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Summary

Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies 

largely assume a dominant, within-individual haplotype. We hypothesize that within-individual 

bacterial population diversity is critical for homeostasis of a healthy microbiome and infection 

risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus 
epidermidis—a keystone skin microbe and opportunistic pathogen. Analyzing 1482 S. epidermidis 
genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into 

multiple founder lineages rather than a single colonizer. Transmission events, natural selection, 

and pervasive horizontal gene transfer result in population admixture within skin sites and 

dissemination of antibiotic resistance genes within-individual. We provide experimental evidence 

for how admixture can modulate virulence and metabolism. Leveraging data on the contextual 

microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene 

elements. Our study provides insights into how within-individual evolution of human skin 

microbes shape their functional diversification.

In Brief

Matched isolate sequencing and shotgun metagenomics reconstructs Staphylococcus epidermidis 

spatiotemporal strain diversity, demonstrating how strain admixture can affect virulence, evolution, 

and metabolism within the human skin microbiome.
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Introduction

Microbial diversity is ultimately manifested at the finest taxonomic resolution: individual 

strains of a microbial species can exhibit widely diverse phenotypes. For example, most 

Escherichia (E.) coli strains are commensals in the human gastrointestinal tract, while some 

strains can cause severe disease (Leimbach et al., 2013). In human skin, commensal strains 

of Staphylococcus (S.) epidermidis, a ubiquitous skin colonizer (Oh et al., 2014, 2016), can 

protect against colonization by skin pathogens (Cogen et al., 2010a, 2010b; Lai et al., 2010), 

modulate the immune system (Lai et al., 2009; Linehan et al., 2018; Naik et al., 2012; 

Scharschmidt et al., 2015), and even prevent skin cancer (Nakatsuji et al., 2018). 

Simultaneously, S. epidermidis is a common cause of bloodstream and indwelling medical 

device infection (National Nosocomial Infections Surveillance System, 2004). Many clinical 

isolates of S. epidermidis moreover carry genes encoding antibiotic resistance or biofilm 

formation (reviewed in Otto, 2009), impeding treatment.

Our understanding of strain-level diversity is complicated by the observation that each 

human carries a distinct collection of microbial strains, as revealed by comparative 
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metagenomic (Lloyd-Price et al., 2017; Oh et al., 2014) and culture-based studies (Nataro 

and Kaper, 1998). These strains can originate from our earliest days via maternal 

transmission (Asnicar et al., 2017; Ferretti et al., 2018; Yassour et al., 2018) and can be 

shaped by different host-specific factors, such as disease and health status (Duvallet et al., 

2017; Greenblum et al., 2015; Tett et al., 2017; Zhang and Zhao, 2016). However, 

subsequent diversification of strains within an individual—one’s own intrinsic bacterial 

population diversity—is little understood, largely due to the limitations in the sequencing 

depth of metagenomic studies and sample sizes of culture-based studies. The most 

fundamental questions are how diverse are within-individual bacterial populations, what 

begets, then maintains this diversity (if exists), and what is the impact on human health?

We can further delineate the question of population diversity by asking if founding lineages, 

once established, further diverge within and between skin sites, or is there continual 

transmission and genetic exchange across the body and evolution over time? Are there 

functional consequences of genetic diversification, such as niche specialization or the 

dissemination of antibiotic resistance or virulence factors? How are they affected by 

horizontal gene transfer (HGT)? Finally, does the surrounding microbiota affect the diversity 

of a focal population or provide additional opportunities for genetic exchange by HGT? 

Addressing these questions requires high-quality whole genome sequences for tracking 

evolutionary processes, broad skin site representation with sufficient sampling depth to 

assess prevalence of microbial features at each site, and paired metagenomic data to 

interrogate the influence of environmental factors. To date, nearly all large-scale studies 

investigating microbial population diversity have done so using isolates obtained from 

different individuals, disease sites, or environments to identify interpersonal/environmental 

transmission events or identify virulence characteristics of infectious disease-associated 

isolates. Yet recent studies of gut microbes suggest the biological significance of within-host 

evolution (Zhao et al., 2019).

In this study, we present a detailed analysis on the within-individual spatio-temporal 

diversity of S. epidermidis. S. epidermidis is ubiquitous yet of low abundance in human skin 

(Oh et al., 2014), thus particularly intractable for metagenomic approaches for inferring 

strain diversity (Oh et al., 2014; Quince et al., 2017; Truong et al., 2017). In addition, its 

extensive genomic heterogeneity (Conlan et al., 2012) makes it strong candidate for HGT 

and ecological niche specialization. Indeed, the complexity of the human skin’s 

microenvironments, which encompass dry, moist, and oily sites and correspondingly 

different compositions of the contextual microbiota (Oh et al., 2014), provide unique 

opportunities for local S. epidermidis to functionally specialize. Moreover, host-specific 

behaviors can foster or curb microbial transmission, with frequent physical contacts between 

some skin sites and near-isolation from others (e.g., nares from foot).

We generated a whole genome shotgun (WGS) sequencing dataset of 1482 S. epidermidis 
isolates cultured from 16 skin sites from five healthy males and females at 2–4 time points 

over a month (Table S1, Figure S1). We paired the isolate sequencing data with 153 

metagenomic whole-genome shotgun (mWGS) sequencing data samples collected from the 

same skin sites to explore how the contextual skin microbiome may shape S. epidermidis 
genetic diversity. Our study reveals a remarkable spatio-temporal diversity and genetic 
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exchange of S. epidermidis within each individual. We experimentally show that this genetic 

admixture can suppress virulence and regulation of metabolic pathways, suggesting an 

evolutionary mechanism by which genetically diverse strains can co-exist in the skin. 

Broadly, we identified patterns of population-level diversity that are both skin-site-specific 

and subject-specific, and determined how such diversity patterns resulted from different 

evolutionary (e.g., point mutation, HGT) and demographic processes (e.g., transmission 

across skin sites).

Results

Data characteristics

1629 S. epidermidis clones were isolated from five healthy males and females from 16 

defined anatomical skin sites (Table S1 for skin site nomenclatures, “_L” indicated the left 

side of the body and “_R” the right) at 2–4 time points (denoted as T1-T4) over a month, 

with ~10 isolates sampled at random and sequenced per site/timepoint/subject. After 

sequencing, assembly and quality filtering (Figure S1), 1482 S. epidermidis draft genomes 

(median genome size = 2.49 Mbp (range 2.20–2.78 Mbp) were reconstructed at median 

101.6x coverage (17.7–794.9x), hereafter referred to as the “subject isolates”. In addition, 

total DNA was isolated from 153 matched skin swab specimens for metagenomic library 

preparation and sequencing (median reads after quality filtering and removal of human 

DNA=1,850,938 (377,256–26,290,470, Table S1).

Skin S. epidermidis population diversity is shaped by transmission and skin site 
specialization

Microbial populations on the human skin can be derived from a single founding member 

over one’s lifetime in the absence of major perturbations (a single colonizer hypothesis), or 

alternatively colonized by multiple founder lineages. These hypothetical processes are 

distinguishable depending on whether isolates sampled from different individuals have 

distinct most recent common ancestors (MRCAs) – suggesting a single colonization event in 

each individual, such as that observed for B. fragilis in the human gut (Zhao et al., 2019) – 

or not, suggesting the presence of multiple founder lineages (Figure 1A). Here, we 

reconstructed the molecular phylogeny based on SNPs in the core genome (regions 

conserved across all isolates) from our 1482 subject isolates (Table S1) and 50 publicly 

deposited, high-quality S. epidermidis genomes sampled from healthy and diseased 

individuals (Conlan et al., 2012 and the unpublished VCU collection, Table S2). 

Collectively, S. epidermidis isolates formed two major phylogenetic clades (Figure 1B), 

similar to previous observations (Conlan et al., 2012; Oh et al., 2014). Surprisingly, isolates 

from each subject, as well as the 50 public isolates, shared a MRCA, suggesting the 

presence of multiple founder lineages (Figure 1B and 1C). This observation revealed that 

unlike B. fragilis, diversity within founder lineages is maintained in S. epidermidis, resulting 

in broad phylogenetic representation within a single host.

Moreover, subject isolates exhibited subject- and skin site-specific phylogenetic structuring 

(Figure 1D, PERMANOVA based on cophenetic distances, p=0.001 for skin sites, subjects, 

and their interaction term). Strikingly, all toeweb isolates spanned a limited phylogenetic 
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space not only within each of the five subjects, but also between subjects (Figure 1D). Such 

uniformity in phylogenetic similarity of toeweb isolates was unlikely due to stochastic 

mechanisms (e.g., population bottleneck), suggesting a stronger purifying selection favoring 

the growth of a particular genetic configuration.

An evolutionary process particularly relevant to skin microbes is transmission of bacteria 

across environmental barriers, which can further modulate the genetic diversity landscape 

(Brito and Alm, 2016; Mideo et al., 2008; Niehus et al., 2015). Indeed, sister isolates—

isolates with 0 core-genome nucleotide differences, likely representing recent descendants of 

the same lineage—were observed at different skin sites (Figure 2A). Although the number of 

shared sister isolates could be skewed due to sampling depth and the overall frequency of 

sister isolates within a population, it is highly unlikely for isolates observed at different skin 

sites to accumulate exactly the same alleles at all core-genome SNP loci (n=58498). 

Therefore, the presence of shared sister isolates heuristically supports the presence of recent 

transmission events. However, shared sister isolates cannot be used to infer historical 

transmissions nor provide quantitative estimates of transmission rate. To quantitatively 

estimate and compare transmission between skin sites, we inferred transmission events along 

a phylogenetic tree using Bayesian evolutionary analysis by sampling trees (BEAST) 

(Suchard et al., 2018). BEAST represented transmission events as switches in node states 

(for an example, see Figure S2A), and estimated transmission probability by sampling many 

time-calibrated phylogenetic trees (n=2000 in this study). Based on the time calibration, 

isolates from each subject diverged from multiple ancestral nodes that were older than the 

subject (Figure S2B) and suggested that the S. epidermidis population on a given subject 

was likely established by at least 12–20 founder strains (Figure S2B). The diverse founder 

strains then further diverged into the isolates observed in this study, at least partially 

explaining their broad phylogenetic representation (Figure 1B).

