(25–27) Temozolomide and Methoxamine were 

purchased from Sigma. Veliparib was from APE-BIO, Olaparib was from Selleckchem and 

APE inhibitor was from EMD MILLIPORE.

Cell viability assay

Cells were seeded in 96-well plates at 1,000–2,000 cells per well. After overnight 

incubation, compounds were serially diluted and added to wells. Cell viability was evaluated 

on day 6 by Cell Titer Glo (Promega) according to the manufacturer’s instruction.

Western blot analysis

Cells were lysed in radioimmunoprecipitation (RIPA) buffer (Boston Bioproducts) with a 

cocktail of protease and phosphatase inhibitors (Roche). Protein (10–15 ug) was separated 

by 4–20% SDS-PAGE and transferred to polyvinylidene difluoride membranes by 

electroblotting. After blocking with 5% non-fat dry milk in TBS-T (20 mM Tris [pH,7.5] 

150mM NaCl, 0.1% Tween20) for 1–2 hours at room temperature, membranes were 

incubated with primary antibody at 4°C overnight. Membranes were washed in TBS-T and 

incubated with appropriate peroxidase conjugated secondary antibodies for 1 hour at room 

temperature. Signals were visualized using the enhanced chemiluminescense (ECL) kit 

(Amersham Bioscience). Primary antibodies used were: MSH6 (#5425), XRCC1 (#2735) 

(Cell Signal Technology), PARP1 (sc-8007)(Santa Cruz) and β-actin (A1978)(Sigma).
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MSH6-shRNA, XRCC1-shRNA and PARP1-knockout cell lines generation

Lentivirus vector plasmids containing shRNA sequences for MSH6 (TRCN0000286578 

shMSH6no.1) and XRCC1 (TRCN0000007913 no.1, TRCN0000011211 no.2), and non-

targeting shRNA sequence (SHC002 shNS) were obtained from Sigma. shMSH6no.2, a 

second shRNA for MSH6, was from Dharmacon (V3LHS 318784). For PARP1 knockout, 

lentivirus vector plasmids containing SpCas9 (pLentiCRISPR v2) with/without sgRNA 

sequences for PARP1 (No.1:TTCTAGTCGCCCATGTTTGA, No.2: 

CCCCTTGCACGTACTTCTGT) were obtained from GenScript. To generate lentiviral 

particles, 293T cells were transfected with a lentiviral plasmid, packaging plasmid (pCMV-

dR8.2), and envelope plasmid (pCMV-VSV-G) with FuGene (Promega). Cells were infected 

with lentivirus in the presence of polybrene (8 μg/ml) for 8 hours. Three days later, cells 

were selected with puromycin (0.6 μg/ml for LN229, 0.2 μg/ml for Gli36, MGG4 and 

MGG152) for 3–4 days before use. Knockdown and knockout were confirmed by western 

blot.

Animal Study

Five million LN229-shNS cells and LN229-MSH6sh1 cells were implanted subcutaneously 

into the flank of 7-week-old female nude mice (NCI). When the maximum diameter of 

established tumors reached 5 mm, mice were randomized and treated with PBS (n=6), TMZ 

(n=6, 50mg/kg i.p.), Veliparib (n=6, 50mg/kg oral gavage), TMZ plus Veliparib (n=6) 5 

consecutive days per week for 2 cycles with one week interval before the second treatment 

cycle. TMZ was dissolved in DMSO, diluted with PBS and injected intraperitoneally. 

Veliparib was dissolved in DMSO, diluted with 10% 2-hydroxyl-propul-β-dextrine/PBS and 

administrated orally. Tumor diameters were measured twice a week using a digital caliper. 

Tumor volumes were calculated using the formula: tumor volume (mm3) = tumor length × 

tumor width2 /2. Orthotopic model of MSH6-deficient glioblastoma was established by 

intracerebral implantation of 5×105 LN229-MSH6sh1 cells in 7-week-old female nude mice 

(NCI) as previously described.(26) Seven days later, mice were randomized and treated with 

PBS (n=5), TMZ (n=5), TMZ plus Veliparib (n=5) at the same doses and schedules as the 

flank model. Animals were euthanized when significant deterioration of neurological or 

general conditions was noted. All animal procedures were approved by Institutional Animal 

Care and Use Committee at Massachusetts General Hospital.

