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Abstract

Injuries to articular cartilage and menisci can lead to cartilage degeneration that ultimately results 

in arthritis. Different forms of arthritis affect ~50 million people in the USA alone, therefore it is 

crucial to identify methods that will halt or slow the progression to arthritis, starting with the 

initiating events of cartilage and meniscus defects. The surgical approaches in current use have a 

limited capacity for tissue regeneration and yield only short-term relief of symptoms. Tissue 

engineering approaches are emerging as alternatives to current surgical methods for cartilage and 

meniscus repair. Several cell-based and tissue-engineered products are currently in clinical trials 

for cartilage lesions and meniscal tears, opening new avenues for cartilage and meniscus 

regeneration. This Review provides a summary of surgical techniques, including tissue-engineered 

products, currently in clinical use, as well as a discussion of state-of-the-art tissue engineering 

strategies and technologies that are being developed for use in articular cartilage and meniscus 

repair and regeneration. The obstacles to clinical translation of these strategies are also included to 

inform the development of innovative tissue engineering approaches.
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Introduction

Arthritis is a debilitating condition that affects >50 million adults in the USA; a prevalence 

that is projected to rise by ~60% in the next two decades1. Osteoarthritis (OA), the most 

common type of arthritis2, is associated with pain and loss of joint function. Although the 

aetiology of OA can be idiopathic, the disease is often characterized by cartilage 

degeneration in articulating joints as a result of ‘wear and tear’ or injury, including sports-

related injuries. For example, in one study, individuals who sustained potentially cartilage-

damaging knee injuries were 7.4 times more likely to develop OA than those who had not 

sustained knee injuries3. Meniscus and anterior cruciate ligament (ACL) tears can also 

contribute to the development of OA because damage to these structures alters joint 

loading4,5; OA occurs 10–20 years post-injury in ~50% of patients who sustain meniscal or 

ACL tears5. Globally, knee and hip cartilage degeneration is one of the leading causes that 

contribute to disability6. Rheumatoid arthritis (RA), the second most common type of 

arthritis, is a chronic autoimmune disease characterized by inflammation and deterioration 

of joints that results in loss of function, and affects 1.3 million adults in the USA7. 

Worldwide, arthritides such as OA and RA present a substantial burden to the healthcare 

system8,9.

Despite the pervasiveness of OA, most current treatments are palliative and do not prevent 

further joint degeneration10. Likewise, treatments for RA often reduce joint inflammation 

without treating cartilage damage11. Ultimately, many patients with arthritis will require 

total joint arthroplasty, an invasive end-stage treatment that uses implants that wear-out over 

time. Current surgical strategies for cartilage repair are designed to treat small cartilage 

defects and are not directly indicated for use in inflamed joints, such as occur in RA. 

However, using tissue engineering strategies, which focus on the complete regeneration of 

articular cartilage12,13 and menisci14,15, researchers can potentially create neotissue that has 

been fortified to withstand immune-mediated degeneration. Thus, in the future, tissue 

engineering strategies could offer new therapeutic avenues for patients with RA before total 

joint arthroplasty is indicated.

In this Review, we begin by discussing current surgical techniques, including tissue-

engineered treatments, defined here as cell-based (scaffold-free and scaffold-based) 

therapies, for the repair of articular cartilage and meniscus lesions. We then discuss advances 

in tissue engineering research for articular cartilage and menisci repair, including novel 

scaffold-based and scaffold-free approaches, promising sources of cells for cell-based 

therapies and emerging data on biochemical and biomechanical stimuli. We also present data 

on cell-based tissue-engineered products for cartilage regeneration currently in development. 

Finally, we discuss scientific and regulatory obstacles to the clinical translation of tissue-

engineered technologies, as well as future directions to encourage researchers in the field to 

overcome these challenges.
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Current surgical strategies

Repairing articular cartilage defects

Articular cartilage is located at the ends of articulating bones and provides a low-friction 

surface to support joint movement. It is composed of predominantly type II collagen and 

proteoglycans (e.g., glycosaminoglycans), is avascular with low cellularity (Fig 1a), and, 

therefore, has a low healing capacity.

Clinicians encounter articular cartilage damage in more than half of knee arthroscopies 

performed as a result of injury or symptoms of cartilage damage16,17. Specifically, chondral 

(defects that do not penetrate into the subchondral bone) and osteochondral (defects that 

penetrate into the subchondral bone) lesions were found in 61% of patients surveyed (Fig 

1a)12. Because cartilage defects are often asymptomatic18, careful assessment is required to 

determine whether the lesion is the source of pain in an individual. Current surgical 

strategies aim to repair small (<4cm2) cartilage defects to prevent further degeneration and 

progression toward OA (Fig. 1b). Cartilage repair strategies for the knee are well-established 

and produce improvements in clinical outcomes for patients19,20. However, repair of hip 

cartilage is less frequently performed than repair of knee cartilage. The use of bone marrow 

stimulation, grafting and cell-based techniques for articular cartilage repair are discussed in 

the following section.

Bone marrow stimulation and augmentation.—Bone marrow stimulation techniques 

for small (<4cm2), contained defects have evolved from open debridement of damaged 

cartilage and removal of subchondral bone to the Steadman microfracture technique21, in 

which the calcified cartilage is removed and an awl is used to create perforations in the 

subchondral plate. Bone marrow released into the defect forms a blood clot, which might 

ultimately lead to the formation of fibrocartilage. Unlike hyaline cartilage, fibrocartilage is 

rich in type I collagen and is of limited durability; individuals treated with microfracture 

showed initial clinical improvement after surgery, but had an accelerated decline in clinical 

outcome scores and a higher failure rate compared with those treated with osteochondral 

autograft treatment at long-term follow-up22,23. To overcome the shortcomings of 

microfracture, augmented bone marrow stimulation techniques were subsequently 

developed, including the concomitant injection of biologics (e.g., growth factors, such as 

bone morphogenetic protein 4 or 7), the use of acellular scaffolds (such as collagen 

membranes) or liquid hydrogels, and the use of micronized acellular cartilage extracellular 

matrix from allografts24. However, more high-quality studies are needed to demonstrate the 

superiority of augmented bone marrow stimulation techniques over other established 

procedures, such as microfracture or autologous chondrocyte implantation (ACI)25.

Autografts and allografts.—Osteochondral autograft transfer delivers viable, mature 

hyaline cartilage–bone units into chondral defects. These osteochondral grafts can bear load 

in the early post-operative period, enabling faster rehabilitation compared to other, currently 

available, cell-based cartilage repair strategies26. Osteochondral autograft transfer involves 

the harvesting of ‘plugs’ from regions of the distal femur that bear low loads (such as the 
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intercondylar notch or medial or lateral trochlea) and, therefore, its use is reserved for small 

chondral defects (<2cm2) owing to limited graft availability27.

The avascular nature of cartilage renders it immune privileged28, thereby opening up the 

potential for allogenic approaches. Osteochondral allograft transplantation does not have the 

donor site limitations of osteochondral autograft transfer and can be used in revision 

surgeries of failed cartilage repair, making osteochondral allografting an appealing 

technique, although the availability of allograft tissue limits the use of this technique. 

Matching allografts to the shape and contours of the native knee architecture can also be 

difficult to achieve, potentially creating biomechanical loading imbalances and resulting in 

degenerative joint changes29,30. Techniques to improve the viability of chondrocytes in fresh 

osteochondral allografts and to accelerate the remodelling of graft tissue into host tissue are 

continually being investigated because both factors seem to be important for the longevity of 

the transplanted allograft31,32.

Both osteochondral autograft transfer and osteochondral allograft transplantation have 

produced high rates of long-term graft survival, as well as high degrees of reported patient 

satisfaction and return-to-play among athletes26,33–35. For example, a 2016 systematic 

review found that ~90% of patients who underwent osteochondral autograft transfer had 

good or excellent outcomes <10 years post-surgery19. Another study showed that the 

survival of fresh osteochondral allografts was 82% at 10 years post-transplantation and 66% 

at 20 years post-transplantation33. Cryopreserved osteochondral allografts (Cartiform), fresh 

osteochondral allografts (ProChondrix) and particulated juvenile allograft cartilage (DeNovo 

NT), processed by laser cutting or mincing, have also been used to treat articular cartilage 

defects36; however, short-term and long-term data need to be collected to determine the 

clinical success of these products.

Cell-based techniques.—Current cell-based cartilage repair techniques enable the 

implant to be contoured to the recipient defect, making these techniques attractive for 

treating large (>3–4cm2) chondral lesions in areas with variable topographies, such as the 

patellofemoral joint or acetabulum. Autologous chondrocyte implantation (ACI) requires 

two surgeries; chondrocytes are harvested from healthy articular cartilage in one operation 

and are then re-implanted into the chondral defect in a second surgery after expansion in 

culture. A newer iteration of this technique known as matrix-induced ACI (MACI) 

incorporates seeding of the chondrocytes onto a scaffold before implantation37. Patients 

treated with MACI have reported substantial long-term improvements in knee function and 

high rates of patient satisfaction38,39. In one study, at 5 years post-surgery, 93% of patients 

expressed satisfaction with their postoperative pain relief, 90% of patients had an improved 

ability to perform daily activities and 80% of patients were able to participate more in sports 

compared with before the operation38. However, procedures that require only one surgery 

are currently more appealing for clinicians than ACI or MACI.