We then estimated the probability of transmission between each pair of skin sites, resulting 

in a probabilistic transmission map of within-individual S. epidermidis on the human skin 

(Figure 2B). Both the transmission map and the previous heuristic method (Figure 2A) 

revealed that 1) transmission occurs frequently between facial sites and hand sites, which are 

relatively exposed, 2) transmission patterns are subject-specific, and 3) the umbilicus and 

toeweb were relatively isolated from the rest of the skin sites. For the toeweb and umbilicus, 

the lack of transmission can result in distinct S. epidermidis gene contents in these 

subpopulations (Figure S2C). Interestingly, in subject p3, which had relatively few shared 

sister isolates (Figure 2A), transmission between facial and hand sites was still frequent 

(Figure 2B), consistent with the presence of closely related isolates with few (but not 0) 

SNPs at different skin sites (Figure 1D). Biologically, this could be due to larger effective 

population sizes in p3, which decreased the probability of observing sister isolates shared 

between skin sites. Note that the heuristic method (Figure 2A) and the probabilistic 

transmission map (Figure 2B) showed some incongruencies for a subset of skin sites; this is 

because the heuristic method reports sharing of sister isolates “as it is”, while the 

probabilistic transmission analyses additionally infers the transmission rates that are 

necessary to explain the data through variable selection (see STAR Methods). Altogether, 

these findings suggested that topography is an important determinant of S. epidermidis 
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population diversity in the skin and is further shaped by transmission between sites such as 

the hand and the face, or geographic isolation, as for the umbilicus and toeweb.

Individualized, skin-site-dependent, and dynamic evolution of S. epidermidis gene content

Gene content diversification—likely driven both by transmission and natural selection—is 

important because it indicates the functional capacity of a given isolate, and also how that 

capacity is constrained within a host, is associated with skin sites, and fluctuates over time. 

Previous metagenomic studies have suggested host- and skin-site-specificity of strain-

specific gene content (Tett et al., 2017); here, we leveraged our large isolate dataset to test 

these hypotheses.

Isolates sampled from each subject constituted relatively closed pan-genomes with 

comparable sizes across the subjects (Figure 3A), suggesting a limited repertoire of within-

individual gene content. Conversely, this gene content showed considerable subject-

specificity. Only 55.4%−65.1% of the S. epidermidis gene clusters observed in a given 

subject (i.e., the subject-specific pan-genome) and 58.0%−80.5% of the gene clusters 

observed in all isolates of a given subject (i.e., the subject-specific core-genome) were 

shared between all five subjects, and 9.5%−15.6% of gene clusters were entirely unique to a 

subject (Figure 3B). These findings suggested a personalization of gene content at the 

population-level: while the S. epidermidis population found in a single host retains the 

inherent diversity from multiple founder lineages, further evolution of the S. epidermidis 
gene repertoire occurred in a host-specific manner. Consistent with this observation was the 

much greater size of the collective pan-genome of the 50 publicly available genomes (Figure 

3A) and additional 17.4% of the gene clusters unique to the public strains (Figure 3B). Put 

together, our results showed that, despite their wide distribution in the SNP-based phylogeny 

(Figure 1B), S. epidermidis within a single host had constrained gene content diversity.

Next, we sought to further dissect the spatio-temporal variation in this individualized gene 

repertoire. In addition to moderate yet potentially significant temporal fluctuations (Figure 

S3A–C), S. epidermidis gene content showed structuring by skin site: toeweb isolates 

consistently contained distinct gene contents compared to isolates from other skin sites, as 

revealed by hierarchical clustering of the subject isolates based on the presence and absence 

of accessory genes (Figure 3C). Genes that were specifically present or absent in the toeweb 

isolates consistently constituted a substantial fraction of the site-specific accessory genes 

(i.e., a relatively large standard deviation of prevalence across skin sites, Figure 3D and 

S3D). This suggested a strong specialization of gene content to the toeweb via both entirely 

unique genes as well as a lack of many genes common to other skin sites (Figure 3D and 

S3D). Lack of transmission also likely contributed to the distinct S. epidermidis gene 

contents in these subpopulations, which was also observed in the umbilicus (Figure 3D and 

S2C). Yet the biological functions of the toeweb-specific genes were largely obscure (Figure 

3E and Table S3), underscoring the need for additional tools to study strain-specific gene 

functions. Other annotatable biological functions, including KEGG modules, lantibiotics, 

and other biosynthetic gene clusters (BGCs), also showed host-specificity and skin site-

heterogeneity (Table S3) in both prevalence (Figure S3E–F) and sequence variation (Figure 

S3G–J).
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Given this extensive gene-level diversity, we anticipated that isolates with the closest vertical 

evolutionary history (as assessed by core-genome SNP differences, Duchene et al., 2016) 

would have the most similar gene content. However, we found a significant incongruence in 

SNP differences and gene content heterogeneity (Figure 4A, linear regression R2=0.503): 

5.0%±3.2% of genes differed even between sister isolates, which have no core-genome SNP 

differences, suggesting the presence of very recent evolutionary processes that increase gene 

content diversity (Figure 4A). To study such processes, we systematically identified 239 

groups of sister isolates (defined as lacking in core genome SNP differences and having very 

low pairwise nucleotide differences, Table S4 and Figure S4) and identified gene content 

differences within each group. Strikingly, over half of the gene clusters in the pan-genome 

(5853 out of 10583) were differentially present between isolates in at least one of the 239 

groups of sister isolates (Table S4, hereafter referred to as “differential genes”). We note that 

most of these differential genes (n=4217) were unlikely identified due to incomplete genome 

assembly (Figure 4B, adjusted p<0.001).

Functional heterogeneity between sister isolates ranged from transport and metabolism to 

cell structure and defense (Figure 4B) and could result from both gene loss and gene gain 

events. For example, a differential gene absent in most sister isolates while present in only a 

small fraction (e.g., K12549, present in 1/11 isolates in the same group, Figure 4B bottom) 

more likely resulted from a recent gene gain event. On average, a sister isolate contained 

26±29 genes that likely resulted from a gene gain event (i.e., missing in over 50% of the 

sister isolates of the same group). Alternatively, a differential gene carried by most sister 

isolates while absent in only a small subset of isolates (e.g., the hemin permease protein 

K09813, present in 9/11 sister isolates in the same group, Figure 4B top) more likely 

resulted from a gene loss event associated with the small subset. Given the large variation in 

the prevalence of the differential genes among sister isolates (Figure 4B), both gene gain 

events and gene loss events likely contributed to the divergence of the sister isolates.

A common mechanism for gene gain events without concomitant accumulation of core-

genome SNP diversity is HGT—the direct exchange of genetic elements. In the core-

genome region, HGT among the subject isolates was likely (suggested by the 104 predicted 

recombination events, with each isolate affected by 6.2±3.8 events, Table S4) but were of 

relatively low rate (population-scaled recombination rate=0.14%). For accessory genes, we 

inferred if HGT contributed to gene content diversity among sister isolates by examining 

whether the differential genes were observed in mobile element-like contigs. Of the 171 

contigs that contained at least 10 differential genes, 53 contigs (with 20 unique contig 

sequences, Figure 4C) were predicted as mobile elements using an artificial neural network 

model implemented in PlasFlow (Krawczyk et al., 2018), again suggesting that HGT is 

likely. In addition to mobile-element-like contigs, we identified 25 unique chromosome-like 

contig sequences (Figure 4C). Interestingly, at least two mobile element-like contigs 

appeared to have integrated into multiple chromosome-like contigs, as defined by nearly 

100% alignment over the length of the contigs (Figure 4C). These were annotated as phage 

sequences (Figure 4D), further indicating that mobile elements such as phages could 

dynamically drive the divergence of sister isolates recently descended from a common 

ancestor.
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Both predicted plasmid segments (383 unique) and phages (61 unique) had significantly 

different prevalence across subjects and skin site (Figure 5A and S5A, for both, 

PERMANOVA based on Euclidean distance p<0.001 for both skin site and subject). As our 

genomes are draft quality, it is unclear which predicted plasmid segments are physically 

located on the same replicon (mapped to 9.5±1.6 contigs per genome), though clustering 

based on skin site distribution showed possible physical or functional linkages (Figure 5A). 

Two clusters, X and XI, were strongly associated with toeweb isolates (Figure 5A), 

suggesting that the toeweb subpopulation contained unique mobile elements. Even when 

only considering previously identified plasmids (4.6±2.7 predicted plasmid contigs/

genome), the toeweb subpopulation still possessed a unique set of predicted plasmid 

segments (Figure S5B). Taken altogether, given that plasmids and phages commonly 

mediate HGT, the observed association between subjects, skin sites and predicted plasmid/

phage types suggested that S. epidermidis subpopulations could access different sets of HGT 

genes at different skin sites and in different hosts.

Functional consequences of population-level diversity

Given the role of S. epidermidis both as an opportunistic pathogen and a gene reservoir for 

other skin pathogens such as S. aureus (Archer and Johnston, 1983; Forbes and Schaberg, 

1983; Méric et al., 2015), we next examined if the observed genetic diversity of S. 
epidermidis could have functional consequences that could impact its role in skin health and 

disease. We particularly examined mobile gene elements, given that they can shape the gene 

content landscape of S. epidermidis and potentially contribute to the spread of virulence 

factors and antibiotic resistance genes (ABR). Importantly, a significant fraction of predicted 

plasmid segments (Figure 5A, 39 out of 383) but no predicted phage sequences contained 

ABR genes, suggesting that their transfer would primarily occur by plasmid. Note that all 

predicted plasmid-borne ABR genes, except for a fusidic acid inactivation enzyme (fusC), 
showed homology to genes in known plasmids. Only five predicted plasmid segments 

carried predicted virulence genes (Figure 5A). Overall, the distribution of predicted plasmid-

encoded ABR was highly host-specific and skin site-specific (Figure S5C and S5D), further 

underscoring the biogeographical heterogeneity of S. epidermidis functional features. 

Predicted plasmid-encoded ABR genes were predicted to confer resistance to at least 15 

types of antibiotics (Figure 5B, Table S5), including mupirocin and streptogramin (Figure 

5B and Table S5), recently developed antibiotics used specifically to treat Staphylococcus 
skin infections, raising concerns for the long-term effectiveness of these drugs. Moreover, 

many predicted plasmid segments encoded resistance against multiple antibiotics (Figure 

5B), due to pleiotropy and/or co-presence of ABR genes and mechanisms (Figure 5B and 

Table S5). For example, we predicted two multi-drug resistance (MDR) plasmid segments, 

each with three distinct ABR genes targeting three distinct types of antibiotics and observed 

in only one subject (Figure 5C), respectively.