Statistical Methods

The Prism (GraphPad) software package was used for statistical analysis. Comparisons 

between 2 groups were done with Student t-test (unpaired). Differences of tumor volumes 

were analyzed by non-parametric Mann-Whitney test. Survival analysis was performed 

using the Kaplan-Meier method, and the log-rank test (two-sided) was used to compare 

survival differences between treatment arms. P values less than 0.05 were considered 

statistically significant.
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RESULTS

PARP inhibitors restored TMZ sensitivity in MSH6-inactivated glioblastoma cell lines and 
patient-derived MSH6 deficient glioblastoma cells.

We used lentivirus vectors expressing MSH6 shRNA or control (non-targeting, NS) shRNA 

to establish an isogenic model system of MSH6 inactivation using GBM cell lines (LN229 

and Gli36) and patient-derived GBM sphere lines, (MGG4, primary IDH1 wild-type GBM; 

and MGG152, recurrent, IDH1 mutant GBM)(28)(Figure 1A–C, Supplementary Fig.1D). As 

expected, these shMSH6 cell lines showed TMZ resistance across a wide range of TMZ 

doses (Supplementary Fig. 1A–D). MSH6 knockdown did not alter sensitivity to PARPi 

monotherapy in LN229 (Figure 1D). Combination treatment with TMZ and PARPi, at 

PARPi doses only marginally (<20%) cytotoxic as monotherapy, greatly restored TMZ 

sensitivity across shMSH6 GBM cell lines (Figure 1A–C, Supplementary Fig.1E). 

Importantly, PARPis had no, or only marginal, additional effects on TMZ-induced reduction 

of cell viability in MSH6 proficient control (shNS) GBM cells (Figure 1A–C, 

Supplementary Fig.1E). Testing of a second independent shRNA sequence targeting MSH6 

in LN229 and Gli36 showed induction of TMZ resistance and similar restoration of TMZ 

sensitivity by PARPis, suggesting on-target effects of the two shRNAs (Supplementary Fig. 

1F–I). The second shRNA for MSH6 also confirmed that MSH6 silencing did not 

meaningfully alter response to PARPis (Supplementary Fig. 1J). Next, we tested PARPis in a 

patient-derived GBM neurosphere line (MGG123) that was derived from a GBM that 

recurred after TMZ treatment. We confirmed that MGG123 had loss of MSH6 and exhibited 

high resistance to TMZ (Figure 1E). In accord with the results with MSH6 knockdown 

GBM cells, PARPi treatment restored response to TMZ in MSH6 deficient MGG123 even 

when PARPi monotherapy had a marginal effect (Figure 1F). The combination of TMZ and 

veliparib had only modest toxicity for proliferating human normal astrocytes compared with 

TMZ monotherapy (Figure 1G).

Veliparib combination with TMZ inhibits tumor growth of MSH6-deficient glioblastoma 
compared with TMZ monotherapy

To assess the effects of veliparib combination with TMZ on MSH6-deficient GBM in vivo, 

we treated nude mice bearing LN229-shNS and LN229-shMSH6 flank tumors with vehicle, 

veliparib alone, TMZ alone, or TMZ combination with veliparib. Veliparib alone had no 

effect on tumor growth compared to vehicle in both LN229-shNS and LN229-shMSH6 

tumor models, consistent with the results obtained in vitro. Both TMZ and combination 

showed potent inhibition of LN229-shNS tumor growth – adding veliparib to TMZ provided 

no significant therapeutic benefit to TMZ alone (Figure 2A). In the LN229-shMSH6 tumor 

model, however, the combination treatment of veliparib with TMZ significantly inhibited 

tumor outgrowth better than TMZ monotherapy. (*P=0.019, day32 TMZ vs TMZ + 

veliparib, student t-test), (Figure 2A). We further tested the effect of veliparib combination 

with TMZ in mice harboring intracerebral LN229 MSH6-knockdown GBM xenografts. We 

omitted the group of veliparib monotherapy given the lack of efficacy in flank tumor models. 

One week after intracerebral implantation, animals started receiving TMZ alone or TMZ 

combined with veliparib treatment. Veliparib combination with TMZ resulted in an 

extension of animal survival (P=0.02; long lank test), compared with TMZ alone that did not 
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extend survival in this model (Figure 2B). During the treatment, animals receiving the 

regimens involving TMZ lost 10% body weight, however they recovered promptly after 

completion of treatment. Combining veliparib with TMZ did not confer additional toxicity 

as the body weights of TMZ and combination groups were comparable (Figure 2C).