Repairing meniscus defects

Two semicircular, wedge-shaped menisci are located between the distal femur and the tibial 

plateau and serve to distribute loads and protect articular cartilage. Each meniscus has two 
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distinct regions (Fig 2a): 1) the outer, vascular, neural region (red-red zone) which contains 

elongated fibroblast-like cells and predominantly type I collagen and 2) the inner, avascular, 

aneural zone (white-white zone) which contains rounded chondrocyte-like cells 

(fibrochondrocytes) and predominantly type II collagen. These two zones are separated by 

the ‘red-white’ zone which has characteristics of both the ‘red-red’ zone and ‘white-white’ 

zone. The meniscus functions by distributing load through its circumferentially aligned 

collagen fibers (Fig 2a). Meniscus tears disrupt this function; however, only a small portion 

of tears are considered repairable on the basis of tissue vascularity, tear pattern, anatomic 

location and tear acuity (Fig 2b). For example, vertical longitudinal tears residing within the 

‘red-red’ or ‘red-white’ zones of the meniscus are often amenable to repair40. Horizontal and 

radial tears are thought to rarely heal owing to incursion into the avascular ‘white-white’ 

zone. Furthermore, radial tears disrupt the circumferential collagen fibers that are critical for 

maintaining hoop stresses, whereas circumferential vertical or horizontal tears can leave the 

meniscus with the potential for residual functionality because these tears follow the 

circumferential collagen fibers. The length, depth and size of tear, as well as joint stability 

and other patient-related factors such as age and symptoms also affect healing41,42. Despite 

our understanding of the crucial function of the meniscus in knee biomechanics, partial 

meniscectomy to remove unstable, damaged portions of the tear remains the gold standard 

for surgical treatment of meniscus tears and accounts for half of the knee arthroscopic 

procedures performed in the USA43. However, both partial and total meniscectomy are 

linked to the development of knee OA44, a fact that provides motivation for the development 

of novel interventions such as cell-based regenerative therapies.

Reduction of meniscal tears.—Lesions in the meniscus that are mechanically unstable, 

complex or of a degenerative nature are conventionally treated with partial meniscectomy; 

however, attempts to reduce meniscal tears instead of perform partial meniscectomy have 

become more common within last 15 years45 (Fig 2c). Meniscus defect reduction (often 

described by clinicians as meniscus repair) is usually accomplished by closure of the tear 

with sutures and/or anchors. For example, suturing of defects in the red-red and red-white 

zones led to satisfactory clinical healing in 76% of patients with meniscal tears46. Tear 

reduction also resulted in meniscus preservation without degeneration in young patients 

aged between 16 and 52 years47,48. Meniscal tear reductions that take place with concurrent 

ACL reconstructions have superior healing rates than meniscal tear reductions alone49, 

potentially owing to the intra-articular release of cells and growth factors from the bone 

marrow that occurs when drilling a bone tunnel during ACL reconstruction50. arameters 

affecting meniscus repair are probably multifactorial, but biological augmentation 

techniques, such as mechanical stimulation of the adjacent synovium or meniscus by rasping 

or radial trephination51,52, the addition of an exogenous fibrin clot53 or the introduction of 

bone marrow stem cells by marrow venting54, are thought to promote healing.

Allografts.—Meniscus allograft transplantation is the only option for total meniscus 

replacement, and is widely performed following total or near total meniscectomy (Fig 2d). 

Allograft transplantation is indicated in patients who have a stable, correctly aligned joint 

and, at most, early knee OA55. Meniscus allografts can be inserted with several forms of 

attached bone, such as bone plugs, common bone bridge or a hemi-plateau, or without 
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attached bone56. In particular, meniscus fixation using bone plug demonstrates superior load 

transmission compared with not using bone plugs.56 Appropriate allograft sizing to the 

recipient knee56 is also an important factor for tissue healing57 and for the preservation of 

knee biomechanics58. Allograft recipients have good rates of clinical improvement; in a 

long-term follow up study (mean 152 months) of 30 patients who received meniscal 

allografts, all patients showed significant improvement in function, as measured by Lysholm 

and Short Form-36 (SF-36) scores, as well as the Knee Injury and Osteoarthritis Outcome 

Score (KOOS), and 90% were satisfied with the outcome of the surgery59. However, 

meniscus replacement does not prevent joint space narrowing60.

Synthetic implants.—Partial meniscus replacements, such as collagen meniscus implants 

(CMI, available in the USA) and polyurethane polymeric implants (Actifit, available in 

Europe), can be used for patients with segmental meniscus defects, an intact peripheral rim 

and limited articular cartilage damage61. CMI provided substantial pain relief and functional 

improvement and had a low rate of implant failure at follow-up (mean 9.6 years) in patients 

receiving implants following partial meniscectomy62. Similarly, polyurethane polymeric 

implants improved clinical outcomes in patients following partial meniscectomy up to 4 

years after implantation63. For replacement of the entire meniscus, a polyethylene reinforced 

polycarbonate urethane prosthetic (NuSurface) is currently in FDA clinical trials64. 

Although synthetic meniscus implants can improve clinical outcomes, their use is limited by 

several shortcomings and technical difficulties: synthetic implants do not result in meniscus 

regeneration; the ability of synthetic implants to stop the progression of OA is unproven; 

synthetic implants are difficult to place properly within the defect using an arthroscopic 

approach; and they are challenging to handle and suture65. Therefore, a great need exists for 

cell-based approaches that can regenerate damaged meniscus.

Age-related differences in outcomes

Parameters that affect the outcomes of articular cartilage and meniscus repair are 

multifactorial, but generally, increased patient age has a negative correlation with good 

outcomes, in particular after bone marrow stimulation techniques. Treatments that are 

acceptable for use in pediatric and adolescent patients might not be viable in adults, who are 

expected to have degenerative, rather than acute traumatic lesions. Two main principles exist 

for treating pediatric articular cartilage or meniscus defects: techniques must be effective to 

help prevent the risk of developing OA at a young age; and joint anatomy and functionality 

must be restored to ensure symptomatic relief and resumption of pre-injury levels of 

physical activity66. Given the increase in pediatric joint injuries67,68, potentially as a result 

of increased participation in sports, the development of therapies that will withstand the test 

of time is greatly needed.

Treatment of articular cartilage defects in young patients.—Although many of the 

same techniques are used to treat cartilage lesions in children and adolescents as in adults, 

outcomes can differ. For microfracture, patients older than 40 years had worse outcomes 

than younger patients (<30–40 years of age) in many studies69–72, potentially because older 

patients have fewer bone marrow progenitor cells and diminished regenerative capacity than 

younger patients. A similar trend occurs with osteochondral autograft transfer, for which 

Kwon et al. Page 6

Nat Rev Rheumatol. Author manuscript; available in PMC 2020 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



better outcomes are reported in young patients (<30 years of age)73. By contrast, 88% of 

pediatric and adolescent patients had successful outcomes following osteochondral allograft 

transplantation after a median of 2.7 years74, similar to success rates reported for adults75. 

ACI in young patients (≤18 years of age) produced an improvement in postoperative 

outcomes for 84–96% of patients at 2–4 years follow-up76,77, which was higher than the rate 

of improvement in adults for the same follow-up period (78–83%)78,79. Overall, for younger 

patients (≤40 years of age) (many of whom are athletes), osteochondral autograft 

transfer22,80 and ACI/MACI81 might result in better long-term outcomes and higher rates of 

return-to-play than microfracture.

Treatment of meniscus defects in young patients.—As with articular cartilage, 

outcomes associated with treating meniscus pathologies differ as a result of multiple factors, 

including age and tear type. In general, meniscus allograft transplantation is indicated for 

young patients (<50 years of age) with meniscal deficiency and is contraindicated in patients 

with evidence of advanced OA82. In patients under the age of 16, an improved Lysholm 

score and a revision rate of 22% have been reported after a mean follow-up of 7.2 years 

following meniscus allograft transplantation83. For meniscal tear reduction, most studies in a 

meta-analysis reported little difference between failure rates in patients under the age of 40 

and those over the age of 4084,85. Another meta-analysis on meniscus repair that included 13 

studies in adults, found a healing rate of 62–79% and a pooled re-tear rate of 23% after >5 

years86. Comparisons between surgical outcomes in pediatric and adolescent versus adult 

patients need to take into consideration the types of tears that are being reduced. In pediatric 

and adolescent patients, meniscus defect reduction can be attempted for most meniscal tears 

regardless of zone, size and patient-specific factors, as the priority is to preserve the knee. 

By contrast, in adults, meniscus defect reduction is usually only performed for tears that 

have a high potential to heal, such as peripheral tears. Thus, despite the beneficial healing 

environment in pediatric and adolescent patients that results from a high degree of 

vascularization and increased cellular metabolism87,88, healing rates in pediatric and 

adolescent patients compared to adult patients can seem similar because of the types of tears 

that are treated.