To validate the functionality of predicted ABR genes, we measured the minimum inhibitory 

concentration (MIC) of six antibiotics suppressing the growth of 19 selected isolates that 

possessed different ABR genes (Figure 5D). We found that computational predictions of 

plasmid-encoded ABR genes were, in general, good predictors of the actual resistance 

phenotypes (Figure 5D), while chromosomally predicted ABR genes, such as mgrA and 
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norA, often failed to confer similar levels of resistance as the predicted plasmid-encoded 

ABR genes. An exception was resistance to ciprofloxacin, a fluoroquinolone antibiotic, 

which is likely endowed by a previously reported mutation in the DNA topoisomerase ParC 

(D84Y) (Yamada et al., 2008), but not by the predicted chromosomal or plasmid-encoded 

efflux pumps (Figure 5D). In addition, chromosomally predicted mecA and mecR1 genes 

that encode and regulate a penicillin binding protein appeared to compound the resistance 

conferred by the predicted plasmid-encoded beta-lactamase BlaZ (Figure 5D). Finally, 

isolates 0995 and 1085, harboring an MDR plasmid (Figure 5C, lower) in addition to other 

resistance genes, exhibited resistance to all six tested antibiotics (Figure 5D, arrows). These 

results demonstrate the individualization of MDR phenotypes and the association with 

spread of predicted MDR plasmids.

A common assumption about staphylococcal infections or skin disease is that the etiological 

agent originated from the patient’s own skin (von Eiff et al., 2001; Kong et al., 2012; Méric 

et al., 2018; Otto, 2009; Sakr et al., 2018). Thus, understanding the biogeographic 

distribution of virulence factors and how they are regulated in their respective 

microenvironment could aid the assessment of infection risk and guide intervention 

approaches. Similar to other functional features, predicted S. epidermidis virulence genes 

showed varying prevalence among subjects and skin sites (Figure S6A, PERMANOVA 

based on Euclidean distance, p<0.001 for both skin site and subject), including a complete 

absence of the ica operon (icaA, icaB, icaC, icaD and icaR genes, important for biofilm 

formation) in all toeweb isolates and the majority of isolates from pi (Figure S6A).

An additional regulation of many staphylococcal virulence factors is enforced by the agr 
quorum sensing system, encoded by the agrABCD operon (Méric et al., 2018; Yarwood and 

Schlievert, 2003). agr quorum sensing controls the expression of many extracellular 

virulence factors important for dissemination during acute infection (Fey and Olson, 2010; 

Olson et al., 2014), while down-regulated agr activity was associated with colonization and 

persistence (Le and Otto, 2015). The agr system produces an autoinducing peptide (AIP, 

encoded by the agrD gene, Figure 6A) secreted through AgrB, detected by AgrC, which then 

activates the response regulator AgrA. Previous studies showed considerable sequence 

polymorphism in the S. epidermidis agr locus (Olson et al., 2014), with three ‘types’ 

identified based on the sequence of AgrD. Notably, Olson et al. emphasized the importance 

of these sequence variations in strain-level competition: one type of AIP can inhibit the agr 
system of a different type. Therefore, we hypothesized that agr type admixture in the skin 

could suppress virulence depending on the composition of agr types in the subpopulation.

We thus examined agr diversity in the subject isolates. We identified canonical agr 
sequences as well as agrC transmembrane mutants observed in multiple subjects and skin 

sites (Figure S6B and Table S6) and two novel agr sequence variants, Type IIIb and Type IV, 

that had highly restricted subject and skin-site distribution (Figure 6A). While Type IIIb 

expresses the same AIP as Type III (but with a unique AgrD leader peptide), Type IV 

expresses a unique AIP, and its supernatant was able to interfere with quorum sensing of 

Type II and III strains (Figure 6B and Table S6, Welch’s t-test p<0.05), as measured by 

reduced ecp expression, an agr-regulated protease (Olson et al., 2014). Conversely, when a 

Type IV isolate was grown with spent media supernatant of Type I-III isolates, no significant 

Zhou et al. Page 9

Cell. Author manuscript; available in PMC 2021 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



difference in ecp expression was observed, potentially due to large variance (Figure 6C and 

Table S6).

Surprisingly, we identified a strong bias in agr types across individuals (Figure 6D), with p2 

isolates consisting predominantly of agr Type I and Type II (adjusted p<10−13) and p4 agr 
Type I and Type III (p<10−20). At the same time, admixture of agr types within 

subpopulations was very common (Figure 6D). To examine the functional consequence of 

different levels of agr admixture, we measured ecp expression levels when an isolate was 

exposed to a mixed supernatant from isolates reflecting real-world admixed populations 

(‘population supernatants’). As agr types existed in various proportions on human skin 

(Figure 6D), population supernatants were correspondingly created with different 

proportions of agr types. Strikingly, across all agr types, when combined with nearly all 

population supernatants, ecp expression was significantly reduced compared to the self-

supernatant control (Figure 6E and Table S6), indicating that real-world strain admixture can 

reduce quorum sensing and potentially population virulence.

As agr quorum sensing can define the functional state of a population by controlling diverse 

biological processes from basic metabolism to virulence and pathogenesis, we asked how 

admixture of agr types in natural populations can affect the functional profile of strains in 

that population. Exposure of an agr Type I isolate to population supernatant significantly 

altered expression levels of a variety of operons and pathways, including metabolic gene 

expression, as measured by RNA-seq (Figure 6F, S6C, and Table S6). Consistent with 

previous reports (Batzilla et al., 2006; Queck et al., 2008; Yao et al., 2006), genes involved 

in nitrogen metabolism and urease activity were downregulated in the presence of 

population supernatant, while pathways involved in carbohydrate metabolism were 

upregulated (Figure 6F, S6C, and Table S6). Contrasting with a previous study (Batzilla et 

al., 2006), we found that genes involved in sulfur metabolism were down-regulated with 

population supernatant (Figure 6F and Table S6), underscoring potential strain-specific 

effects. Interestingly, we also identified changes in the expression of potential virulence 

factors in an admixed population. For example, expression of the pmt locus was suppressed 

when exposed to population supernatant (Figure 6F and Table S6). pmt is responsible for the 

export of phenol-soluble modulins (PSMs), a major staphyloccal virulence factor (Cheung et 

al., 2014; Wang et al., 2011). Genes involved in iron uptake – fecD, feuC, fecE, yclQ – were 

also downregulated in the presence of population supernatant (Figure 6F and Table S6). 

While iron acquisition’s role in virulence has been extensively studied (Oliveira et al., 2017; 

Trivier and Courcol, 1996; Trivier et al., 1995), to our knowledge, its association with 

quorum sensing has not yet been demonstrated in S. epidermidis, although an association 

with cell density has been discussed (Matinaho et al., 2001). By our experimental simulation 

of real-world admixed populations, we demonstrated that reduction of predicted virulence 

factors by quorum sensing interference is at least one functional consequence of strain 

heterogeneity and could potentially aid S. epidermidis’ survival as a skin commensal or 

persistence as a pathogen.
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S. epidermidis gene content is influenced by the local skin microbiota

Interspecies interactions with the contextual microbiota may also shape S. epidermidis strain 

genetic diversity via metabolic potential, resource competition, or antimicrobial activity. We 

thus analyzed metagenomic shotgun data obtained as matched samples with the isolates. 

Consistent with our previous reports (Oh et al., 2014, 2016), the healthy skin microbiome is 

characterized by a remarkable biodiversity across hosts (Figure S7A, Table S7) and skin 

sites (Figure S7B, Table S7). Using a generalized linear model, we found 8 S. epidermidis 
genes (out of 1130 genes filtered based on abundance, variation, and sparsity) significantly 

associated with microbial taxonomic composition (Figure 7A, adjusted p<0.05 for 

unrestricted permutation and permutation restricted within subject/subjectxskin site), which 

was represented by three principle components that explained 82% of the variation. For 

example, polyphosphate kinases are important for synthesizing polyphosphate, which is 

needed for bacterial survival under stress conditions (Zhang et al., 2002). ccrB is involved in 

the integration and excision of HGT elements (Wang and Archer, 2010), suggesting a 

linkage between population-level resistance prevalence and the contextual microbiome. 

pnbA is linked with beta-lactam production in Bacillus (Zock et al., 1994), although its 

function in staphylococci has not been fully studied. Despite these diverse functional 

associations to microbiome species abundances, no S. epidermidis gene showed significant 

association with microbiome gene abundances (Figure S7C and S7D), potentially because of 

low power due to small sample size relative to the large number of S. epidermidis genes 

tested.

Another fundamental question in human microbiome research is how much of microbiome 

features at the population level—both genetic diversity and ecological interactions—is host-

specific vs. generalizable to different hosts. We created a machine learning model (Figure 

S7E) to study skin site and microbiome features (in subjects p0, p1, p2, and p4) that increase 

S. epidermidis gene predictability in a new host (subject p3). Prevalence of many genes in 

the new host can be predicted without any site or microbiome information (Figure S7F, 

genes with high “prior” predictability), representing genes with similar prevalence (i.e., low 

variability of prevalence in Figure S7F) at all skin sites in all subjects (e.g., core genes 

encoding universal functions).

Other genes showed increased predictability when including skin site and microbiome 

information (Figure S7G and S7H), potentially indicating a role in environmental 

specialization or interspecies dynamics. The biological functions of the top 20 such genes 

were largely unknown and showed limited consistency (Figure 7B, upper), but most were 

present in predicted plasmid segments (Figure 7B, lower). Additionally, over half (52.9% 

and 52.6%) of these predicted plasmid-associated genes also have homologs observed in 

previously identified plasmids (Figure 7B lower). An important conclusion from this 

analysis is thus that features associated with skin niches and the surrounding microbiome 

consistently influence S. epidermidis mobile elements, and therefore HGT is contingent on 

the state of the contextual environment.
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Discussion

Here, we report the first in-depth survey of within-individual, population-level diversity in 

the human skin microbiome. We previously hypothesized, using limited metagenomic 

inferences, that phylogenetically diverse strains could coexist in the skin (Oh et al., 2014). In 

an extensive genomic and metagenomic survey of 1482 isolates cultivated from healthy skin, 

we conclusively demonstrated that each subject was colonized by diverse S. epidermidis 
strains from both dominant phylogenetic clades identified in the initial assessments of S. 
epidermidis phylogenetic variation (Conlan et al., 2012). Here, we deeply probed host-

specificity, skin site specialization, and evolutionary and demographic events to provide new 

insights into the spatio-temporal diversity and function of a commensal skin bacteria. A key 

finding of our study is the extensive within-individual variation of S. epidermidis at the 

population level. While our approach can be generalized to understand population diversities 

of other human-associated bacteria, we believe that biological dynamics will be individual, 

body-site, and microbe-specific and must be interrogated as such. For example, the within-

individual evolution of S. epidermidis differs substantially from a gut microbe, B. fragilis. 
The within-host S. epidermidis isolates maintained the genetic variation of multiple 

colonizing lineages, while within-host B. fragilis only represented a single colonizing 

lineage (Zhao et al., 2019). This suggests that a diverse pool of S. epidermidis founder 

strains is maintained in the environment and subsequently colonizes healthy individuals. 