PARP inhibitor restoration of TMZ sensitivity is independent of BER signaling blockage.

PARPis including veliparib potentiate TMZ-induced cytotoxicity in diverse tumor types(17–

20). A proposed mechanism of this PARPi effect is mediated via inhibition of DNA single-

strand break (SSB) repair via interfering with BER pathway (Figure 3A). The BER 

inhibitors Methoxyamine (MeOX) and APE inhibitor (APEi) have been reported to 

potentiate the cytotoxicity of alkylating agents including TMZ by disrupting BER through 

an accumulation of mutagenic and toxic apurinic/apyrimidinic (AP) sites (APEi) or 

preventing AP endodeoxyribonuclease cleavage (MeOX)(29–32)(Figure 3A). Therefore, we 

tested APEi and MeOX to determine whether these BER pathway inhibitors could 

recapitulate the observed PARPi mediated re-sensitization to TMZ in LN229-shMSH6 and 

Gli36-shMSH6 cells. APEi alone was less cytotoxic to MSH6 silenced Gli36 cells as 

compared with control cells (Figure 3D). To our surprise, unlike PARPi, neither of these 

BER repair-modulating drugs re-sensitized MSH6 knockdown cells to TMZ, even at 

concentrations that displayed signs of toxicity as a single agent (Figure 3B–E).

The scaffold protein XRCC1 plays a major role in coordinating BER by interacting with 

polymerase beta, PARP and DNA ligase III at sites of DNA damage (Figure 3A). XRCC1-

deficient mouse embryonic fibroblasts have been shown to exhibit hyper-sensitivity to 

alkylating agents (33). We evaluated whether shRNA knockdown of XRCC1 altered TMZ 

sensitivity in our isogenic GBM cells with and without MSH6 knockdown (Figure 3F). 

XRCC1 knockdown did not alter the TMZ resistant phenotype of shMSH6 GBM cells and 

this was consistent with two independent shRNA constructs (Figure 3G,H, Supplementary 

Fig. 2A, B). With intact MSH6, XRCC1 silencing rendered GBM cells slightly but 

significantly less responsive to TMZ (Figure 3G,H, Supplementary Fig. 2A, B), unlike what 

was reported with Xrcc1−/− mouse embryonic fibroblasts (33,34). XRCC1 knockdown did 

not significantly alter response to PARPi in MSH6 wild-type and knockdown GBM cells. 

(Figure 3GH, Supplementary Fig. 2C). Notably however, both veliparib and olaparib 

retained the ability to restore TMZ sensitivity in GBM cells that had dual knockdown of 

MSH6 and XRCC1 (Figure 3G,H); we did not observe additional therapeutic benefit by 

silencing XRCC1. These results indicate that PARPi restoration of TMZ sensitivity in MSH6 

inactivated GBM cells was not due to its blockage of BER signaling.

PARP inhibitor restoration of TMZ sensitivity is independent of PARP1

The biological effects mediated by PARPis are distinct from PARP knockdown, and PARPis 

often confer greater cytotoxicity than PARP1 knockdown when combined with TMZ 

(35,36). PARPis physically impair the dissociation of PARP from DNA, which is required 

for the proper progress of repair process, and this “PARP trapping” at DNA damage sites has 

been shown, in certain contexts, to be more cytotoxic than persistent SSBs in the absence of 

PARP(37). PARPi have varying degrees of “PARP trapping” (olaparib greater than 

veliparib), and the possible involvement of this mechanism motivated us to test whether 
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PARP1 knockdown restores TMZ sensitivity in MSH6-deficient cells as was observed with 

PARPis.

We used CRISPR-Cas9 lentivirus to inactivate PARP1 in our isogenic LN229 cells with and 

without MSH6 inactivation (Figure 4A). Two independent sgRNAs for PARP1 consistently 

rendered shMSH6 GBM cells less responsive to PARPis, reflecting loss of their main target 

(Figure 4B). Strikingly, PARP1 knockout did not alter responsiveness to TMZ in both MSH6 

intact and MSH6 deficient GBM cells (Figure 4C, D). Furthermore, analogous to what was 

observed with BER inhibitors, both veliparib and olaparib re-sensitized GBM cells with 

double silencing of MSH6/PARP1 to TMZ (Figure 4E, F). These results show that PARP1 

knockout does not recapitulate the PARPi-mediated effect of TMZ re-sensitization in MSH6 

deficient GBM cells.

