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Abstract Clathrin-mediated endocytosis (CME) in mammalian cells is driven by resilient

machinery that includes >70 endocytic accessory proteins (EAP). Accordingly, perturbation of

individual EAPs often results in minor effects on biochemical measurements of CME, thus providing

inconclusive/misleading information regarding EAP function. Live-cell imaging can detect earlier

roles of EAPs preceding cargo internalization; however, this approach has been limited because

unambiguously distinguishing abortive coats (ACs) from bona fide clathrin-coated pits (CCPs) is

required but unaccomplished. Here, we develop a thermodynamics-inspired method, “disassembly

asymmetry score classification (DASC)”, that resolves ACs from CCPs based on single channel

fluorescent movies. After extensive verification, we use DASC-resolved ACs and CCPs to quantify

CME progression in 11 EAP knockdown conditions. We show that DASC is a sensitive detector of

phenotypic variation in CCP dynamics that is uncorrelated to the variation in biochemical

measurements of CME. Thus, DASC is an essential tool for uncovering EAP function.

Introduction
Clathrin-mediated endocytosis (CME) is the major pathway for cellular uptake of macro-molecular

cargo (Kirchhausen et al., 2014). It is accomplished by concentrating cell surface receptors into spe-

cialized 100–200 nm wide patches at the plasma membrane created by a scaffold of assembled cla-

thrin triskelia (Conner and Schmid, 2003). The initiation and stabilization of these clathrin-coated

pits (CCPs) is regulated by the AP2 (adaptor protein) complex (Cocucci et al., 2012), which recruits

clathrin and binds to cargo and phosphatidylinositol-4,5-bisphosphate (PIP2) lipids. Numerous endo-

cytic accessory proteins (EAPs), which modulate various aspects of CCP assembly and maturation,

contribute to the formation of clathrin-coated vesicles (CCVs) that transport cargo to the cell interior.

However, the exact functions of many of these EAPs are still poorly understood, and in some cases

controversial (Kaksonen and Roux, 2018; Mettlen et al., 2018). Due to the resilience of CME, per-

turbing single EAPs, like CALM (Xiao et al., 2012; Huang et al., 2004), SNX9 (Posor et al.,

2013; Bendris et al., 2016) etc., or even multiple EAPs (Aguet et al., 2013) often results in minor/

uninterpretable changes in bulk biochemical measurements of cargo uptake. Nonetheless, per-

turbed EAP function can be physiologically consequential, e.g. mutations in CALM are linked to Alz-

heimer’s disease (Harold et al., 2009) and SNX9 expression levels are correlated with cancer

progression and other human diseases (Bendris and Schmid, 2017). These results bring into ques-

tion whether measuring internalization by biochemical assays is sufficient for determining the actual

phenotypes of missing EAP functions, and thereby further supporting clinical studies of the EAPs in

more complex models.
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Unlike bulk cargo uptake assays, the entire process of clathrin assembly and coated pit matura-

tion at the plasma membrane can be monitored in situ by highly sensitive total internal reflection

fluorescence microscopy (TIRFM) of cells expressing fiduciary markers for CCPs, such as the clathrin

light chain fused to eGFP (Mettlen and Danuser, 2014). Using this imaging approach, we and

others have observed that a large fraction of detected clathrin-coated structures (CSs) are shorter-

lived (i.e. lifetimes < 20 seconds) than thought to be required for loading and internalizing cargo,

and dimmer (i.e. exhibit lower intensities) than mature CCPs detected prior to internalization

(Taylor et al., 2011; Liu et al., 2010). These so-called ‘abortive’ coats (ACs) presumably reflect vari-

able success rates of initiation, stabilization and maturation; that is, the critical early stages of CME.

However, the range of lifetimes and intensities of ACs overlaps substantially with the range of life-

times and intensities of CCPs (Figure 1A,B). The current inability to unambiguously resolve ACs and

CCPs limits analyses of the mechanisms governing CCP dynamics and their progression during CME.

Our initial attempts to solve this problem relied on a statistical approach to deconvolve the over-

all broad lifetime distribution of all detected CSs into subpopulations with distinct lifetime modes

(Loerke et al., 2009). Although this method allowed the identification of three kinetically-distinct CS

subpopulations (Loerke et al., 2009), the lifetimes of the thus identified subpopulations strongly

overlapped, and the CS population with the longest average lifetimes, most likely representing pro-

ductive CCPs, also contained a large fraction of very short-lived CCPs, which is structurally nonsensi-

cal. Later, as a result of improvements in the sensitivity of detection and tracking, eGFP-CLCa-

labeled CSs were classified by imposing both lifetime and intensity thresholds (Aguet et al., 2013;

Kadlecova et al., 2017). Besides the subjectivity in setting these critical values, we demonstrate

here that neither lifetime nor intensity are sufficient to classify CSs. More recently, Hong et al.