Two fundamental questions that follow are: 1) how is the polymorphism of founder lineages 

maintained in the environment? and 2) how is a diverse set of founder strains transmitted to 

each individual? We speculate that both questions could be explained by the fact that the 

major reservoir of S. epidermidis is the mammalian skin, which includes various 

environmental niches within one individual. Multiple-niche polymorphism is known to 

maintain diversity in natural populations (Brisson, 2018; Brisson and Dykhuizen, 2004; 

Dobzhansky, 1982), and could increase the exposure of a recipient to multiple founder 

strains simultaneously. On the other hand, it is also possible that different lineages of B. 
fragilis are maintained in an individual, but are not identified because bacteria occupying 

certain gut niches are known to be underrepresented in fecal samples (Zmora et al., 2018).

The prevalence of S. epidermidis gene content and other genetic features exhibited marked 

skin site-specificity, suggesting functional specialization to the niche. For example, the 

unique population structuring of toeweb isolates, which possessed distinct gene contents and 

functional features irrespective of host, could be due to both a lack of gene flow because of 

low transmission rates, and niche adaptation. Although the number of subjects in our study 

is limited and therefore the generality is unclear, the observed convergence suggested 

purifying selection at the toeweb, and adaption of the toeweb subpopulation to the toeweb 

niche. If the purifying selection at the toeweb is rapid and strong enough, a distinct 

subpopulation could be formed even without ecological isolation, albeit this hypothesis is 

less parsimonious than ecological isolation. An interesting corollary to these findings is the 

ecology of other toeweb microbes, which could face similar evolutionary pressures. For 

example, based on metagenomic inference, Cutibacterium acnes may also have 

phylogenetically distinct strains that are associated with the toeweb (Oh et al., 2014). On the 

other hand, clinically important features of S. epidermidis, including ABR and predicted 
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virulence genes, were strongly host-specific and showed dynamic HGT between skin sites, 

including predicted ABR-encoding plasmids. This provides strong support for pathogen 

carriage and increased infection risk elsewhere in the body, such as of methicillin-resistant 

S. aureus in the nares (von Eiff et al., 2001; Kong et al., 2012; Sakr et al., 2018), as well as 

for the contextual microbiome affecting infection risk via HGT of pathogenicity reservoirs.

In addition to ABR, we found that the distribution of agr types, including two novel types, 

was highly host-dependent. A key observation was the substantial admixture of multiple agr 
types, which significantly repressed quorum sensing in vitro and consequently altered 

expression of a variety of biological functions from metabolic control to virulence. Indeed, 

clinically, admixture of agr types might represent a mechanism by which virulence could be 

suppressed at the population level (vs. gene-level mechanisms such as the absence of 

predicted virulence factors, which may be the case in foot isolates, or physical factors such 

as low cell density, which may contribute at other skin sites). If population bottlenecks occur 

such that a single agr type becomes dominant in a subpopulation, increased expression of 

virulence genes could then facilitate acute infection. This hypothesis would also account for 

the inability of genomic studies on S. epidermidis to date (Conlan et al., 2012; Méric et al., 

2018) to identify clear determinants of pathogenicity among nosocomial and commensal 

isolates.

Recent developments in metagenomic analyses have used SNP-based haplotypes to infer 

strains from shotgun metagenomic data, either by reconstructing the dominant strain 

haplotype (Truong et al., 2017), or by phasing SNPs under a probabilistic model (O’Brien et 

al., 2014; Quince et al., 2017; Smillie et al., 2018). Despite their reported applications to 

resolving individual-specific strain diversity (Segata, 2018; Tett et al., 2017; Zhang and 

Zhao, 2016) and tracking strain transmission between individuals (Asnicar et al., 2017; Brito 

and Alm, 2016; Ferretti et al., 2018; Smillie et al., 2018; Yassour et al., 2018), these methods 

are limited by sequencing depth (which makes them unsuitable for low abundance species), 

restricted to a few marker gene regions (which decreases phylogenetic resolution), and 

insensitive to haplotypes with few SNP differences (and thus limited in the ability to resolve 

closely related genomes). This latter is particularly limiting as differentiating sister isolates 

with 0 SNP differences would be impossible. Nonetheless, we found that such sister isolates 

were exceptionally informative. This is because sister isolates likely have diverged very 

recently from the same parental lineage. Thus, sister isolates detected at different skin sites 

likely denote transmission events, while sister isolates with different gene content likely 

denote divergence by either gene loss or HGT. Indeed, a comparison of the identified sister 

isolates not only revealed recent transmission events, but also differential gene content with 

a range of biological functions between sister isolates. Additionally, we found that many of 

the differential genes were clustered on predicted mobile-element-like elements, suggesting 

that HGT dynamically contributes to the divergence of sister isolates. Put together, the 

ability to resolve sister isolates for functional and demographic inferences represents an 

important advantage of isolate WGS over metagenomic-based approaches.

On the other hand, metagenomic sequencing characterizes the microbial macroenvironment 

of the S. epidermidis isolates and can shed light on how environmental selection influenced 

their evolution. We identified multiple accessory genes of S. epidermidis whose prevalence 
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was significantly associated with features of the contextual microbiome. In addition, we also 

found that some of the ecological interactions between S. epidermidis genes, especially 

mobile genes, and the contextual microbiome could be generalized to new hosts. This 

finding suggested that it may be possible to infer strain-level functional differences, 

including infection predilection, based on skin microbiome features of the host. We note that 

this possibility could be valuable to many other microbes where large scale culturomics are 

challenging due to the lack of well-defined, selective culturing conditions or screening/

characterization methods.

Nonetheless, we note several limitations of these inferences, and of an approach such as ours 

more generally. First, due to sequencing depth and technical limitations in pooled 

metagenomic assembly, a reconstructed metagenomic gene catalog will not fully reflect 

coding potential of the contextual microbiome. Second, although within-host diversity was 

well-captured by our dataset, such randomly sampled isolates are inevitably an incomplete 

representation of the corresponding subpopulations and the small number of recruited 

subjects, hindering the detection of sister isolates and decreasing the confidence in estimated 

transmission probabilities. This may be particularly relevant for S. epidermidis, whose 

subpopulations may frequently experience dynamic perturbations in the skin, resulting in 

population bottlenecks and consequently, genetic drift (all the while on the community scale, 

skin microbiome composition is relatively stable (Oh et al., 2016)). The presence of 

population bottlenecks is suggested by the lack of bilateral symmetry in both the 

transmission patterns, gene content diversity, and the temporal fluctuations patterns. A 

deeper sampling of each skin site and a denser time series will likely improve 

characterization of such demographic dynamics. Additionally, while we believe that the 

underlying evolutionary mechanisms that shaped the population diversity will be 

generalizable to other subjects and even other skin microbes, the generality of the ecological 

and functional interactions found in these subjects could be limited given the large degree of 

host-specificity. Third, the ability to make meaningful functional inferences from our 

findings will require a more comprehensive characterization of gene functions (although 

here, computational predictions of plasmid-encoded antibiotic resistance genes were largely 

consistent with experimental validation). In short, to extend our ability to make biologically 

and clinically relevant predictions, continued large-scale screening of strain-level functions 

and a detailed, well-balanced, and variety-aware dataset will be needed.

STAR methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for materials, reagents, and software should be directed to 

and will be fulfilled by the Lead Contact, Julia Oh (iulia.oh@iax.org).

S. epidermidis isolates collected in this study are available upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

5 healthy males and females aged between 20–60 years were recruited to this study, which 

was approved by the Jackson Laboratory Institutional Review Board. Due to the limited 

Zhou et al. Page 14

Cell. Author manuscript; available in PMC 2021 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sample size, we do not report specific ages or genders to protect confidentiality. Exclusion 

criteria included any visible signs of non-intact skin at sites of sampling, use of systemic 

antibiotics or antifungals within 3 months prior to enrollment, or topical retinoids, steroids, 

or antibiotics within 1 week prior to enrollment. Sixteen skin sites (Table S1) were swabbed 

rigorously using PurFlock Ultra buccal swabs (Puritan Medical Products) for thirty seconds 

before the swab was submerged into 500μl Tryptic Soy Broth (TSB) culture media (Thermo 

Fisher Scientific). The same swab was used for both the isolation of S. epidermidis and 

mWGS sequencing. For the isolation of S. epidermidis, 50–100μl of the culture were plated 

onto SaSelect culture plates (Bio-Rad Laboratories) and incubated at 37°C for 24 hours. 

Small and light pink colonies (Hirvonen et al., 2014) were picked randomly from the plates 

and verified on the MALDI Biotyper system (Bruker Corporation) according to the 

manufacturer’s instructions. In general, from each skin swab, we aimed at obtaining ~10 

colonies annotated as “S. epidermidis” by the Biotyper, which were subsequently inoculated 

into 1.5 mL TSB and grown overnight for DNA extraction.

METHOD DETAILS

DNA extraction—Rapid DNA extraction from S. epidermidis isolates were adapted from 

Köser et al. (2014). 1 mL of overnight culture was centrifuged at 20,000 × g for 1 minute 

before the bacterial pellet was resuspended with 100 μL of 1X TE and transferred to a 2 mL 

bead beating tube with 100–125 μL 0.5 mm diameter glass beads (BioSpec Products). An 

additional 100 μL of 1X TE was added to the tube, followed by vortexing of the sample for 

30 seconds at max speed (3000 rpm) on a Vortex Adapter (Mo Bio Laboratories). The 

mixture was then centrifuged at 13,000 × g for 5 minutes to pellet the cellular debris, and the 

supernatant was transferred to a new tube to be used as template for Nextera XT library 

preparation.

For the extraction of metagenomic DNA, a skin swab was placed into a microfuge tube 

containing 350 μL Tissue and Cell lysis buffer (Epicentre) and 100 μg 0.1 mm zirconia 

beads (BioSpec Products). Metagenomic DNA was extracted using the GenElute Bacterial 

DNA Isolation kit (MilliporeSigma) with the following modifications: each sample was 

digested with 50 pg of lysozyme, and 5 units lysostaphin and mutanolysin for 30 minutes 

prior to beadbeating in the TissueLyser II (QIAGEN) for 2 × 3 minutes at 30 Hz. Each 

sample was centrifuged for 1 minute at 15000 × g prior to loading onto the GenElute 

column. Negative (environmental) controls and positive (mock community) controls were 

extracted and sequenced with each extraction and library preparation batch to ensure sample 

integrity.

Library preparation and sequencing—All sequencing libraries were made according 

to the Illumina standardized protocol using the Nextera XT DNA sample preparation kit 

(Illumina Inc.). All DNA samples were quantitated by Qubit HS (Thermofisher Scientific) 

and diluted to 1ng/pl. The dual indexed paired-end libraries of genomic DNA were made 

with an average insert size of 400bp by taking 200pg DNA of each sample in optimized 

quarter reaction protocol, where all reagents for library preparation were taken in 1/4th 

amount. Tagmentation and PCR reactions were carried out according to the manufacturer’s 
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instructions. The resulting Nextera WGS libraries were then sequenced with 2×150bp paired 

end reads on an Illumina HiSeq2500.