DISCUSSION

Multiple National Cancer Institute (NCI) consortia sponsored trials are investigating the 

potential efficacy of PARPi in combination with TMZ in both newly-diagnosed 

(NCT02152982, NCT00770471) and recurrent (NCT01026493, NCT01390571) GBM (38). 

Notably, preclinical studies have shown that gliomas can have upfront variability to PARPi 

when combined with TMZ, with TMZ-sensitive MGMT promoter methylated GBMs noted 

to be responders(21,22,39). It is important to understand mechanisms underlying the 

potentiation effect by PARPi and to identify molecularly defined subsets of gliomas that 

likely benefit from this combination treatment.

We here show that PARPi restores TMZ cytotoxicity selectively in GBM cells characterized 

by MMR-mediated TMZ resistance, both in vitro and in vivo. MSH6 knockdown did not 

alter sensitivity to PARPi, and PARPi monotherapy itself had little effect in either MMR 

deficient or wild-type cells. Therefore, enhanced cytotoxicity was not the result of a 

traditional synthetic lethal interaction, as described previously for PARP inhibition and 

homologous recombination repair deficiency resulting from BRCA gene alterations(40) or 

IDH mutations(23,24). Our findings are consistent with reports showing that PARPi 

potentiation of TMZ cytotoxicity is limited to tumors that are intrinsically resistant to TMZ 

or have acquired resistance(41,42). Our studies conclusively demonstrate, in experiments 

using isogenic cell models across a large panel of GBM lines, and in an orthotopic model, 

that MMR deficiency arising in gliomas from MSH6 inactivation is a unique molecular 

alteration predicting PARPi restoration of TMZ chemosensitivity. Importantly, relatively low 

concentrations of PARPi were sufficient to re-sensitize MMR-deficient glioma cells to TMZ, 

contrasting to negligible combination effect seen in MMR-proficient control cells at the 

same PARPi concentrations. Together with significant in vivo efficacy and safety in our 

orthotopic mouse model, our results suggest a wide therapeutic window that could be 

clinically meaningful for dosing regimens that otherwise circumvent toxicity issues reported 

in early veliparib combination trials (43).

From a mechanistic standpoint, it is well-established that the majority of TMZ-induced 

adducts are N3-methyladenine and N7-methylguanine which are rapidly processed by BER 

machinery, whereas O6meG adducts, despite accounting for only 5% of total lesions, are 
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responsible for TMZ cytotoxicity. In the combination treatment of PARPi with TMZ, PARPi 

has been postulated to impair BER by inhibiting PARP-mediated PARylation and cause 

cytotoxicity through increasing N3-methyladenine and N7-methylguanine-induced damages 

(44,45). In accord with this working hypothesis, alterations to BER enzymes result in cell 

death by an accumulation of toxic and mutagenic BER intermediates after treatment with 

alkylating agents(46). Disruption of BER via APE inhibition and XRCC1 inactivation might 

be expected to therefore lead to the restoration or potentiation of TMZ sensitivity. However, 

our results show that BER perturbation by APE inhibition and XRCC1 inactivation does not 

recapitulate the effects of PARPis in MMR deficient, TMZ-resistant glioma cells. 

Furthermore, PARPi restoration of TMZ responsiveness was not affected by XRCC1 genetic 

inactivation, and there was no benefit in combining PARPi and XRCC1 depletion, consistent 

with the combination effects of PARPi 4-AN and TMZ seen in Xrcc1−/− mouse embryonic 

fibroblasts(34). Together, these data strongly suggest that PARPi-mediated re-sensitization to 

TMZ in MMR-deficient glioma cells is independent of BER pathway inactivation.

PARPi exert anti-cancer effects via not only catalytic inhibition of PARPs but also trapping 

PARPs on sites of DNA damage, and these diverse PARPi functions explain why PARPi and 

PARP1 knockout often have different biological effects. Indeed, we observed a striking 

discrepancy between the phenotypes of PARPi when compared to genetic PARP1 knockout 

as only the former not the latter sensitized MSH6 deficient GBM cells to TMZ. We found 

that PARPi (particularly olaparib) combination therapy with TMZ for MMR deficient 

glioma does not appear to depend on the expression levels of PARP1, as a mediator of 