Tissue engineering strategies

Current surgical approaches do not provide long-term solutions for articular cartilage and 

meniscus regeneration, but tissue engineering techniques could provide alternative treatment 

strategies. Scaffolds, cells and biochemical and biomechanical stimuli, the main tools used 

to create engineered tissues (Fig. 3), are discussed in this section, as well as advances in 

cartilage engineering and the results of preclinical and clinical studies using engineered 

articular cartilage and meniscus products.

Scaffold and scaffold-free approaches

A variety of synthetic or natural materials, including polylactides, polyglycolides and silk, 

have been investigated for use as scaffolds for engineered articular cartilage89 and 

meniscus88. Decellularized cartilage-derived matrix has also been investigated for use as a 

scaffold in cartilage regeneration90,91. For example, decellularized cartilage-derived matrix 
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scaffolds inhibited the hypertrophic differentiation of embedded mesenchymal stem cells 

(MSCs) and promoted the synthesis of cartilage matrix by these cells90. Decellularized 

extracellular matrix scaffolds derived from inner and outer regions of the meniscus 

supported differentiation of MSCs toward fibrochondrocyte and elongated fibroblastic 

phenotypes, respectively91. Various other types of scaffolds, including hydrogels and porous 

polymeric structures, are also under investigation for use in articular cartilage and meniscus 

tissue-engineering. For example, injectable hydrogels, which can form into irregular shapes 

to better fill defects, enable the use of minimally invasive implantation methods92. Within 20 

years, both natural materials (for example alginate and hyaluronan) and synthetic materials 

(for example polycaprolactone and polylactic acid) have been used in 3D printers to create 

anatomically shaped scaffolds for articular cartilage and menisci93,94. The advantages of 

using scaffolds for cartilage engineering include the ability to incorporate growth factors 

into the scaffold and the initial mechanical stability that they provide95.

Despite the advantages scaffolds provide, scaffold use can also result in degradation-

associated toxicity, stress shielding, altered cell phenotypes and hindrances to remodelling95, 

facts that have provided motivation for investigations into scaffold-free techniques to 

engineer cartilage96 and menisci97. In particular, the scaffold-free self-assembling process, 

which facilitates cell-to-cell interactions by minimizing free energy, recapitulates the 

conditions of cartilage development, which result in changes of the ratios of chondroitin-6-

sulfate to chondroitin-4-sulfate and type VI collagen to type II collagen within the 

engineered neocartilage as it develops98. Through the use of biochemical and biomechanical 

stimuli, cartilage engineered using a scaffold-free approach has attained functional 

properties on par with native tissue99. For example, engineered articular cartilage has 

achieved compressive and tensile moduli of ~0.32MPa100 and ~8MPa99, respectively, which 

are in the range of native compressive (0.1–2MPa) and tensile (5–25MPa) values101. 

Similarly, scaffold-free engineered menisci have compressive and tensile moduli of 

~0.12MPa102 and ~5MPa103, respectively, compared with native tissue compressive and 

tensile moduli of 0.1–0.15MPa and 10–30MPa, respectively88. Thus, scaffold-free methods 

have the potential to circumvent challenges associated with scaffolds and to produce 

biomechanically functional implants.

Advances in scaffold-based and scaffold-free approaches have also focused on the 

recapitulation of native tissue architecture104–107. For example, stiffness gradient hydrogels 

(0.005–0.06MPa) derived from poly(ethylene glycol) and chondroitin sulfate yielded 

constructs with stiffness-dependent glycosaminoglycan gradients that mimicked the 

glycosaminoglycan gradient found in articular cartilage between the superficial and deep 

zones104. In another study, bi-layered poly-(ε-caprolactone) scaffolds with porous layers and 

aligned fibrous layers supported the development of zonal arrangement of engineered 

cartilage105. Collagen density and the alignment of porous collagen scaffolds can also be 

tailored via biaxial compression106, which might be useful for engineering anisotropy in the 

meniscus. Scaffold-free approaches have also been used to generate zonal tissue and 

anisotropy; for example, anisotropic menisci with zonal variations have been produced using 

the self-assembling process107. These studies104–107 suggest that recapitulating zonal and 

anisotropic properties of cartilage and menisci might be necessary to impart native 

functional properties to a tissue-engineered product.
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Engineering articular cartilage

Cell sources.—Although chondrocytes are the obvious choice for use when engineering 

articular cartilage, chondrocyte scarcity necessitates cell expansion in vitro, which results in 

rapid dedifferentiation108. Although, to date, no evidence exists to prove that 

dedifferentiated cells can be redifferentiated in vivo, the results of some studies have 

suggested that in vitro redifferentiation can be accomplished109,110. For example, culturing 

either in vitro expanded chondrocytes or MSCs in a 3D culture condition supplemented with 

transforming growth factor-β1 (TGFβ1), growth and differentiation factor 5 (GDF5) and 

bone morphogenetic protein 2 (BMP2), collectively termed aggregate redifferentiation, 

resulted in increased expression of the chondrogenic genes SOX9, ACAN and COL2A1 
compared with untreated cells111. Alternative cell sources include chondrocytes from non-

articular cartilages; for example, costal (rib) chondrocyte-derived neocartilage has 

compressive properties on par with those of native articular cartilage109. HOX-negative nasal 

chondrocytes are thought to possess greater self-renewal capacity than articular 

chondrocytes112 and a nasal-chondrocyte-based articular cartilage product (N-TEC) is 

currently in clinical trials for articular cartilage repair in Europe113. In addition, constructs 

engineered using osteoarthritic chondrocytes have yielded neocartilage containing type II 

collagen and lubricin, but not type I or type X collagen, which are indicative of chondrocyte 

dedifferentiation and hypertrophy114. Thus, non-articular and osteoarthritic cartilage might 

yield viable cells for use in articular cartilage repair.

Adult MSCs derived from adipose tissue, bone marrow, synovium or skin have been 

extensively investigated for use in cartilage tissue-engineering. Bone marrow-derived MSCs 

and umbilical cord blood-derived MSCs are already used to create engineered cartilage 

repair products, and dermis-derived MSCs and precursor cells have chondrogenic 

differentiation potential115,116. Other types of MSCs and progenitor cells are emerging as 

candidates for use in tissue engineering. For example, peripheral blood-derived MSCs and 

endothelial progenitor cells have both been used to fill osteochondral defects in 

rabbits117,118. In a non-controlled, clinical pilot study with 15 participants, adult CD146+ 

cartilage progenitor cells formed hyaline-like cartilage when implanted into knee articular 

cartilage defects119. After 12 months, a 52% improvement was achieved in the International 

Knee Documentation Committee (IKDC) score and a 71% improvement was achieved in the 

Lysholm score compared with pre-operative scores119. Notably, hypertrophy frequently 

occurs in MSCs during in vitro chondrogenic differentiation120, indicating the possibility 

that MSC-derived neocartilage might progress toward endochondral ossification121, 

resulting in neotissue that is not suitable for cartilage repair and regeneration. Thus, despite 

promising early data, the long-term (>1 year) durability of MSC-derived tissues remains to 

be investigated.

Biochemical stimuli.—Growth factors have long been recognized as important factors in 

neocartilage formation122, but other molecules are emerging as potential modulators of 

engineered cartilage. In the past few years, hyaluronic acid has been shown to stimulate 

chondrogenesis and reduce hypertrophy in bone marrow-derived MSCs123 and in a co-

culture of adipose-derived MSCs and chondrocytes124. Similar effects have also been shown 

for the addition of matrilin 3 to cultures of bone marrow-derived MSCs125. The addition of 
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kartogenin induced chondrogenic differentiation in MSCs and reduced type II collagen 

breakdown by 1.8-fold in a mouse model of OA126; however, the therapeutic dose and long-

term in vivo efficacy of kartogenin have to be yet to be determined, limiting its use127. 

Biophysical stimuli such as glycosaminoglycan-depleting enzymes (such as chondroitinase 

ABC) or crosslinking agents (such as lysyl oxidase-like 2 (LOXL2)) have also been used to 

increase collagen content and to form collagen crosslinks, leading to improved tensile 

properties in neocartilage128–130. In fact, a regimen of TGFβ1, chondroitinase ABC and 

LOXL2 applied after aggregate redifferentiation generated neocartilage with tensile modulus 

and ultimate tensile strength values approximately twice those of untreated neocartilage99. 

Oxygen tension also has an important role in chondrogenesis and in improving neotissue 

functional properties. In one study, hypoxia upregulated LOX expression in chondrocytes by 

18-fold, leading to an increase in tensile stiffness of neocartilage by ~80% compared with 

neocartilage formed under normoxic conditions131. Overall, these studies suggest that novel 

biochemical and biophysical stimuli should be used for effective neocartilage formation.

Biomechanical stimuli.—Biomechanical stimuli such as compression, shear and 

hydrostatic pressure are important for cartilage homeostasis and are already used to improve 

the properties of engineered cartilage132. One advance in the use of biomechanical stimuli in 

tissue engineering has been the application of these stimuli to non-articular chondrocytes. 