Genome assembly and quality filtering—Sequencing adapters and low quality bases 

were removed from the sequencing reads using scythe (v0.994) (Buffalo) and sickle (v1.33) 

(Joshi and Fass), respectively, with default parameters. Filtered sequencing reads were then 

assembled using SPAdes (v3.7.1) (Bankevich et al., 2012), with default parameters. We took 

a series of strategies to remove low quality samples or contigs. First, draft genomes with 

sizes smaller than 2.2 Mbps or larger than 2.9 Mbps – sizes unlikely for S. epidermidis 
(genome sizes of 50 public S. epidermidis genomes in the VCU and NIH collection ranged 

from 2.3 – 2.8 Mbps [Table S2]) – were removed from the dataset. Second, qualities of the 

remaining draft genomes were checked using QUAST (v4.2) (Gurevich et al., 2013) by 

aligning to a S. epidermidis reference genome (strain ATCC12228, ACC#: 

GCA_000007645); draft genomes with a reference coverage of lower than 85% were 

removed from the dataset (“genome fraction” in the QUAST output; reference coverages of 

50 public S. epidermidis were all higher than 86%). Third, contigs with lower than 10X 

coverage, which contained potential contaminations based on taxonomic classification using 

Kraken (v0.10.6) (Wood and Salzberg, 2014) (Figure S1), were removed from the draft 

genomes. Finally, sample purity was checked by mapping sequencing reads back to the draft 

genomes using Bowtie2 (v2.3.1) (Langmead and Salzberg, 2012; Langmead et al.), and 

calling SNPs at sites with at least 10X coverage using bcftools (v1.8) and samtools (v1.8, 

vcfutils) (Li, 2011; Li et al., 2009). Samples with >10 sites having>0.5 allele frequencies of 

the variant alleles, which strongly indicated an admixture of S. epidermidis isolates, were 

removed from the dataset.

To validate the sequencing and quality filtering methods, S. epidermidis strain ATCC12228 

was sequenced, assembled and quality filtered as described above, and aligned to its 

published complete genome sequence (GCA_000007645) using QUAST (v4.2) (Gurevich et 

al., 2013). 99.2% of the bases in the resulting draft genome (2.54 Mbps in 95 contigs, 

N50=71,627) were aligned to the complete reference genome, representing 98.0% of the 

reference genome (“genome fraction” in the QUAST output), with a mismatch ratio of 

0.01%. Out of the five contigs (18,932 bps in total) unaligned to the reference genome, four 

(17,931 bps in total) were mapped to plasmids in S. epidermidis strains PM221 and 

FDAARGOS_153 (84% alignment coverage and 96% nucleotide sequence identity with 

BLASTN (Altschul et al., 1990), while the other contig (1001 bps) was mapped to 

Staphylococcus felis (98% alignment coverage and 81% nucleotide sequence identity with 

BLASTN). The unaligned regions could represent plasmid discrepancies in our ATCC12228 

strain stock and the stock sequenced to generate the complete genome, which was observed 

between two complete sequences of ATCC 12228 (MacLea and Trachtenberg, 2017; Zhang 

et al., 2003).

Time calibration ofphylogenetic tree and inference of transmission events—
Within-host evolutionary histories - including the time-calibrated phylogenetic trees and 

transmission events of all isolates from each of the five subjects - were inferred using 

BEAST (v1.8.4) (Suchard et al., 2018) based on the core-genome alignment constructed 
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using Parsnp (v1.2) (Treangen et al., 2014). Although the evolutionary dynamics of S. 
epidermidis has not been studied extensively, its close relative, Staphylococcus aureus, does 

exhibit a clock-like evolution (as an example, see Frisch et al., 2018). Therefore, we 

assumed that core-genome nucleotides of individualized S. epidermidis isolates change 

under a strict clock model implemented in BEAST, with nucleotide substitution rate 

modeled using the Generalized time reversible (GTR) model and uniform mutation rates 

across branches. As a validation, the mutation rates (nucleotide changes per Mbps per year) 

inferred based on the model (3.47±1.21 for p0, 1.47±0.68 for p1, 2.27±0.54 for p2, 

0.62±0.48 for p3, and 1.42±0.52 for p4) were on the same scale with the estimated mutation 

rate of Staphylococcus aureus (Duchene et al., 2016) (the mutation rate of S. epidermidis has 

not been estimated).

Previous studies have demonstrated that high rates of genome recombination (e.g. with a 

population-scaled recombination rate close to 1%) can influence demographic inference, 

while correction by removing homoplastic sites may even exacerbate the inference (Hedge 

and Wilson, 2014). Therefore, we estimated the population-scaled recombination rate using 

ClonalFrameML (v1.11) (Didelot and Wilson, 2015) with default parameters and a 

maximum-likelihood starting phylogeny constructed using RAxML (v8.2.12) (Stamatakis, 

2014), under the GTRCAT mode. The estimated population-scaled recombination rate was 

low (0.14%), therefore we proceeded to infer demographic parameters based on whole 

genome population genetics.

A coalescent tree prior was used with population sizes estimated based on a flexible 

Bayesian skyline plot (Drummond et al., 2005) with 10 windows. The prior probabilities of 

the population sizes in each window were assumed to be uniformly distributed between 0 

and 10100. Transmission between sites were estimated using a Bayesian discrete 

phylogeographic approach (Lemey et al., 2009) with symmetric transmission rates between 

each pair of skin sites. The approach reconstructed the skin site classification of ancestral 

nodes in the phylogeny using a standard continuous-time Markov chain, and “transmission” 

was consequently defined as the change in skin site classification along the phylogeny. 

Bayesian stochastic search variable selection (BSSVS) procedure was applied to limit the 

transmission rate parameters to only those that adequately explain the transmission process 

(Lemey et al., 2009). Finally, BEAST simultaneously infers all of the above evolutionary 

parameters using Markov Chain Monte Carlo (MCMC). To visualize transmission on a 

phylogeny, the maximum clade credibility tree was reconstructed using Treeannotator 

(v1.8.4) (Suchard et al., 2018) included in the BEAST package. Skin site classifications, 

along with the posterior probability, were mapped onto the phylogeny, and the final 

phylogeny was visualized as a cladogram using FigTree (v1.4.3) (Rambaut). To summarize 

the BSSVS results using a transmission map, the log file of BSSVS was analyzed using 

SpreaD3 (v0.9.6) (Bielejec et al., 2016). Transmission routes with posterior probabilities 

lower than 0.3 were removed, and the resulting transmission map was visualized using the 

D3 renderer in SpreaD3.

To assess the consistency of the transmission inference and validate the convergence of 

MCMC, we first ran two independent MCMC chains based on strains isolated from p0 

(n=460) for 500,000,000 and 50,000,000 generations, respectively. Each MCMC chain was 
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sampled every 25,000 generations, with the first 800 samples removed as burn-in. As the 

transmission maps inferred by the two chains were highly consistent (Figure S2D), strain 

transmission of p1-p4 was inferred based only on MCMC chains run for 50,000,000 

generations.

Pan-genome and core-genome identification—Gene coding sequences were 

predicted from the isolate genomes using Prokka (v1.11) (Seemann, 2014) with 

kingdom=Bacteria and genus=Staphylococcus. The pan- and core-genomes were identified 

from the predicted gene coding sequences using the Roary pipeline (v3.11.2) (Page et al., 

2015) at 80% identity threshold. The pan-genome and core-genome accumulation curves 

were computed with 10 iterations. A dendrogram demonstrating the clustering of isolate 

gene content (Figure 3C) was plotted using Figtree (v1.4.3) (Rambaut) based on the 

accessory gene presence-absence matrix (the accessory_binary_genes.fa.newick output from 

Roary). The core-genome alignment and SNP-based approximately-maximum-likelihood 

phylogeny were constructed using Parsnp (v1.2) (Treangen et al., 2014) with the reference 

genome randomly picked from the dataset (parameter -r !).

Prediction of recombination—Population-scaled recombination rate was estimated 

using ClonalFrameML (v1.11) (Didelot and Wilson, 2015) as described above. RDP4 (beta 

4.97) (Martin et al., 2015) was used to analyze the genome-wide recombination patterns. 50 

representative subject isolates were selected by dividing the full phylogenetic tree into 50 

clusters (mean cophenetic distance within each cluster = 0.004±0.008, generated using the 

cutree function in R) and randomly selecting one isolate from each cluster (the selected 

isolates were specified in Table S1). Core-genome alignment was then constructed for the 50 

representative subject isolates using Parsnp (v1.2) (Treangen et al., 2014) as described 

above. The alignment was then processed using RDP4 using six different algorithms (RDP 

(Martin and Rybicki, 2000), GENECONV (Padidam et al., 1999), Bootscan (Martin et al., 

2005), Maxchi (Smith, 1992), Chimaera (Posada and Crandall, 2001), and 3Seq (Lam et al., 

2018)) with default parameters to identify recombination events. Finally, recombination 

events that were identified by at least two methods were reported. The analyses were 

conducted with 50 representative isolates instead of the full dataset because 1) similar 

genome sequences (such as those within each of the 50 clusters) will have relatively low 

power in recombination detection, and 2) RDP4 compares all triplet combinations within a 

dataset to detect recombination signals and therefore takes polynomial time with respect to 

the number of genome sequences.

Significance of differential genes among sister isolates—Pairwise nucleotide 

differences between sister isolates were computed between sister isolates using MUMMER 

(DNAdiff, v1.3) (Kurtz et al., 2004). Differential genes were defined as gene clusters 

identified using the Roary pipeline (v3.11.2) (Page et al., 2015) that were only present in a 

subset of sister isolates but absent in the others. The significance (p-value) of a differential 

gene – the likelihood that the gene cluster was not found in a subset of sister isolates solely 

due to genome incompleteness – equals the joint probability that every sister isolate in that 

subset was incomplete. The incompleteness of the isolate genomes was estimated based on 

the presence or absence of lineage-specific marker genes using the default lineage_wf work 
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flow in CheckM (v1.0.12) (Parks et al., 2015). The resulting p-values were adjusted 

following the Benjamini-Hochberg procedure.

Prediction and analysis of phages and plasmids—Phage sequences were identified 

from the draft genomes using PHASTER (Arndt et al., 2016). Sequences annotated as 

“intact” phages were then clustered at 0.9 DNA sequence similarity using CD-HIT (local 

alignment with alignment coverage threshold of the shorter sequence=0.9) (Fu et al., 2012; 

Li and Godzik, 2006) to remove highly similar sequences. A dendrogram of the predicted 

phage sequences was generated based on the accessory gene presence-absence matrix (the 

accessory_binary_genes.fa.newick output from Roary), as the predicted phage sequences 

lacked colinear regions.