PARP-trapping damage signaling, further suggesting that PARP1 trapping may not play a 

major role in this phenotype. Notably, veliparib, which has a lesser trapping ability than 

olaparib, was still capable of restoring sensitivity to TMZ in the absence of PARP1. The 

known targets of veliparib and olaparib include PARP1 and 2 (47,48), but these inhibitors 

could cross-target other PARP enzymes, as has been reported for the ability of olaparib to 

inhibit PARP3 (49). Thus, while catalytic inhibition of PARP1 alone is not sufficient, 

catalytic inhibition and/or selective trapping of other PARP family members is necessary for 

producing chemo-sensitization of MMR-deficient glioma cells. Although the functions of 

many of seventeen known PARP family members have not been characterized, PARP2, 3 

and 10 (50,51) have been shown to participate in DNA damage repair. These PARPs are 

potential candidate mediators of the observed PARPi-mediated restoration of TMZ 

sensitivity in MMR-deficient cells.

In summary, we demonstrate that PARPi combination with TMZ selectively restores 

chemosensitivity in MSH6-inactivated, MMR-deficient GBM cells. These results identify a 

genetically-defined subgroup of recurrent gliomas which may benefit from combination 

therapy of TMZ and PARPis. Our findings therefore support the assessment of TMZ 

combination with veliparib, or olaparib which is also brain penetrant(52), in glioma patients 

selected for MMR deficiency. From a mechanistic standpoint, we also show that this 

restoration effect does not require PARP1 and is independent of BER pathway, which has 

significant implications for our understanding of the pathways underlying the combination 

treatment effect. Further studies are needed to understand the precise mechanisms of PARPi 

chemo-restoration to dissect the functions of PARPs that are targeted by this PARPi effect.
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Translational Relevance:

There is a keen interest to investigate the efficacy of PARPi combination with TMZ in 

gliomas, and multiple National Cancer Institute (NCI) consortia sponsored trials are 

underway. However, preclinical studies in gliomas have shown variable responses to the 

combination treatment, and molecular biomarkers to identify subgroups which benefit 

from PARPi combination with TMZ are still elusive. Meanwhile, multiple studies have 

identified MSH6 inactivation as a key molecular mechanism of acquired TMZ resistance 

in glioma cells in vitro, and the development of MMR deficiency in post-treatment 

gliomas in clinical tumor specimens. We here show MMR deficiency mediated by MSH6 

inactivation is a unique molecular alteration predicting PARPi restoration of TMZ 

chemosensitivity. Furthermore, we demonstrate that the PARPi re-sensitization effect is 

independent of BER blockage, revealing a distinct therapeutic impact of PARPi.
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Figure 1. PARP inhibitors restore sensitivity to temozolomide in MSH6-inactivated, 
temozolomide resistant glioblastoma cells.
(A-D) Glioblastoma (GBM) cell lines (LN229 and Gli36) and patient-derived GBM sphere 

lines (MGG152) were engineered with a non-targeting shRNA (shNS) or MSH6-directed 

shRNA (shMSH6no.1) lentivirus. Immunoblot confirmed MSH6 knockdown, with Actin as 

a loading control. Cells were treated with temozolomide (TMZ), Veliparib/Olaparib or TMZ 

combination with Veliparib/Olaparib, and cell viability was evaluated by Cell Titer Glo on 

day 6. A: LN229 (TMZ 200 uM, Veliparib 3 uM, Olaparib 1uM) B: Gli36 (TMZ 30 uM, 

Veliparib 1 uM, Olaparib 0.5uM) C: MGG152(TMZ 200 uM, Veliparib 3 uM, Olaparib 

1uM). * P<0.05, **P<0.001, *** P<0.0001 (student t-test). (D) Cell viability assay for 
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Veliparib(left)/Olaparib(right) dose response in LN229shNS and LN229shMSH6no.1. Cell 

viability was evaluated by Cell Titer Glo on day 6. (E) Immunoblot showing loss of MSH6 

in MGG123 with MGG4 as a positive control. Cell viability assay to determine TMZ dose 

response in MGG123. Cells were treated with specified concentrations of TMZ, and cell 

viability was evaluated by Cell Titer Glo on day 6. (F) MGG123 cells were treated with 

TMZ, Veliparib/Olaparib, or TMZ combination with Veliparib/Olaparib, and cell viability 

was evaluated by Cell Titer Glo on day 6. ** P<0.005 (student t-test). (G) Cell viability 

assay for TMZ dose response with/without Veliparib (3.3 uM) in normal human astrocytes 