Passive axial compression applied to costal chondrocytes increased the instantaneous 

modulus of the engineered constructs by <92% compared with unstimulated neocartilage 

constructs133. Tension has also been trialed as an additional stimulus to improve the 

biomechanical properties of neocartilage. Tension stimulation of scaffold-free neocartilage 

treated with TGFβ1, chondroitinase ABC and LOXL2 resulted in an almost 6-fold increase 

in tensile modulus and strength99. After in vivo implantation, these constructs contained 

90% of the collagen content and had <94% of the tensile properties of native tissue99. A 

combination of compression and shear has also been tested, which resulted in a substantial 

increase in type II collagen production by chondrocytes within engineered neocartilage134. 

The results of these studies suggest that biomechanical stimulation has a pivotal role in 

engineering functional cartilage tissue in vitro. Understanding biomechanical stresses in the 

native environment of the joint, as well as their effects on both the generation of robust 

neotissue in vitro and on the generated tissue in vivo, is important for achieving clinical 

translation of engineered cartilage.

Engineering menisci

Cell sources.—Although meniscal fibrochondrocytes might seem to be an obvious choice 

for engineering the meniscus, co-culturing these cells with others might be required to 

achieve the best results. Similar to chondrocytes, meniscal fibrochondrocytes dedifferentiate 

when expanded135, a fact that has led to the investigation of MSCs from the bone 

marrow136, synovium137 and adipose tissue as alternative cell sources138. In a 2017 study, 

COL1, COL2, ACAN and SOX9 were induced in tonsil-derived MSCs, providing evidence 

for the feasibility of using these cells to repair meniscus defects in rabbits139. Co-culture of 

synovium-derived stem cells and meniscus cells at a ratio of 1:3 increased 

glycosaminoglycan production by ~82% compared with stem cell monoculture and by ~33% 

compared with meniscus cell monoculture140. These findings echo those from co-culture 
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studies of chondrocytes with differentiated cells141 (such as tenocytes, ligament fibrocytes or 

meniscus fibrochondrocytes) for forming neomenisci. For example, neomenisci formed 

using 50% articular chondrocytes and 50% meniscal fibrochondrocytes contain 700% more 

glycosaminoglycan and 90% more collagen than neomenisci formed using 

fibrochondrocytes alone97. The identification of new cell sources, as well as the optimization 

of co-culture systems, will both be important for overcoming the hurdles of cell culture for 

meniscus tissue-engineering.

Biochemical stimuli.—Growth factors such as TGFβ family members, fibroblast growth 

factors (FGFs), platelet-derived growth factors (PDGFs) and epidermal growth factor (EGF) 

have shown efficacy in improving extracellular matrix production in engineered meniscus88. 

The addition of TGFβ1 and FGF2 stimulated collagen synthesis in meniscus constructs by 

144% and 60%, respectively, compared with untreated constructs, although only TGFβ1 was 

effective in stimulating glycosaminoglycan production142. Growth factors have also been 

used to induce lubrication in engineered menisci; the use of IGFI localized lubricin to the 

neotissue surface and resulted in a coefficient of friction of ~0.2143. Zonal development can 

also be engineered using growth factors. Modulating the release of TGFβ3 and connective 

tissue growth factor using 3D printed scaffolds resulted in MSC-derived menisci with zone-

specific COL1 and COL2 expression, as well as zone-specific type I and type II collagen 

production144. Other biochemical stimuli can also aid the production of engineered menisci 

with improved functional properties. Treatment of neofibrocartilage implants with a 

combination of TGFβ1, LOXL2 and chondroitinase ABC increased collagen crosslink 

formation by 3.8-fold compared with untreated implants103. Upon implantation, the tensile 

strength of the interface of native meniscus and treated neofibrocartilage increased by 745% 

compared with the in vitro properties of untreated implants103. By contrast, changes in 

oxygen tension have yielded mixed results for engineering menisci. A 2017 study showed 

increased ACAN and COL2 expression, as well as proteoglycan and type II collagen 

production by expanded human meniscus fibrochondrocytes in hypoxic conditions145, 

whereas a 2013 study showed that normoxic conditions resulted in increased expression of 

COL2 and ACAN, as well as the production of type II collagen and aggrecan by expanded 

human fibrochondrocytes compared with hypoxic conditions146. Therefore, modulation of 

oxygen tension as a biochemical stimulus might hold promise for meniscus engineering130, 

but further investigations are needed to identify optimal culture conditions.

Biomechanical stimuli.—The meniscus functions under compression, which results in 

the development of tensile hoop stress, therefore both of these mechanical forces are 

important for meniscus engineering. For example, using a compressive regimen of 10% 

strain at 1Hz (which also results in tension), the collagen content, circumferential tensile 

modulus and radial tensile modulus of neomeniscus constructs can be increased compared 

with unstimulated constucts147. Over the past few years, studies into the development of 

biomechanical stimuli for meniscus engineering have focused on replicating native zonal 

arrangement and matrix-level organization. For example, application of sinusoidal 

hydrostatic pressure between 0.55–5.03MPa at 1Hz for 4 hours per day to aggregates of 

human fibrochondrocytes resulted in a substantial difference in type II collagen production 

between inner and outer zone meniscus fibrochondrocytes148, providing support for using 
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this stimulus to help recapitulate zonal architecture. A bioreactor applying 5–10% 

compressive strain was used to produce neomenisci with a fibrous collagen matrix in the 

outer zone that was similar in alignment to native tissue149. Investigations into how 

biomechanical stimuli can induce anisotropy in other engineered fibrocartilages have also 

been informative for meniscus engineering. For example, the application of passive axial 

compression during culture promoted anisotropic collagen organization similar to what is 

seen in native tissue in tissue-engineered temporomandibular joint discs150. In addition to 

recapitulating native tissue biochemical and biomechanical properties, it is important to 

mimic other native features such as anisotropy and zonal organization because these 

structural features are necessary for meniscus function.

Clinical studies

The technologies used to produce cell-based repair products for articular cartilage repair 

have been reviewed elsewhere151. This section focuses on the clinical applications of 

articular cartilage and meniscus repair products in development (Table 1) and promising 

results from clinical trials of these products (Table 2). Acellular, scaffold-based products are 

not discussed. Additional clinical studies that have been performed under Institutional 

Review Board approval and under the principles of the Declaration of Helsinki, but not as 

part of registered clinical trials, are listed in Supplemental Table S1.

The majority of engineered cartilage products in the clinical pipeline, such as Novocart 3D 

and Neocart, are manufactured using expanded autologous chondrocytes (Table 1). Because 

chondrocytes dedifferentiate upon in vitro expansion, products derived from expanded 

chondrocytes are likely to have inferior biomechanical properties to native tissue. Strategies 

such as the application of hydrostatic pressure have been developed to recover the 

chondrogenic phenotype. These strategies have resulted in articular cartilage repair implants 

that showed early-stage clinical improvements, but the long-term success and durability of 

these implants remains to be seen.

RevaFlex and Cartistem are both manufactured using allogenic cells (Table 1). In a phase I/II 

study, chondral defects treated with RevaFlex had grossly ‘normal or nearly normal’ 

cartilage repair (as measured by the International Cartilage Repair Society (ICRS)-Visual 

Histological Assessment Scale) with no signs of immunologic response after 1 year in 

66.7% of patients treated152. In South Korea, treatment of chondral lesions with Cartistem 

improved clinical outcomes compared to pre-operative scores and showed no signs of bone 

or tumor growth up to 7 years post-surgery153. Cartistem has completed a phase I/IIa study 

in the USA154. The successful clinical outcomes of allogeneic therapies to date open up a 

new avenue for eliminating donor site morbidity and the extra surgical step of tissue harvest 

when treating cartilage lesions.

Although engineered cartilage products in the clinical pipeline are primarily indicated for 

knee defects, several products have also been used in the hip (Table 2). Treatment of 

acetabular chondral defects with BST-CarGel improved International Hip Outcome Tool 

(iHOT) scores by 46% in a retrospective case series of 37 patients155. In a prospective study 

of 13 patients, BST-CarGel treatment of acetabular chondral delamination (average defect 

size 3.7cm2) resulted in over 90% filling by volume of each chondral defect after 2 years156. 
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In another study, the application of either Novocart 3D Inject or co.don chondrosphere to 

acetabular cartilage defects (average size 2.21cm2) produced substantial improvements in 

activity and quality of life and reduced pain after a mean of 19 months157.

Compared with articular cartilage, few clinical trials have been carried out with engineered 

meniscus products (Table 2). Cell Bandage, which is composed of autologous bone marrow-

derived MSCs embedded in a collagen sponge, is placed between the torn edges of the 

meniscus and the defect is sutured closed. It is thought that the MSCs embedded in Cell 

Bandage release growth factors that promote defect repair158. In the first in human study, 

Cell Bandage improved IKDC scores by ~40 points, Tegner-Lysholm score by ~40 points 

and range of motion (ROM) score by ~10 degrees at 12 months post-surgery, results that 

were maintained at 24 months158. In another study, Chondrogen injections of 50-million or 

150-million allogeneic bone marrow-derived MSCs also substantially decreased patient-

reported Visual Analogue Scale (VAS) pain scores for up to 24 months159. Although 

meniscus repair products are not as numerous as articular cartilage products and fewer 

clinical trials have been performed, preliminary clinical data suggest positive outcomes for 

cell-based therapies.