Plasmid candidates were predicted and filtered using multiple criterions. First, mobile-

element-like contigs were identified from all contigs (>1kb) in the 1482 draft genomes using 

PlasFlow (v1.1) (Krawczyk et al., 2018) - an artificial neural network-based plasmid 

prediction approach using sequence base compositions as features. Mobile-element-like 

contigs were then clustered at 0.9 DNA sequence similarity using CD-HIT (local alignment 

with alignment coverage threshold of the shorter sequence=0.9) (Fu et al., 2012; Li and 

Godzik, 2006) to remove highly similar contigs. For increased confidence, we focused on 

contigs with at least 5kb of length in this study. The predicted plasmid segments were then 

screened to remove potential chimeric sequences: first, sequencing reads of the 1482 S. 
epidermidis isolates were mapped to the candidate plasmid segments using Bowtie2 (v2.3.1) 

(Langmead and Salzberg, 2012; Langmead et al.) and the coverage of each candidate was 

computed using Samtools (v1.8, used for samfile to bamfile conversion and sorting) (Li et 

al., 2009) and Bedtools (v2.27.0, genomecov function) (Quinlan and Hall, 2010). A non-

chimeric plasmid segment would likely have either close to 0% or close to 100% of its 

sequence covered in a S. epidermidis isolate, depending on whether the segment is present 

or absent in that isolate. For simplicity, candidate plasmid segments with breadths of 

coverage greater than 80% or lower than 20% in over 90% of the isolates were selected for 

downstream analyses.

Similarity of the predicted plasmid segments to known plasmids was estimated by first 

aligning the predicted plasmid segments to the PLSDB plasmid database (release 

2018_12_05) (Galata et al., 2019) using dc-megablast (blastn 2.6.0+) (Altschul et al., 1990; 

Zhang et al., 2000), and then computing the total alignment length to the best-hit plasmid in 

PLSDB. Clusters of predicted plasmid segments were detected by first hierarchically 

clustering (the “hclust” function in R by euclidean distance) the predicted plasmid segments 

based on their prevalence across subpopulations, and then pruning the resulting dendrograms 

using the “cutreeDynamicTree” function in R package dynamicTreeCut (v1.63.1) 

(Langfelder et al., 2008) (using the “hybrid” method and deepSplit=4).

Alternatively, to identify contigs that represent segments of known plasmids, we aligned all 

S. epidermidis contigs to the PLSDB plasmid database (release 2018_12_05) (Galata et al., 

2019) using dc-megablast (blastn 2.6.0+) (Altschul et al., 1990; Zhang et al., 2000) and 

identified contigs that had an alignment coverage greater than 75%. These contigs were then 

clustered at 0.9 DNA sequence similarity using CD-HIT (local alignment with alignment 
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coverage threshold of the shorter sequence=0.9) (Fu et al., 2012; Li and Godzik, 2006) to 

remove highly similar contigs. Next, sequencing reads of the 1482 S. epidermidis isolates 

were mapped to the contigs using Bowtie2 (v2.3.1) (Langmead and Salzberg, 2012; 

Langmead et al.) and the coverage of each contig was computed using Samtools (v1.8, used 

for samfile to bamfile conversion and sorting) (Li et al., 2009) and Bedtools (v2.27.0, 

genomecov function) (Quinlan and Hall, 2010). A predicted plasmids contig with a breadth 

of coverage over 80% in an isolate were considered present in that isolate.

Annotation of COG categories and KEGG modules—COG functional categories 

were annotated using the eggNOG-mapper (v4.5.1) (Huerta-Cepas et al., 2016) with default 

options to prioritize sensitivity. Additional analyses of the unannotated toeweb genes were 

conducted by searching against the Pfam database (El-Gebali et al., 2019) using HMMER 

web server (Potter et al., 2018), and conducting enzyme EC number prediction using 

ECPred (Dalkiran et al., 2018). To annotate KEGG modules and compute module 

representation, gene sequences were first aligned to a downloaded prokaryotic KEGG gene 

database (release 2015–08-31) (UBLAST (Edgar, 2010) with an e-value threshold of 10−9 

and sequence identity cut-off of 0.5). Next, KEGG ortholog numbers (KO numbers) were 

assigned to the gene sequences using the ko_genes.list mapping file included in the 

downloaded KEGG gene database. Finally, the representation of KEGG modules was given 

by the proportion of KOs in each KEGG module that were found in a given genome, based 

on the ko_module.list mapping file. The KOs that had differential prevalence among subjects 

or skin sites were identified using ANOVA, with p values estimated using unrestricted 

permutation and adjusted under the Benjamini-Hochberg procedure.

Annotation of virulence factors and ABR genes—Known virulence factors were 

annotated by blasting gene sequences against the Staphylococcus-specific genes in VFDB 

(Chen et al., 2016), with the addition of four phenol-soluble modules (sequences based on 

Otto et al. (2004)), using UBLAST (USEARCH v8.0.1517) (Edgar, 2010) with an expect 

value (e-value) threshold of 10-9. ABR genes were annotated using the Resistance Gene 

Identifier (RGI, v4.2.2) based on the CARD database (v3.0.1) (Jia et al., 2017), with the 

low_quality mode and plasmid data-type. Presence of homologs of ABR genes in known 

plasmids were estimated by aligning the genes to the PLSDB plasmid database (release 

2018_12_05) (Galata et al., 2019) using dc-megablast (blastn 2.6.0+) (Altschul et al., 1990; 

Zhang et al., 2000) and identifying the best-hit alignment. Genes with sequence identity 

greater than 70% and coverage greater than 75% over the gene length were considered 

having homologs in known plasmids.

Annotation of BGCs—BGCs were identified using antiSMASH (Weber et al., 2015) with 

default parameters.

MIC test of selected antibiotics and isolates—Appropriate stock concentrations of 

selected antibiotics were prepared in TSB medium. Serial dilutions were made using TSB 

medium in a 96-well cell culture plate. Overnight cultures of selected S. epidermidis isolates 

were diluted in TSB medium and about ~105 cells were added to each well. The plate was 

Zhou et al. Page 20

Cell. Author manuscript; available in PMC 2021 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incubated on a shaker at 37°C for 18 hours and the growth of cells were determined by 

measuring the OD600.

Annotation and validation of agr sequences—The agr genes (agrA, agrB, agrC, and 

agrD) were annotated by blasting all genes in the subject isolates (predicted using Prokka 

v1.11 (Seemann, 2014)) to the three canonical types of agr sequences as described in Olson 

et al. (2014). Specifically, the agr gene sequences annotated in strains NIHLM095 

(GCF_000276545.1), NIHLM061 (GCF_000276445.1), and NIHLM037 

(GCF_000276325.1), were used as reference sequences for agr type I, II, and III, 

respectively. An agrABCD operon was assigned to one of the three canonical agr types if 1) 

the AIP was identical to one of the three AIP types as described in Olson et al. (2014), and 

in the same time 2) the agrB and agrC genes had the highest sequence similarity to the same 

agr type as the AIP. The identified agr gene sequences were assigned to one of the three 

types based on the best match. The secondary structure of the AgrC protein was predicted 

using the Jpred 4 web server (Drozdetskiy et al., 2015) with default options.

Transmembrane mutations in agrC genes were validated in five selected isolates (isolate 

ID=644, 700, 1026, 1203, and 1523, which represented the five mutation patterns shown in 

Figure 7B) using Sanger sequencing with primers S_epi_dupagrC_uni-F 

(CTGGAATTATAATCCTTTCTGC, forward) and S_epi_dupagrC_uni-R 

(GTAATCTGAAAGAGTGGTGAG, reverse) for all isolates except 0644 for which the 

forward primer was replaced with S_epi_dupagrC_66-F (TACGATTGTAATCCCTTCTGC, 

forward). Products of ~640 bp were purified and Sanger-sequenced.

For Pacific Biosciences SMRT sequencing, genomic DNA was extracted using GenElute 

Bacterial Genomic DNA Kit (Sigma-Aldrich) from pelleted bacterial cells from 0.5 ml of 

overnight cultures with the addition of lysostaphin (Sigma-Aldrich) according to the 

manufacturer’s protocol. DNA was sheared using a Megaruptor (Diagenode) to produce 

fragments with an average size of 6–8 kbp and further purified by binding to 0.45x AMPure 

beads. Sequencing libraries were prepared using SMRTbell Template Kit (PacBio) with 

barcoded SMRTbell adapters (PacBio). The resulting libraries were pooled for sequencing 

on a single SMRT cell on the Sequel system.

Analyses of quorum sensing interference—To determine the effect of mixture of agr 
types in natural populations on quorum sensing, six isolates of different agr types (isolate 71 

and 73 for Type I, 72 and 74 for Type II, and 78 and 79 for Type III), found at the same skin 

site in the same subject (right index in p0), were chosen to simulate a isolate composition in 

a natural population. The six isolates were grown individually and the supernatant of these 

cultures were mixed to simulate naturally-occurring populations. To account for influences 

of the relative abundances of the isolates, the following population supernatants were 

created: 1) Evenly mixed population supernatant: overnight culture from each of the six 

isolates was spun down, filter sterilized, and mixed in equal volume, and 2) population 

supernatant with the dominance of a single agr type: overnight culture from each of the six 

isolates was spun down, filter sterilized, and mixed such that the dominant agr type isolate 

supernatants composed 80% of the final volume and the supernatants from the remaining 

four isolates composed 20% of the final volume, equally). Next, the expression levels of ecp 
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in three isolates representing three agr types (isolate 71 for Type I, 72 for Type II, and 78 for 

Type III) when exposed to self and the population supernatants were determined using RT-

qPCR. Additionally, to illustrate the effect of agr type mixture on global gene expression, we 

performed RNA-seq on a randomly chosen isolate (isolate 71) grown in self supernatant, no 

supernatant, and evenly mixed population supernatant. As controls, self-supernatants were 

diluted to the concentration of that agr type in the population mixture.

To investigate whether the newly identified Type IV agr can interfere with the quorum 

sensing of canonical agr types (Type I-III), agr isolates of Type I-III were grown separately 

either in the presence of Type IV spend media supernatant (from isolate 0644) or without the 

addition of any supernatant. Conversely, to test conditions that can potentially influence the 

quorum sensing of Type IV agr, an agr Type IV isolate (isolate 0644) was grown in the 

presence of Type I-III supernatant, without additional supernatant, or with self-supernatant, 

respectively. After the growth assays, the expression levels of ecp were determined using 

RT-qPCR.