(NHA). Cell viability was evaluated by Cell Titer Glo on day 6.
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Figure 2. Veliparib combination treatment with TMZ delays tumor growth of MSH6-deficient 
glioblastoma.
(A) Tumor growth curves in the LN229shNS (left) and LN229shMSH6 (right) flank 

xenograft models. Animals were treated with PBS (n=6), Veliparib alone (50 mg/kg oral, 5 

days/week × 2 cycles)(n=6), TMZ alone (50 mg/kg i.p., 5 days/week × 2 cycles) (n=6), and 

TMZ plus Veliparib (n=6). Data are presented as mean tumor volume and SEM in each 

group. (*P=0.019, TMZ vs TMZ + Veliparib on day 32, Student t- test) (B) Kaplan-Meier 

analysis of mice bearing LN229shMSH6 orthotopic glioblastoma that were treated with 

TMZ alone or TMZ combination with Veliparib. Animals were treated with PBS (n=5), 

TMZ alone (50 mg/kg i.p. 5 days/week × 2 cycles) (n=5), or TMZ plus Veliparib (50 mg/kg 
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oral, 5 days/week × 2 cycles) (n=5). *P=0.02, TMZ vs TMZ + Veriparib (log-rank test). NS, 

non-significant. (C) Median body weights of mice with flank LN229shNS tumors for each 

treatment groups (same experiment as A). Bars are SD. Weight was measured daily during 

treatments) or every two days after treatment.
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Figure 3. PARP inhibitor restoration of TMZ sensitivity is not through BER signaling blockage.
(A) A scheme of Base Excision Pathway showing PARPs, other key proteins and their 

inhibitors. (B, C) Non-targeting (shNS) and MSH6 knockdown (shMSH6no.1) LN229 cells 

were treated with TMZ (200 uM), APE inhibitor (1 uM, in B), MeOX (3 mM, in C), or TMZ 

combination with APE inhibitor (B) or MeOX (C). Cell viability was evaluated by Cell Titer 

Glo on day 6.(D,E) Same experiments as B and C using Gli36shNS and Gli36shMSH6no.1. 

TMZ (30 uM), APE inhibitor (1 uM, in D), MeOX (3 mM, in E) (F) LN229 cells were 

engineered with a non-targeting (shNS), MSH6-directed (shMSH6) or XRCC1-directed 

shRNA (shXRCC1–1, shXRCC1–2) lentivirus or both shMSH6 and shXRCC1. Immunoblot 
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confirmed knockdown of MSH6 and XRCC1. Actin was used as a loading control. (G) 

LN229shNS, LN229shMSH6, LN229shXRCC1–1, LN229shMSH6/XRCC1–1 cells were 

treated with TMZ (200 uM), PARP inhibitor (veliparib, 3 uM, in E; olaparib, 1 uM, in F) or 

TMZ combination with PARP inhibitor. Cell viability was evaluated by Cell Titer Glo on 

day 6. (H) Same experiments as E and F using a second shRNA, XRCC1–2. *P<0.005, 

**P<0.0005, ***P<0.0001 (student t-test).
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Figure 4. PARP inhibitors restore TMZ sensitivity in MSH6-deficient, PARP1 knockout 
glioblastoma cells.
(A) LN229 parental cells and LN229shMSH6 cells were engineered with a non-targeting 

CRISPR-Cas9 (control) or PARP1 CRISPR-Cas9 (PARP1 no.1, PARP1 no.2) lentivirus. 

Immunoblot confirmed PARP1 knockout (KO). Actin was used as a loading control. (B) 

Veliparib (left) or Olaparib (right) dose response in shMSH6LN229 cells with CRISPR-Cas9 

control, and PARP1 KO no.1 and no.2. (C, D) TMZ dose response in MSH6 intact LN229 

cells, with and without PARP1KO no.1 and no.2 (C) and in MSH6 intact LN229 cells, and 

shMSH6LN229 cells with and without PARP1KO no.1 and no.2 (D). (E, F) shMSH6LN229 

cells with control (CRISPR-Cas9), and PARP1KO no.1 and no.2 were treated with TMZ 
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(200 uM), PARP inhibitor or TMZ combination with PARP inhibitor. (E) Veliparib 3 uM. 

(F) Olaparib 3 uM. Cell viability was evaluated by Cell Titer Glo on day 6 in B-F. *P<0.005, 

**P<0.00　(student t-test).
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