Challenges to clinical translation

Cell sourcing

Obtaining sufficient numbers of autologous cells remains a major limiting factor to the 

translation of engineered articular cartilage and meniscus products (Fig. 4a). As previously 

noted, sourcing cells from non-articular cartilages, such as costal cartilage, might be a 

solution to the lack of autologous chondrocytes, although passaging might still be necessary 

with these cells. Expression of COL1 and COL2 by these cells decreases after just one 

passage160, but although this collagen expression profile is undesirable for engineering 

articular cartilage, passaged cells that express COL1 might still be useful in meniscus tissue 

engineering because native meniscus contains ~80% type I collagen in the red-red zone88. 

Furthermore, a spectrum of engineered cartilages from hyaline to fibrous can be engineered 

from costal chondrocytes by modulating their redifferentiation after passaging161. Innovative 

use of cells and non-articular cartilage cell sources has the potential to greatly alleviate the 

scarcity of cells for autologous articular cartilage and meniscus therapies.

Biological variability

Biologic variability between donors makes the consistent production of high quality 

autologous neotissue difficult to achieve (Fig. 4a). Not all donors possess cells capable of 

forming robust neotissue. For example, chondrocytes sourced from 64–80-year-old donors, 

exhibited variable expression of chondrogenic genes at passage two162. In cells from one 

group of donors, COL2A1 expression increased when cultured as a microtissue compared 

with monolayer culture, whereas in cells from another group of donors, COL2A1 expression 

did not increase upon microtissue culture162. Using allogeneic cells would reduce problems 

related to donor variability during manufacturing, but the allogeneic implants would need to 

be well-tolerated by the recipient. Several cartilage repair products already include 

allogeneic cells or tissues (Table 1). Lending further credence to this approach, the healing 
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of temporomandibular joint disc defects using allogeneic neocartilage has been achieved in 

mini-pigs163. In this study, costal chondrocyte-generated neocartilage implants were well-

tolerated immunologically and resulted in a decrease in OA163. Although allogeneic 

approaches come with increased concern about disease transmission, tissue banks already 

provide allogeneic cells and tissues for transplantation in accordance with FDA guidance on 

donor screening and testing164. Thus, the use of well-characterized allogeneic cells might 

obviate disease transmission while mitigating the intractable problem of biologic variability.

Achieving biomimicry

Insofar as the functions of articular cartilage and the meniscus are to distribute loads and 

enable frictionless joint movement, tissue engineering efforts should reflect these functions. 

Advances have been made in improving the robustness of engineered cartilage towards 

native tissue values; however, considerable efforts are still required to engineer tribological 

properties and durability into neocartilage and neomenisci to achieve biomimicry. The use of 

a functionality index (FI) has been well-documented to provide a comparison of the quality 

of engineered tissues relative to healthy native tissues150,165,166. However, to be more 

powerful, the FI should be modified to reflect the relevant salient properties of each target 

tissue, such as including the coefficient of friction for articular cartilage or an anisotropy 

index for the meniscus. Although complete biomimicry (FI = 1) in engineered cartilage has 

traditionally been the goal of tissue engineering approaches, a 2018 study163 in which the 

implantation of engineered cartilage with an FI of 0.42 resulted in the complete healing of 

temporomandibular joint disc defects raises questions regarding the degree of biomimicry 

necessary to achieve regeneration. It remains to be seen if the achievement of biomimicry, 

especially with respect to biomechanical properties, imparts long-term durability to 

neotissue in vivo. Furthermore, no data exist to definitively show that the repair of articular 

cartilage and meniscus damage delays or halts the progression of OA. The ability of small 

defect repairs to stop OA progression would be difficult to assess in a well-controlled, 

randomized clinical trial owing to the need to include a no-treatment study arm and the long 

timeframes involved. Although evidence exists that neotissue with an FI of less than 1 elicits 

successful healing and that complete biomimicry might not be necessary163, data on the 

long-term outcomes of using such an approach are lacking. Thus, it will be instructive to 

continue examining the degree of biomimicry necessary to ensure satisfactory long-term 

healing outcomes.

Implant integration and protection

The clinical translation of tissue-engineered products requires many factors to be taken into 

consideration beyond the manufacture of robust neotissue. Articular cartilage and the white-

white zone of the meniscus are avascular, which makes integration of implants into existing 

native tissue difficult (Fig. 4a). The removal of anti-adhesive glycosaminoglycans167 and the 

priming of engineered tissue with collagen crosslinking agents168 are promising strategies 

that have shown preliminary success towards improving implant integration. Implant 

integration can also be affected by post-operative recovery regimens. Unlike humans, 

animals operated on in preclinical studies will not obey strict rehabilitation regimens and 

might disrupt implant integration by engaging in impulsive physical activity immediately 

after surgery. Thus, for both animals and humans, the use of novel tissue-engineered 
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implants might require novel surgical procedures that protect engineered implants and 

prevent implant displacement. For example, a reproducible intralaminar fenestration 

technique has been developed that enables engineered neocartilage to be secured into native 

tissue without directly suturing the implant163. Because implant integration, surgical 

techniques and rehabilitation all contribute to the efficacy of cartilage regeneration, 

developing appropriate protocols to address these factors should be as much of a priority for 

researchers as developing the implants themselves.

Inflammation and immunogenicity

Upon implantation, engineered neotissue must also withstand the pro-inflammatory 

environment of the injured or diseased joint. Chronic joint inflammation, as can be present 

in OA and RA, can be destructive to tissue-engineered implants and impede their integration 

and performance. Many studies have examined ways to ameliorate the immune response to 

ensure the survival of tissue-engineered implants in inflammatory environments, such as OA 

and RA joints. Macrophage phenotypes can be modulated in vitro to promote healing and to 

potentially reduce inflammation in OA169. Other strategies to reduce inflammation, such as 

the use of adipose-derived MSCs to reduce MMP3 and MMP13 expression, also hold 

promise170. The rejection of allogeneic engineered cartilage and menisci is also a concern. 

Although articular cartilage is considered to be immune privileged, and fresh allografts 

(such as osteochondral allografts, DeNovo NT and meniscus allografts) are in current 

clinical use, the degree of immune privilege an implant has depends on its location within 

the knee joint and its proximity to the synovium28. Meniscus allografts are well-tolerated, 

but it remains to be seen if allogeneic neomenisci implanted into the vascular red-red zone of 

the meniscus would elicit an immune response. Osteochondral allografts are frequently used 

in articular cartilage repair and are well-tolerated33 despite the fact the subchondral bone is 

vascularized, lending some support to the idea that red-red zone allografts might be 

tolerated. However, most irreparable meniscus defects that would require engineered 

meniscus grafts occur in the white-white zone, which does not contain vasculature. Thus, 

this area might also possess a degree of immune privilege, similar to articular cartilage, 

although the exact immune privilege status of the meniscus still needs further study. Efforts 

to minimize the immunogenicity of allogeneic and xenogeneic articular cartilage and 

menisci include decellularization and antigen removal171–173, but these methods typically 

create disrupted matrix and non-viable cells, depriving the neotissue of the capacity for 

homeostasis, remodeling and integration. A variety of immunological challenges associated 

with cartilage and meniscus tissue engineering, such as the pro-inflammatory environment 

of arthritic joints and the antigenicity of allogeneic cells and matrix components, indicate 

that neotissue should be modified to be able withstand or modulate the immune response to 

ensure graft survival and integration.

Regulatory concerns

Several regulatory hurdles surround the translation of engineered cartilage and meniscus 

products into patients (Fig. 4b). Clinical trials to examine the safety and efficacy of 

engineered cartilage and meniscus products in large patient populations are costly and time-

consuming. Recognizing this, the FDA has announced a new policy framework to expedite 

the approval of new therapies while preserving public health via a risk-based approach. 
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Special designations, such as the Regenerative Medicine Advanced Therapy (RMAT) 

designation, have been created to expedite the approval process174. Advantages of the 

RMAT designation include FDA assistance as early as at phase I trials, the discussion of 

potential surrogate or intermediate endpoints to accelerate approval and eligibility for 

priority review of marketing applications. The use of surrogate endpoints might accelerate 

time to market by shifting some of the burden of proof to post-market follow-up studies. The 

RMAT designation, as well as other special designations and accelerated programs174, might 

be solutions to reduce the cost and time required to gain marketing approval for engineered 

articular cartilage and meniscus products.