Figure 1. Conventional threshold-based cut-off vs. DAS derived metrics. (A) Schematic of abortive coat (AC) and clathrin-coated pit (CCP) evolving

from early clathrin nucleation. (B) Lifetime (t ) and intensity maxima (Imax) characteristics of hypothetical ACs and CCPs. ACs are typically assigned by a

user-defined lifetime or Imax threshold. (C) Disassembly risk map D i; tð Þ represented on a gray value scale indicated by the gradient bar. A representative

CCP (blue), AC (red) and outlier trace (OT) (pink) are plotted on the D-map. (D) Distribution of N ¼ 215; 948 counts of d1 values for WT condition in

black solid line. AC group near d1<0 as a subpopulation, and CCP group at d1 » 0 as another subpopulation. (E) Distribution of N counts of d2 values.

Subpopulations of ACs and CCPs present in two modes. (F) Distribution of N counts of d3 values resolves the small subpopulation of OTs. Shaded area

in (D–E) as 95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Fluctuation and heterogeneity in the intensity and D traces.
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(2015) removed some subjectivity by training a Support Vector Machine (SVM)-based classifier of

‘false’ vs ‘authentic’ CCPs; but the underlying features were still largely based on lifetime and inten-

sity thresholds, which themselves are sensitive to detection and tracking artefacts (see Aguet et al.,

2013). Willy et al. (2017) used growth rates to classify clathrin structures; however, the probability

distribution of growth rate still shows strong overlaps between the proposed populations. Other

efforts to distinguish abortive from productive events have introduced second markers, such as the

recruitment of dynamin (Grassart et al., 2014; Ehrlich et al., 2004), or auxilin/GAK (He et al.,

2020); however, these markers are also recruited to short-lived, potentially abortive CCPs, especially

when exogenously expressed (Ehrlich et al., 2004; Massol et al., 2006; Taylor et al., 2012). Per-

haps the most unambiguous means of identifying productive CCPs is by the internalization of pH

sensitive-cargo (Taylor et al., 2011), with the obvious drawback of dual labeling and a more compli-

cated experimental set up. Clearly, the mechanistic analysis of CCP dynamics would greatly benefit

from an objective and unbiased means to resolve these heterogeneous subpopulations.

Here, we introduce a thermodynamics-inspired method, referred to as disassembly asymmetry

score classification (DASC), that resolves ACs from CCPs relying on the differential asymmetry in

frame-by-frame intensity changes between disassembling and fluctuating/growing structures. DASC

is independent of user-defined thresholds and prior assumptions, and does not require second

markers. We confirmed the positive correlation between CCP stabilization and curvature generation

by combining DASC with quantitative live cell TIRF and epifluorescence microscopy. We further

applied DASC to phenotype siRNA-mediated knockdown of eleven reportedly early-acting and ‘pio-

neer’ EAPs on CCP initiation and stabilization and measured their effects on CS dynamics and on

cargo uptake. In most cases we detected significant effects on early stages of CME resulting from

reduced CCP initiation and/or stabilization that did not correlate with changes in transferrin uptake.

Thus, DASC reveals EAP functions that are not detected by traditional bulk biochemical measure-

ments. Together these studies establish DASC as a unique tool for objectively distinguishing abor-

tive coats from bona fide CCPs and thus indispensable for comprehensively revealing which EAPs

act at specific stages to mediate endocytic coated vesicle formation.