Growth assays for all of the RT-qPCR and RNA-seq experiments were performed as 

following: One isolate of each agr Type I-IV (isolate 71, 72, 78, and 0644) was grown 

individually overnight, back diluted 1/100 in TSB, grown to an OD600 of ~ 0.8, and back-

diluted again to a starting OD600 of 0.05 in TSB with 10% supernatant by volume. No 

supernatant controls were grown in 100% fresh TSB. Sampling was performed at the start of 

the assay: aliquots were spun down, resuspended in Trizol, and froze at −80 C prior to RNA 

extraction for a zero-hour time point. The cultures were grown for four hours at 37 C and 

sampling was performed again, as described above. The experiment was performed with 

biological triplicates.

RNA extraction, RT-qPCR and RNA-seq—Cultures were mechanically lysed in Trizol 

via bead-beating with 0.1mm glass beads and RNA was isolated using a combination of 

Trizol/chloroform and on-column isolation using the Qiagen RNeasy Kit. Briefly, 

chloroform was added to the lysate, spun down, and the RNA in the organic layer was 

precipitated with 70% ethanol prior to washing (RW1 and RPE buffers, according to kit 

instructions) and elution on the RNeasy column. According to kit instructions, on-column 

DNAase was performed with the Qiagen RNase-free DNase kit. RNA concentration was 

measured via Qubit and the quality assessed via Agilent Tapestation. For RT-qPCR 

experiments, RNA was normalized and reverse transcribed into cDNA (Applied Biosystems 

High Capacity cDNA Reverse Transcription Kit). RT-qPCR was performed using the SYBR 

Power UP kit with ecp as the target gene and ftsZ as an internal control, according to kit 

instructions. For RNA-seq experiments, RNA was prepared for sequencing using the 

NEBNext rRNA Depletion Kit (Bacteria) (pre-release) and NEBNext Ultra II Directional 

RNA Library Prep Kit for Illumina kit according to kit instructions and sequenced on the 

Illumina NextSeq to a depth of 4–9.5 million reads.

Comparison of transcript levels—For RT-qPCR, each growth assay was performed in 

biological triplicate in parallel. RT-qPCR results were analyzed using the comparative Ct 

analysis method (Schmittgen and Livak, 2008). First, Ct values of technical replicates 

(qPCR replicates from the same cDNA sample; n=2 for evenly mixed cultures and n=3 for 
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uneven-mix experiments) were averaged. ddCt values were then calculated for each sample 

by subtracting the dCt of the zero-hour time point from the dCt value of the four-hour time 

point and relative quantification values were derived from the ddCt values (2−ddCt). 

Statistical significance was tested on the ddCt values using Welch’s t-test.

For RNA-seq, the growth assay was performed in biological triplicate in parallel. Gene 

coding sequences of isolate 71 was first annotated using RAST, before sequencing reads 

were aligned to the gene sequences using Bowtie2 (v2.3.1) (Langmead and Salzberg, 2012; 

Langmead et al.) under very-sensitive mode. The output sam files were filtered to include 

only uniquely mapped reads (with the option “-q 1” in Samtools v1.8 (Li et al., 2009)), 

converted to bam files, sorted, and indexed using Samtools (v1.8) (Li et al., 2009). The raw 

count of reads aligned to each gene was computed using featureCounts (v1.5.2) (Liao et al., 

2014) with default arguments. Differentially expressed genes were identified using the 

DESeq2 package (Love et al., 2014) (Benjamini-Hochberg adjusted p-value of < 0.05) in R 

using the standard differential expression analysis workflow. Based on the DESeq2 results, 

the differentially abundant KEGG pathways were consequently inferred using the GAGE 

package (v2.28.2) (Luo et al., 2009) and visualized using the Pathview package (v1.18.2) 

(Luo and Brouwer, 2013).

mWGS quality filtering and taxonomic profiling—Sequencing adapters and low 

quality bases were removed from the mWGS reads using scythe (v0.994) (Buffalo) and 

sickle (v1.33) (Joshi and Fass), respectively, with default parameters. Host reads were 

removed by mapping all sequencing reads to the hg19 human reference genome using 

Bowtie2 (v2.3.1) (Langmead and Salzberg, 2012; Langmead et al.), under “very-sensitive” 

mode. Unmapped reads (i.e., microbial reads) were used to estimate the relative abundance 

profiles of the microbial species in the samples using MetaPhlAn2 (Segata et al., 2012; 

Truong et al., 2015).

mWGS assembly and gene prediction—Metagenomic genes were predicted from the 

mWGS samples using a method derived from (Zhou et al., 2019). mWGS reads from all skin 

microbiome samples were pooled and assembled de novo using MEGAHIT (v1.0.6) (Li et 

al., 2015, 2016) with default parameters. The resulting contigs were filtered by length 

(contigs no shorter than 1kb were kept) before genes were predicted from the contigs using 

prodigal (v2.6.3) (Hyatt et al., 2010) under the “meta” mode. Predicted genes were clustered 

at 90% DNA sequence identity using UCLUST (the cluster_fast algorithm in USEARCH 

v8.0.1517, which sorts the gene sequences by length, conducts global alignments, and then 

trims terminal gaps before computing sequence identity (Edgar, 2010)) to remove redundant 

gene sequences. Next, the predicted metagenomic genes were blasted to the S. epidermidis 
pan-genome using UBLAST (USEARCH v8.0.1517 (Edgar, 2010)) with an e-value 

threshold of 10−9, and metagenomic genes with a DNA sequence identity >95% to any S. 
epidermidis genes were excluded, resulting in a catalog of 502,145 non-S. epidermidis 
metagenomic genes.

To estimate the coverage of the metagenomic genes in the microbiome samples, mWGS 

reads were mapped to the metagenomic genes using Bowtie2 (v2.3.1) (Langmead and 

Salzberg, 2012; Langmead et al.) and the coverage was computed using Samtools (v1.8, 
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used for samfile to bamfile conversion and sorting) (Li et al., 2009) and Bedtools (v2.27.0, 

genomecov function) (Quinlan and Hall, 2010).

Linear association between microbiome features and S. epidermidis gene 
prevalence—Microbiome species with a mean relative abundance lower than 0.0001, and 

metagenomic genes with a mean coverage lower than 0.000001 reads per base per mWGS 

read sampled were excluded from downstream analyses. Next, microbiome species and 

genes were further filtered based on variability (excluded features with a coefficient of 

variation lower than 0.05) and sparsity (excluded features with non-zero abundance/coverage 

in more than 20% of the samples). Similarly, S. epidermidis genes that had a coefficient of 

variation lower than 0.05 or with non-zero abundance/coverage in more than 20% of the 

samples were not used for the analysis.

We then reduced the dimensionality of the microbiome species abundance profiles and the 

microbiome gene coverage profiles using principal component analyses (prcomp in R): the 

first 3 principal components that explained 82% of the variation in species abundance 

profiles, and the first 2 principal components that explained 90% of the variation in the gene 

coverage profiles were used to represent the microbiome species and gene compositions, 

respectively. Next, the influence of the microbiome species composition, or the microbiome 

gene coverage, on the prevalence of S. epidermidis gene content (i.e. the proportion of S. 
epidermidis isolates that carried the gene) were modeled separately, each using a linear 

model:

y = ∑
i = 1

n
aiPCi + bP + cS + eT + dP × S + ε

where y is the observed prevalence of a given gene, PCi is the ith principal component (out 

of a n=3 principal components for microbiome species and n=2 principal components for 

microbiome genes), P denotes the subject, S denotes the skin site, T denotes the sampling 

time point, × denotes interaction effect, and s is the residual error. The p-values (of the 

adjusted partial R2 of the principal components) were estimated using unrestricted 

permutation, permutation restricted within-subject, and permutation restricted within 

subject×site, of the observed S. epidermidis gene prevalence before adjusted under the 

Benjamini-Hochberg procedure. Finally, S. epidermidis genes that were significant under all 

of the permutation tests were reported.

S. epidermidis gene prevalence prediction using a recursive partitioning tree 
model—We used a recursive partitioning tree model (implemented in the R package rpart 

v4.1.15 (Therneau and Atkinson, 2019)) to extract potentially non-linear relationships 

between microbiome/skin site features and S. epidermidis gene prevalence (Figure S7E).

One limitation of our dataset is that only about 10 S. epidermidis isolates were sampled per 

skin site per subject, and thus the gene prevalence estimated based on this relatively small 

sample can approximate but may not accurately reflect the actual gene prevalence at the 

sample location. Therefore instead of training a regression tree to predict the numerical 
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value of gene prevalence, we binned the gene prevalence into four levels (prevalent – gene 

prevalence ∈[0.75, 1], likely prevalent - gene prevalence ∈[0.5, 0.75), likely absent – gene 

prevalence ∈[0.25, 0.5), and absent – gene prevalence ∈[0, 0.25)) and trained a classification 

tree to predict the prevalence level. To balance the representation of prevalence levels, we 

only considered S. epidermidis genes that had exhibited all four prevalence levels across the 

samples.

Feature vectors were generated based on microbiome species abundances, microbiome gene 

coverages, and skin site specifications (Figure S7E). The microbiome species and gene 

profiles were filtered based on abundance/coverage and variability as described in the 

previous section, but were not screened based on sparsity as no significance tests were 

conducted. The microbiome gene profiles were then rescaled proportionally such that they 

share the same maximum and minimum values with the microbiome species profiles. Next, 

the microbiome species and gene profiles were combined before subjected to dimensionality 

reduction using principal component analyses (prcomp in R). For a given sample, we 

generated 15 feature vectors, each containing 1) the sampled skin site, and 2) the top x 

principal components (x=1, 2, …, 15), which explained 37% - 90% of the variation in the 

microbiome features (Figure S7E).