Conclusions

Current surgical repair techniques for articular cartilage and meniscus pathologies are 

insufficient to halt the development and progression of OA, which has accelerated the 

development of alternative tissue engineering strategies. Many advances have been made in 

cell sourcing and the use of stimuli to engineer neotissue akin to native articular cartilage 

and menisci, which can potentially provide long-term solutions for cartilage and meniscus 

healing. For example, the use of cells from allogeneic, non-articulating and/or diseased 

cartilage might counter the lack of native autologous cells. Although the goal of tissue 

engineering is to achieve biomimicry, tissue engineering approaches must also aim to create 

neotissue that withstands joint inflammation, readily integrates into surrounding native 

tissues and ensures positive outcomes regardless of biological variability and the age of the 

patient. The progression towards the use of cell-based tissue-engineered therapies in the 

clinic can be seen in the numerous clinical trials and IRB-approved studies that are currently 

underway. Although most products are primarily indicated for use in the knee, many of the 

same engineering principles can be translated to develop products for other joints such as the 

hip. The establishment of the RMAT designation should accelerate the regulatory process for 

these products. Rapidly emerging tissue engineering technologies could lead to the 

development of long-lasting products that are readily available off-the-shelf for articular 

cartilage and meniscus regeneration in the not-so-distant future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by the National Institutes of Health R01AR067821 and R01AR071457, as well as funds 
provided by the Henry Samueli Chair in Engineering.

Glossary

Debridement
Removal of damaged tissue/torn fragments from a defect

Hoop stresses
Compressive forces experienced by the meniscus in the circumferential direction
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Rasping
Mechanical scraping to expose fresh/bleeding tissue

Radial trephination
Puncturing small holes into the joint lining/synovium and into the tissue to stimulate healing

Bone plugs
Created/fashioned bone cylinders containing the enthesis of the meniscal roots

Common bone bridge
Excised bone containing and preserving the anatomic relationship between the anterior and 

posterior meniscal horns (also known as “slot”)

Hemi-plateau
Half of the tibial plateau containing articular surface, subchondral bone, and meniscus with 

root attachments

Lysholm score
A scoring system used to measure changes in limping, support, locking, instability, pain, 

swelling, stair climbing and squatting (originally developed to evaluate outcomes of knee 

ligament surgery)

Stress shielding
Protection of tissue from normal mechanical stresses by the presence of a much stiffer 

implant, often resulting in tissue loss

Self-assembling process
A scaffold-free technology that produces tissues that demonstrate spontaneous organization 

without external forces via the minimization of free energy through cell-to-cell interactions

Anisotropy
Having directionally dependent properties

International Knee Documentation Committee (IKDC) score
A scoring system used to measure symptoms, sports and daily activities, current knee 

function and function prior to injury.

International Cartilage Repair Society (ICRS)-Visual Histological Assessment Scale
A tool used to histologically evaluate the quality of cartilage repair tissue.

International Hip Outcome Tool
A tool used to measure symptoms, functional limitation, work-related concerns, sports and 

recreational activities, and social, emotional and lifestyle concerns using a visual analog 

scale.

Tegner-Lysholm score
A patient-reported score of the impact of knee pain and stability on daily life

Range of motion (ROM) score
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A measurement of the range of flexion and extension of a joint

Tribological properties
Functional properties relating to friction and lubrication of tissues
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Key points

• Current cartilage repair techniques include surgery and cell-based therapies 

for articular cartilage and surgery for meniscus repair; however, such 

treatments have limited capacity to induce regeneration.

• Tissue engineering strategies to create cartilage using a variety of cell sources 

and exogenous stimuli have made advances towards replicating the native 

architecture and functional properties of cartilage.

• Most cell-based tissue engineering products currently in clinical trials are 

indicated for knee articular cartilage, with very few indicated for hip cartilage 

or the meniscus.

• Allogeneic and non-articulating cartilage might serve as additional cell 

sources for engineered articular cartilage and meniscus products.

• The pro-inflammatory environment of arthritic joints and issues surrounding 

neotissue integration need to be addressed to maximize the clinical translation 

of new tissue-engineered products.

Kwon et al. Page 30

Nat Rev Rheumatol. Author manuscript; available in PMC 2020 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Articular cartilage structure and treatment methods.
a| Articular cartilage consists of chondrocytes embedded in a defined structure of collagen 

fibres and glycosaminoglycans. Two main types of defects can occur; chondral defects, 

which only penetrate the cartilage and osteochondral defects, which also penetrate the 

subchondral bone. b| Currently used repair strategies for cartilage defects include 

microfracture, osteochondral autograft transfer, osteochondral allograft transplantation, 

implantation of processed allograft cartilage such as DeNovo NT, ProChondrix and 

Cartiform, and matrix-induced autologous chondrocyte implantation (MACI). The choice of 

treatment method depends on the size and type of the defect, the expertise and preferences of 

the surgeon and patient-specific factors such as age and activity level.
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Figure 2. Meniscus structure and treatment methods.
a| The meniscus consists of three main zones; red-red (R-R), red-white (R-W) and white-

white (W-W). The R-R zone is fully vascularized and the W-W zone is avascular. b| A 

variety of different types of defects can occur in the meniscus, some of which are easier to 

repair than others owing to their intrusion into vascular or avascular zones. c| Reduction 

strategies in current use include defect closure with sutures or anchors and the trimming of 

torn pieces (partial or total meniscectomy). d| Replacement strategies in current use include 

allograft transplantation and the use of synthetic implants. As with articular cartilage, the 

size and type of defect, the expertise and preferences of the surgeon and patient-specific 

factors such as age and activity level affect the choice of treatment method.
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Figure 3. Advances in tissue engineering strategies for articular cartilage and meniscus.
Engineered implants go through several stages of development that can be modified or 

enhanced by the addition of appropriate stimuli. The source of cells is important as many 

cells dedifferentiate in culture; alternative cell sources currently being trialed include non-

articular chondrocytes, tenocytes, fibrocytes, osteoarthritic chondrocytes and stem cells or 

progenitor cells. Growth factors such as TGFβs, PDGFs, FGFs, EGF, BMPs and GDFs are 

used to effectively expand and help to redifferentiate cells prior to neotissue formation. 

Scaffold-based and scaffold-free methods can be used to engineer articular cartilage and 

menisci, and biochemical and biophysical factors such as TGFβs, BMPs, IGFs, FGFs, 

chondroitinase ABC (c-ABC), lysyl-oxidase-like 2 (LOXL2), hyaluronic acid, matrilin 3, 

kartogenin and variations in oxygen tension are used to promote the maturation of 

engineered tissues. Similarly, biomechanical stimulation such as compression, tension, 

shear, hydrostatic pressure and biaxial loading can be used to improve the functional 

properties of the neotissue.
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Figure 4. Challenges to the clinical translation of engineered cartilage and meniscus products.
a| The main technical challenges to clinical translation include obtaining sufficient numbers 

of autologous cells, the effects of biological variability on the consistent production of high-

quality engineered tissues and integration of the engineered tissues once implanted in vivo. 

Potential solutions and avenues of further investigation include; cells sourced from non-

articulating cartilages (such as costal cartilage); allogeneic approaches, including extensive 

screening to identify appropriate donors; the fortification of engineered tissues to withstand 

immune-mediated degeneration within an inflamed joint; the priming of engineered tissues 

with chondroitinase ABC (c-ABC) and lysyl-oxidase-like 2 (LOXL2) for enhanced 

integration; and novel in vivo implantation methods that protect tissue-engineered implants. 

b| Regulatory challenges to clinical translation include the long time-frames and high costs 

associated with clinical trials. Solutions such as the Regenerative Medicine Advanced 

Therapy (RMAT) designation, other FDA programs that enable accelerated review and 

approval of applications and the use of surrogate endpoints are hoped to help overcome these 

challenges.
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Table 1.

Cell-based tissue-engineered products for articular cartilage and meniscus repair.

Product name 
(company)

Cell or tissue 
source

Seeding 
density

Biomaterial or 
scaffold

Stimuli Time 
between 
surgeries 
(time in 
culture)

No. of 
patient 
surgeries

Ref(s)

Articular cartilage

BioCart II 
(ProChon 
Biotech)

Autologous 
chondrocytes 
(passage number 
unknown)

0.4×106 cells 
plus 0.1×106 

cells/cm2 of 
scaffold

Freeze-dried fibrin-
hyaluronan

Autologous 
serum and 
FGF2

3–4 weeks 
(3–4 days in 
3D culture)

2 175,176

Bioseed-C 
(BioTissue SA)

Expanded 
autologous 
chondrocytes 
(passage number 
unknown)

20×106 cells per 
scaffold

Fibrin, polyglycolic 
acid, polylactic acid 
and polydioxanone

Autologous 
serum

4–5 weeks 2 177–179

BST-CarGel 
(Piramal 
Healthcare 
Canada)

Autologous 
whole peripheral 
blood

3:1 ratio of 
autologous 
whole 
peripheral blood 
to biomaterial

Dissolved chitosan 
in glycerophosphate 
buffer

Unknown n/a 1 180

CaReS (Arthro 
Kinetics 
Biotechnology)

Primary 
autologous 
chondrocytes

Unknown Type I collagen 
hydrogel

Autologous 
serum

2 weeks (10–
13 days in 
3D culture)

2 181

Cartilage 
autograft 
implantation 
system (CAIS) 
(DePuy Mitek)

Autologous 
cartilage 
fragments

1–2 mm minced 
cartilage 
dispersed onto 
scaffold

Absorbable co-
polymer of 35% 
polycaprolactone 
and 65% 
polyglycolic acid 
with a 
polydioxanone mesh

Unknown n/a 1 182

Cartipatch (TBF 
Genie Tissulaire)

Expanded 
autologous 
chondrocytes 
(passage 3)

10×106 cells/ml 
of hydrogel

Agarose–alginate Autologous 
serum

6–7 weeks 2 183,184

Cartistem 
(Medipost)

Expanded, 
allogeneic, 
umbilical cord 
blood-derived 
MSCs (passage 
number 
unknown)

500 μl of 
hydrogel per 
cm2 of defect 
area, 5×106 

cells/ml of 
hydrogel

Hyaluronic acid 
hydrogel

Fetal bovine 
serum

n/a 1 153

co.don 
chondrosphere 
(co.don AG)

Expanded, 
autologous 
chondrocytes 
(passage number 
unknown)

10–70 
spheroids/cm2 

of defect area or 
~3×106 

cells/cm2 of 
defect area

Scaffold-free Autologous 
serum

~5–10 weeks 2 185,186

Hyalofast (Anika 
Therapeutics)

Autologous bone 
marrow aspirate 
concentrate 
(BMAC)

2 mL BMAC 
per scaffold

Benzyl ester of 
hyaluronic acid 
(HYAFF-11)

Unknown n/a 1 187

Hyalograft C 
(Anika 
Therapeutics)

Expanded 
autologous 
chondrocytes 
(passage 1 or 
passage 2)

1.5–4×106 cells 
per scaffold

Benzyl ester of 
hyaluronic acid 
(HYAFF-11)

Autologous 
serum and 
TGFβ1

4 weeks (2 
weeks in 3D 
culture)

2 188–191

INSTRUCT 
(CellCoTec B.V.)

Autologous, 
primary articular 
chondrocytes and 

Unknown Poly ((ethylene 
oxide) terephthalate-

Unknown n/a 1 192
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Product name 
(company)

Cell or tissue 
source

Seeding 
density

Biomaterial or 
scaffold

Stimuli Time 
between 
surgeries 
(time in 
culture)

No. of 
patient 
surgeries

Ref(s)

bone marrow-
derived cells

co-poly(butylene) 
terephthalate)

Novocart 3D 
(Aesculap 
Biologics)

Expanded 
autologous 
chondrocytes 
(passage 1)

0.5–3×106 

cells/cm2 of 
scaffold

Type I collagen and 
chondroitin sulfate

Autologous 
serum

3 weeks (2 
days in 3D 
culture)

2 193

Novocart Inject 
(TETEC AG)

Expanded 
autologous 
chondrocytes 
(passage number 
unknown)

Unknown In situ polymerized 
injectable albumin–
hyaluronic acid 
hydrogel

Autologous 
serum, BMP2 
and insulin

Unknown 
(3–4 weeks 
in 2D 
culture)

2 157

Neocart 
(Histogenics)

Expanded 
autologous 
chondrocytes 
(passage number 
unknown)

12×106 cells/ml 
collagen 
solution

Bovine type I 
collagen

Hypoxia and 
hydrostatic 
pressure

6–12 weeks 2 194–196

N-TEC (BIO-
CHIP)

Expanded 
autologous nasal 
chondrocytes 
(passage number 
unknown)

50×106 cells per 
membrane

Type I and type III 
collagen membrane 
(Chondro-Gide)

Autologous 
serum, FGF2, 
and TGFβ1 
(expansion)
Autologous 
serum, 
insulin and 
ascorbic acid 
2-phosphate 
(3D culture)

≥7 weeks (2 
weeks in 2D 
culture and 2 
weeks in 3D 
culture)

2 197

RevaFlex (ISTO 
Technologies)

Expanded 
allogeneic 
juvenile 
chondrocytes 
(passage number 
unknown)

Unknown Scaffold-free Unknown n/a 1 198

Meniscus

Chondrogen 
(Mesoblast)

Expanded 
allogeneic adult 
bone marrow-
derived MSCs 
(passage 2)

25×106 or 
75×106 cells/ml 
of sodium 
hyaluronate

Sodium hyaluronate Fetal bovine 
serum 
(expansion)

Not 
applicable

1 159

Cell Bandage 
(Azellon)

Expanded 
autologous bone 
marrow-derived 
MSCs (passage 
1)

1×106 cells/cm2 

of scaffold
Collagen sponge 
from bovine corium

Fetal bovine 
serum and 
FGF 
(expansion)

>2 weeks (6 
hours in 3D 
culture)

2 158

Acellular, scaffold-based products are not included. The term ‘chondrocytes’ refers to articular chondrocytes unless otherwise specified. The 
sponsors and products listed here might since have been acquired by other companies.
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Table 2.

Clinical trials of cell-based tissue-engineered products for cartilage and meniscus repair.

Product 
(company)

Clinical 
status

Study 
location

No. 
patients

Clinical 
indication

Comparator Outcomes Reference

Articular cartilage

BioCart II 
(ProChon 
Biotech)

Phase II 
(status 
unknown)

USA and 
Israel

40 Single contained 
cartilage defect 
on the femoral 
condyle of the 
knee (1.5–7.5 
cm2, depth up to 
6 mm)

Microfracture Results not published 199

Bioseed-C 
(BioTissue 
SA)

Phase III 
(ongoing)

Germany 80 Focal contained, 
full-thickness 
cartilage defect 
on the lateral and 
medial condyles 
of the knee 
(Outerbridge 
grade III-IV)

Chondrotissue 
(BioTissue 
SA)

Results not published 200

Non-
interventional 
study 
(completed 
2016)

Germany 76 (target) Focal cartilage 
defects on the 
femoral 
condyles, 
trochlea and 
patella of the 
knee (>2×2 cm 
and Outerbridge 
grade III-IV) that 
have been 
previously 
treated with 
BioSeed-C

None Results not published 201

BST-CarGel 
(Piramal 
Healthcare 
Canada)

Phase IV 
(terminated)

Canada and 
Europe

5 Single, focal, 
full-thickness 
cartilage defect 
on the femoral 
condyle of the 
knee (1.5–3 cm2 

and ICRS grade 
III-IV)

Microfracture Results not published 202

Phase III 
(status 
unknown)

Unknown 50 
(estimated)

Focal chondral 
defects of the hip 
(>2 cm2)

Microfracture Results not published 203

RCT 
(completed 
2011)

Canada, 
South 
Korea and 
Spain

80 Focal cartilage 
defect on the 
medial femoral 
condyle of the 
knee (grade III-
IV, unknown 
scoring system)

Microfracture Improved lesion 
filling and superior 
quality of repair 
tissue than 
microfracture alone 
at 12 months
Equivalent WOMAC 
scores and 
comparable safety 
outcomes between 
groups at 12 months

180

Observational 
study 
(completed 
2014)

Canada and 
Spain

67 Focal cartilage 
defects on the 
femoral condyle 
of the knee 
(ICRS grade III-
IV or 
Outerbridge 
grade III-IV)

Microfracture Improved lesion 
filling and superior 
quality of repair 
tissue than 
microfracture alone 
at 5 years
No difference in 
WOMAC scores and 
comparable safety 

204
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Product 
(company)

Clinical 
status

Study 
location

No. 
patients

Clinical 
indication

Comparator Outcomes Reference

outcomes between 
groups at 5 years

Cartilage 
autograft 
implantation 
system (CAIS) 
(DePuy Mitek)

Phase III 
(status 
unknown)

Singapore 36 
(estimated)

Full-thickness 
cartilage defect 
on the femoral 
condyle or 
trochlea of the 
knee (2–10 cm2)

Microfracture Results not published 205

Clinical trial 
(terminated)

USA and 
Canada

75 One or two focal 
chondral defects 
(1–10 cm2, depth 
up to 6 mm) or a 
non- 
osteochondritis 
dissecans lesion 
between grades I 
and III or an 
osteochondritis 
dissecans lesion 
between grades I 
and IV

Microfracture Results not published 206

Cartipatch 
(TBF Genie 
Tissulaire)

Phase III 
(terminated)

Belgium 40 Isolated femoral 
osteochondral 
defect (2.5–7.0 
cm2, maximum 
depth of 10 mm, 
ICRS grade III-
IV)

Microfracture Results not published 207

Phase III 
(completed 
2013)

Belgium 64 Single femoral 
osteochondral 
defect (2.5–7.0 
cm2, maximum 
depth of 10 mm, 
ICRS grade III-
IV)

Microfracture Results not published 208

Phase III 
(completed 
2013)

France 55 Isolated femoral 
osteochondral 
defect (2.5–7.5 
cm2, ICRS grade 
III-IV)

Mosaicplasty Decreased IKDC 
score compared with 
mosaicplasty at 24 
months
Decreased 
O’Driscoll score 
compared with 
mosaicplasty at 24 
months

184

Phase II 
(completed 
2006)

France 17 Isolated chondral 
or osteochondral 
defect on the 
femoral condyles 
of the knee (1–5 
cm2, ICRS grade 
III-IV)

None Increased IKDC 
score at 24 months 
compared with 
baseline 81% defect 
fill observed by MRI 
at 24 months

183

Cartistem 
(Medipost)

Phase I/II 
(completed 
2017)

USA 12 Single, focal, 
full-thickness 
cartilage defect 
of the knee (≥2 
cm2, ICRS grade 
III-IV)

None Results not published 154

Phase III 
(completed 
2015)