The dataset was divided into a training set (80% of the samples randomly chosen from p0, 

p1, p2, and p4), a validation set (the rest 20% of the samples from p0, p1, p2, and p4), and a 

test set (all samples from p3). For a given S. epidermidis gene, 15 recursive partitioning tree 

models were trained based on the 15 feature vectors, respectively, and evaluated based on 

their predictability – the probability of making correct prediction:

Predictability = ∑
l = 1

4
IlPrl

where l indicates the four levels of prevalence, Il is an indicator variable which equals 1 if 

level l is the observed prevalence level, and equals 0 otherwise. Prl is the probability of level 

l: for prior predictability, Prl equals the observed frequency of level l in the training set; for 

posterior predictability, Prl equals the “class probability” of level l given by the predict.rpart 

function. For a given S. epidermidis gene, the best model showing the highest posterior 

predictability based on the validation set was selected for downstream analysis. To separate 

the predictability due to skin site specification and the predictability due to the inclusion of 

microbiome data, we trained an additional set of recursive partitioning tree models with a 

similar approach but using only the skin site specification as the feature (that is, not 

including any microbiome features). Presence of homologs of S. epidermidis genes in 

known plasmids were estimated by aligning the genes to the PLSDB plasmid database 

(release 2018_12_05) (Galata et al., 2019) using dc-megablast (blastn 2.6.0+) (Altschul et 

al., 1990; Zhang et al., 2000) and identifying the best-hit alignment. Genes with sequence 

identity greater than 70% and coverage greater than 75% over the gene length were 

considered having homologs in known plasmids.
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QUANTIFICATION AND STATISTICAL ANALYSES

Cophenetic distance was computed using the “cophenetic.phylo” function in the R package 

ape (v5.3) (Paradis and Schliep, 2019). Pielou’s evenness index (J) was given by:

J = H
lnS

where H is the Shannon’s diversity index computed using the R package vegan (v2.5.3) 

(Oksanen et al., 2018), and S is the total number of classes (in the case of the prevalence 

levels, S=4). FST was computed using:

FST =
πbetween − πwitℎin

πbetween

where πbetween and πwithin respectively represent the average between-subpopulation and 

within-subpopulation pairwise gene content difference – the average proportion of genes that 

were present in only one isolate out of a pair of S. epidermidis isolates.

All significance tests, unless noted otherwise, were conducted in R (v3.2.3) with standard 

libraries. Hartigan’s dip test was conducted using the R package diptest (v0.75.7) (Maechler, 

2016) with p values estimated via the implemented linear interpolation method. 

PERMANOVA was conducted using the “adonis” function in the R package vegan (v2.5.3) 

(Oksanen et al., 2018), with subject, skin site, and their interaction term used as the 

covariates. Adjustment for false discovery rate was conducted following the Benjamini-

Hochberg procedure (R function p.adjust with method=“BH”). To test the 

underrepresentation of agr type III in p2 and type II in p4, we modeled the null hypothesis 

assuming that the sampling of agr types in the two subjects were Bernoullian, with the 

success rates given by the overall frequencies of the agr types in all 1482 subject isolates, 

and the number of trails given by the total number of S. epidermidis isolates sampled from 

the subjects. Therefore, the p-value can be given by the cumulative binomial distribution 

function:

P = ∑i = 0
k n

i fi(1 − f)n − i

where k is the observed number of S. epidermidis isolates in the subject with the agr type of 

interest, n is the total number of S. epidermidis isolates sampled from the subject, and f is 

the overall frequency of the agr type of interest in all 1482 subject isolates.

Permutation was implemented using a custom R script. Briefly, for linear models, a test 

statistics was first computed from an observation, before a total of at least 1000 permutations 

(unless noted otherwise) were generated by shuffling the dependent variable. The p-value 

was then expressed as the proportion of permutations yielding a larger test statistics than the 

observed test statistics. For ANOVA, the F statistics was used as the test statistics in the 

permutation. For generalized linear model, which was used to test association between 

microbiome features and S. epidermidis gene prevalence, the adjusted partial R was used as 
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the test statistics. For cases other than linear models, permutations were generated by re-

distributing labels of the data. Specifically, to test the significance of temporal fluctuation in 

S. epidermidis gene content, permutations were generated by reassigning the time points 

among subject isolates sampled from the same skin site of the same subject (i.e. the same 

subpopulation), while the test statistics was given by the proportion of shared pan-genomes 

across time points.

DATA AND CODE AVAILABILITY

The datasets generated during and/or analyzed during the current study, as well as custom 

codes to analyze the data, are available from the corresponding author on reasonable request. 

Genomes will be deposited in Genbank and metagenomic sequence reads in SRA under 

BioProject PRJNA559376 and PRJNA558989.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• S. epidermidis strains within-individual are diverse and evolved from multiple 

founders

• Strain diversity is shaped by purifying selection and transmission events

• Strain admixture can suppress virulence and alter metabolism at a population 

level

• Horizontal gene transfer disseminates antibiotic resistance genes within 

individuals
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Figure 1. 
Phylogenetic variation of the individualized S. epidermidis isolates. A, two alternative 

scenarios of within-individual evolution. Each circle represents a cluster of isolates diverged 

from a single founder lineage colonizing a given host. In the first scenario (left), all isolates 

from a given host diverged from a single founder lineage; in the second scenario (right), 

isolates from each host diverged from multiple distinct founder lineages. B, core-genome 

phylogeny (midpoint rooted) based on 58498 core-genome SNP loci for the 1482 isolates 

sampled in this study and 50 previously sequenced isolates from multiple diseased and 
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healthy individuals. Skin site of each isolate is indicated in green. C, individualized S. 
epidermidis isolates evolved from multiple founder lineages. Each founder lineage is 

represented by a circle and is defined as the highest node from which at least 95% of the 

derived isolates (i.e. tip nodes) were either found in the same subject or public strains. The 

size of the circle represents the number of isolates derived from that lineage. D, pairwise 

cophenetic distances of the 1482 isolates. Note that the distribution of ‘between-subject’ 

distances depends on the sample size per subject, with p0, who had the most isolates 

cultivated, having the largest contribution. The toeweb is highlighted to illustrate its unusual 

between-subject similarity.
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Figure 2. 
Subject-specific transmission patterns of S. epidermidis isolates. A, proportion of sister 

isolates shared between two skin sites. B, transmission map summarizing the BEAST 

analysis. Colors of the lines connecting skin sites show the posterior probability that the 

transmission rate between the two sites was not 0. Lines with posterior probabilities < 0.3 

were removed for better visualization. See also Figure S2.
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Figure 3. 
Gene content diversity of the subject isolates. A, gene accumulation curves for the subject-

specific pan-genomes (5476–6436 gene clusters) and core-genomes (954–1325 gene 

clusters), or that of the 50 public isolates, as a function of the number of sequenced isolates. 

Error bars show the standard deviation for 10 simulations. B, shared vs. unique subject-

specific pan- and core-genes in the subject isolates and public strains. C, diversity of the 

subject isolates based on presence and absence of accessory genes. Leaf nodes are colored 

by the skin site of origin; the background color indicates the subject. A cluster containing 

toeweb isolates from all five subjects is highlighted in purple. D, the distribution of S. 
epidermidis genes in p0 with respect to their variability across skin sites (see Figure S3D for 

other subjects). An example cluster of genes with high variability is highlighted with a red 

box (boundaries arbitrarily selected), and their prevalence shown in the heatmap. Each row 

in the heatmap represents a unique S. epidermidis gene, and the row and column hierarchical 

clusters were generated based on Euclidean distances. E, the COG functional categories of 

representative toeweb genes (i.e. present in >40% of the toeweb isolates but <10% in any of 

the other skin sites, n=28). See also Figure S3 and Table S3.
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Figure 4. 
Diversification of sister isolates driven by potential HGT events. A, gene content 

heterogeneity – the proportion of genes that are only found in one isolate of a pair of isolates 

– as a function of pairwise core-genome nucleotide differences. For visualization, the plot 

includes only 10000 randomly sampled data points. Gene content heterogeneity between 

sister isolates are highlighted with a blue box. B, functional annotation of the differential 

genes. All differential genes were mapped to KEGG orthologs (the annotations of the KEGG 

orthologs were shown when available) and their prevalence within sister isolate groups is 
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shown. The p-value shows the probability of observing the differential prevalence solely due 

to genome incompleteness. The error bars show the standard deviation across sister isolate 

groups. C, presence of differential genes in the 20 unique mobile-element-like contigs 

identified using PlasFlow. The heatmap shows the fraction of nucleotides in the mobile-

element-like contigs that was aligned to the 25 chromosome-like contigs identified 

containing differential genes. The error bars show the standard deviation across sister isolate 

groups. Two predicted phage sequences (nearly 100% alignment over contig length) are 

indicated by arrows. D, gene content of the predicted phage sequences indicated in Figure 

4C. Note that the sequences are visualized in a circular layout but are not necessarily circular 

DNAs. See also Figure S4 and Table S4.
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Figure 5. 
ABR genes encoded by predicted S. epidermidis plasmids. A, prevalence of predicted 

plasmid segments (i.e., the proportion of isolates carrying the predicted plasmid segments) 

across subjects and skin sites. The row and column hierarchical clusters were generated 

based on Euclidean distances. This panel is related to Figure S5B, which uses a different 

plasmid prediction method. B, prevalence of predicted plasmid-encoded ABR. The heatmap 

shows the number of predicted plasmid segments that conferred resistance to both the row 

and the column antibiotics. C, host-specific distribution of predicted MDR plasmid 

segments. The ABR genes (and the respective antibiotics they confer resistance to) encoded 

by two predicted MDR plasmid segments are shown. Note that sequences are visualized in a 

circular layout but were not gap-closed. D, MIC50 and MIC90 of selected antibiotics and 

their association with predicted plasmid-encoded ABR genes. Two isolates (0995 and 1085) 

that conferred resistance to all six tested antibiotics were indicated by purple arrows. See 

also Figure S5 and Table S5.
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Figure 6. 
Variability at the agr locus and variation in predicted virulence expression. A, novel 

sequence types of the agrABCD operon and prevalence across the relevant subjects and skin 

sites. Amino acid sequences of the two novel agrD genes, verified with Pacbio sequencing, 

are shown. B, quorum sensing interference of agr Type I-III isolates by Type IV supernatant. 

ddCt values were obtained by subtracting dCT values measured at zero hours from dCT 

values measured at four hours. *: Welch’s t-test on ddCt values p < .05. **: Welch’s t-test on 

ddCt values p < 0.01. At least 3 biological replicates were performed for each experiment. 
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C, quorum sensing interference of an agr Type IV isolate by Type I-III supernatant, as in B. 

D, distribution and dominance type frequency of the three canonical agr types (Type I-III) 

across subjects and skin sites. E, quorum sensing interference of agr Type I-III isolates by 

population supernatant generated by mixed cultures, as in B. F, S. epidermidis operons 

showing significantly lower expression levels with the presence of population supernatant.*: 

Welch’s t-test on ddCt values p < .05. **: Welch’s t-test on ddCt values p < 0.01. See also 

Figure S6 and Table S6.
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Figure 7. 
Association of S. epidermidis gene prevalence with contextual environment. A, S. 
epidermidis genes whose prevalences were significantly associated with at least one of the 

principal components that described microbiome composition. B, function and plasmid 

association of the microbiome-dependent S. epidermidis genes. The COG functional 

categories (upper) of the top 20 genes that had the greatest increase in predictability when 

including skin site specification or microbiome features are shown, as well as their presence 
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in predicted (via PlasFlow) and known (via PLSDB) plasmids (lower). See also Figure S7 

and Table S7.
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