South 
Korea

103 Cartilage defect 
of the knee (2–9 
cm2, ICRS grade 
IV)

Microfracture Results not published 209

Phase III 
(completed 
2011)

South 
Korea

104 Cartilage defect 
of the knee (2–9 

Microfracture Results not published 210
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Product 
(company)

Clinical 
status

Study 
location

No. 
patients

Clinical 
indication

Comparator Outcomes Reference

cm2, ICRS grade 
IV)

Phase I/II 
(completed, 
date 
unknown)

South 
Korea

7 Full-thickness 
cartilage defects 
of the knee (>2 
cm2, Kellgren-
Lawrence grade 
III & ICRS grade 
IV)

None Maturing repair 
tissue by arthroscopy 
reported at 12 weeks
Improved VAS pain 
score and IKDC 
score at 24 months 
compared with pre-
transplantation 
scores
Regenerated 
cartilage detected by 
MRI at 36 months
Improved outcomes 
stable and no signs 
of osteogenesis and 
tumorigenesis at 7 
years

153

co.don 
chondrosphere 
(co.don AG)

Phase III 
(active, not 
recruiting)

Germany 
and Poland

102 Isolated, single 
chondral defect 
on the femoral 
condyle of the 
knee (1–4 cm2, 
depth up to 6 
mm, ICRS grade 
III-IV)

Microfracture Results not published 211

Phase II 
(completed 
2018)

Germany 75 Isolated, single, 
chondral defect 
or 
osteochondritis 
dissecans lesion 
on the femoral 
condyle, 
trochlea, tibia or 
retropatella (4–
10 cm2, depth up 
to 6 mm, ICRS 
grade III-IV)

Different 
doses of 
co.don 
chondrosphere

No substantial 
differences in the 
incidence of adverse 
events reported 
between the different 
doses

212

Hyalofast 
(Anika 
Therapeutics)

Prospective 
study 
(recruiting)

USA and 
Europe

200 
(estimated)

Cartilage defect 
on the femoral 
condyle or 
trochlea (1–6 
cm2, ICRS grade 
III-IV)

Microfracture Results not published 213

INSTRUCT 
(CellCoTec 
B.V.)

Prospective 
study 
(completed 
2014)

Europe 40 Cartilage defect 
on the femoral 
condyle and 
trochlea of the 
knee (modified 
Outerbridge 
grade III-IV)

None Graft delamination 
reported in 2 patients 
leading to a 
treatment failure in 1 
patient ~90–100% 
defect filling at 24 
months
Improved VAS pain 
score and IKDC 
score at 24 months 
compared with 
baseline
Improved KOOS at 
12 months compared 
with baseline 
Histological presence 
of hyaline cartilage 
in 72% of tissue 
samples and 
fibrocartilage and 
hyaline cartilage in 
97% of tissue 
samples

192
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Product 
(company)

Clinical 
status

Study 
location

No. 
patients

Clinical 
indication

Comparator Outcomes Reference

Presence of repair 
tissue detected by 
MRI at 12 months

Novocart 3D 
and Novocart 
3D Plus 
(Aesculap 
Biologics, 
TETEC AG)

Phase III 
(recruiting); 
Novocart 3D

USA 30 
(estimated)

Patients for 
whom 
microfracture 
failed in a 
previous trial

None Results not published 214

Observational 
study (active, 
not 
recruiting); 
Novocart 3D

Germany 82 Localized, full-
thickness 
cartilage defect 
of the knee (2.5–
10 cm2, ICRS 
grade III-IV)

None Results not published 215

Phase III 
(recruiting); 
Novocart 3D

USA and 
Canada

233 
(estimated)

Isolated cartilage 
defects on the 
femoral condyle 
of the knee (2–6 
cm2)

Microfracture Results not published 216

Phase III 
(active, not 
recruiting); 
Novocart 3D 
Plus

Europe 263 One or two 
cartilage defects 
on the femoral 
condyle and/or 
the trochlea of 
the knee (2–6 
cm2, ICRS grade 
III-IV)

Microfracture Results not published 217

Novocart 
Inject and 
Novocart 
Inject Plus 
(TETEC AG)

Phase III 
(recruiting); 
Novocart 
Inject Plus

Europe 96 
(estimated)

One or two focal 
cartilage defects 
on the femoral 
condyle, 
trochlea, patella 
or tibial plateau 
of the knee (4–12 
cm2, ICRS grade 
III-IV)

None Results not published 218

Non-
interventional 
study 
(recruiting); 
Novocart 
Inject

Germany 125 
(estimated)

‘Insulated’ full-
thickness 
cartilage defects 
of the knee (2.5–
10 cm2, ICRS 
grade III-IV)

None Results not published 219

Observational 
study (active, 
not 
recruiting); 
Novocart 
Inject

Germany 21 ‘Insulated’ full-
thickness 
cartilage defects 
of the hip (1.5–
10 cm2, ICRS 
grade III)

None Results not published 220

Neocart 
(Histogenics)

Phase III 
(active, not 
recruiting)

USA 245 Cartilage defect 
of femur and/or 
trochlea of the 
knee

Microfracture Results not published 221

Phase II 
(completed 
2014)

USA 30 Cartilage defect 
on the femoral 
condyle of the 
knee (ICRS 
grade III)

Microfracture No difference in 
adverse event rates 
between groups
Greater improvement 
in KOOS, IKDC and 
VAS pain scores at 6, 
12, and 24 months 
compared with 
microfracture
Improved MOCART 
scores at 24 months 

194,222
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Product 
(company)

Clinical 
status

Study 
location

No. 
patients

Clinical 
indication

Comparator Outcomes Reference

compared with 
scores at 3 months
Improved KOOS, 
SF-36 and IKDC 
scores at 5 years 
compared with 
baseline
Decreased VAS pain 
score and improved 
range of motion at 5 
years compared with 
baseline

Phase I 
(completed, 
date 
unknown)

USA 8 Full-thickness 
cartilage defect 
on the femoral 
condyle of the 
knee (grade III, 
unknown scoring 
system)

None Improved VAS pain 
score at 12 months 
compared with 
baseline
Improved IKDC 
score and range of 
motion at 24 months 
compared with 
baseline
6 patients with 67–
100% defect filling, 
1 patient with 33–
66% defect filling, 
and 1 patient with 
<33% defect filling 
as determined by 
MRI
No arthrofibrosis or 
implant hypertrophy 
found

195

N-TEC (BIO-
CHIP)

Phase II 
(recruiting)

Europe 108 
(estimated)

One or two 
localized 
cartilage defects 
on the femoral 
condyle and/or 
trochlea of the 
knee (2–8 cm2, 
ICRS grade III-
IV)

N-CAM 
(BIO-CHIP)

Results not published 113

Phase I 
(completed 
2018)

Switzerland 18 One or two 
cartilage defects 
on the femoral 
condyle and/or 
trochlea of the 
knee (2–8 cm2, 
ICRS grade III-
IV)

None No adverse events
Defect filling with 
repair tissue variable
Improved KOOS and 
IKDC scores at 24 
months compared 
with pre-operative 
values
Approaching “ideal 
level” of 
glycosaminoglycan 
content determined 
by ΔR (R=1/T1) and 
water and collagen 
contents “similar to 
those in native 
tissue” at 24 months

197

RevaFlex 
(ISTO 
Technologies)

Phase III 
(terminated)

USA 14 One or two 
cartilage defects 
on the femur of 
the knee (≤5 
cm2)

Microfracture Results not published 223

Phase I/II 
(completed, 
date 
unknown)

USA 12 Up to two 
cartilage defects 
on the femoral 
condyle or 
trochlea of the 

None Improved patient-
reported outcome 
measures at 12 
months
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Product 
(company)

Clinical 
status

Study 
location

No. 
patients

Clinical 
indication

Comparator Outcomes Reference

knee (1–5cm2, 
ICRS grade III-
IV)

Cartilage repair 
graded as grossly 
normal/near normal 
in 66.7% of patients 
at 12 months
Maturation of the 
implant (determined 
by defect filling and 
quality of repair 
tissue) observed by 
MRI at 12 months

Meniscus

Chondrogen 
(Mesoblast)

Phase I/II 
(completed 
2011)

USA 55 Following 
meniscectomy

Placebo 
(Hyaluronan)

Results not published 224

Phase I/II 
(completed 
2008)

USA 55 Following 
meniscectomy

Placebo 
(Hyaluronan)

Three patients with 
>15% increase in 
meniscus volume in 
50×106 cells group, 0 
in the control group 
and 0 in the 150×106 

cell group at 24 
months
Decreased VAS pain 
score and increased 
Lysholm score for all 
treatment groups at 
24 months compared 
with baseline

159

Cell Bandage 
(Azellon)

Phase I 
(ongoing)

Europe 10 Meniscus tear 
that would 
otherwise be 
treated by 
meniscectomy 
(white-white 
zone)

None Results not published 225

Acellular scaffold-based products are not included. The term ‘Europe’ refers to trials that took place in three or more European countries; if a trial 
took place in fewer than three European countries, all countries are listed. The sponsors and products listed here might since have been acquired by 
other companies.
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