Results

Disassembly Asymmetry Score Classification (DASC): a new method to
analyze CCP growth and stabilization
To ensure high sensitivity detection of all CCP initiation events, ARPE19/HPV16 (hereafter called

HPV-RPE) cells were infected with lentivirus encoding an eGFP-tagged clathrin light chain a (eGFP-

CLCa) and then selected for those that stably expressed eGFP-CLCa at ~ 5-fold over endogenous

levels. Overexpression of eGFP-CLCa ensures near stoichiometric incorporation of fluorescently-

labeled CLC into clathrin triskelia by displacing both endogenous CLCa and CLCb. Control experi-

ments by numerous labs have established that under these conditions CME is unperturbed and that

eGFP-CLCa serves as a robust fiduciary marker for coated pit dynamics at the plasma membrane

(Aguet et al., 2013; Taylor et al., 2011; Loerke et al., 2009; Ehrlich et al., 2004; Miller et al.,

2015; Gaidarov et al., 1999; Cocucci et al., 2012). For all conditions, � 19 independent movies

were collected and the eGFP intensities of >200,000 clathrin structures per condition were tracked

over time using TIRFM and established automated image analysis pipelines (Aguet et al., 2013;

Jaqaman et al., 2008). We refer to these time dependent intensities as traces. Each trace is a mea-

sure of the initiation, growth and maturation of the underlying clathrin structure (CS).

Following their initiation, the detected CSs are highly heterogeneous, reflected by the widely

spread distributions of lifetime and intensity maxima of their traces (Figure 1B, top and bottom pan-

els, respectively). Previous studies (Aguet et al., 2013; Loerke et al., 2009; Ehrlich et al., 2004)

have suggested that this heterogeneity reflects a mixture of at least two types of structures: 1) stabi-

lized, bona fide CCPs, and 2) unstable partial and/or abortive coats (ACs) that rapidly turnover.

Bona fide CCPs tend to have lifetimes > 20 s and approach an intensity level corresponding to a

fully assembled coat (between 36 and > 60 triskelia) (Ehrlich et al., 2004). In contrast, ACs tend to

exhibit lower intensity levels and disassemble at any time. However, CCPs and ACs strongly overlap

in their lifetime and intensity distributions, especially during the critical first 20–30 s after initiation.

Consequently, the contributions of these two functionally distinct subpopulations of CSs to the

Wang et al. eLife 2020;9:e53686. DOI: https://doi.org/10.7554/eLife.53686 3 of 27

Tools and resources Cell Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.53686


overall lifetime or intensity distributions cannot be resolved and ACs cannot be readily distinguished

from CCPs by application of a lifetime or intensity threshold (Figure 1B). Significantly compounding

the ability to distinguish CCPs from ACs is the fact that the intensities of individual CSs are highly

fluctuating (see for example, Figure 1—figure supplement 1A–B). These fluctuations are inevitable

and reflect a combination of low signal:noise (especially during early stages of CCP growth and mat-

uration), rapid turnover of individual triskelia, which occurs on the time scale of ~2 s

(Kirchhausen et al., 2014; Avinoam et al., 2015), stochastic bleaching of fluorophores, camera

noise and membrane fluctuations within the TIRF field. We thus sought an approach to distinguish

ACs from bona fide CCPs that is independent of user-defined thresholds and leverages these inten-

sity fluctuations measured at high temporal resolution.

Inspired by the computation of entropy production (EP) (Seifert, 2005), we designed a new met-

ric derived from the fluctuations of clathrin intensity traces that can clearly separate ACs from CCPs.

Conventionally, EP quantifies the dissipation rate of thermal energy when a system of interest is

driven far away from equilibrium, as is the case during the formation of a macro-molecular assembly

such as a CCP. This quantity is obtained by computing the difference between forward and reverse

reaction rates. We therefore assigned clathrin assembly and disassembly as forward and reverse

reactions in order to derive an EP-based metric of the progression of CS formation.

We first expressed each trace as a chain of transitions among integer intensities (or states) over

time, for the nth trace,

In tð Þ:¼ i; t¼ 1sð Þ! j; t¼ 2sð Þ! . . .! k; t¼ tð Þ (1)

In this example, i; j . . .k 2 1; imax½ � a:u:ð Þ, where imax is the largest intensity recorded so that 1; imax½ �

represents the entire pool of the intensity states. t is the lifetime of this trace (see Materials and

methods for details).

Next, after expressing all the traces as in Equation 1, we quantified for each transition between

two intensity states the conditional probabilities Wt i
�jið Þ and Wt iji

�ð Þ. Given state i and its lower

states i� 2 1; i� 1½ �, Wt i
�jið Þ denotes the probability of a decrease in intensity i ! i� between time t

to t þ 1, and Wt iji
�ð Þ denotes the probability for an increase in intensity i� ! i (see Materials and

methods for details).

From these probabilities, we define a disassembly risk function (D) for any given intensity-time

state i; tð Þ as:

D i; tð Þ ¼ ln

Pi�1

i�¼1
Wt i

�jið Þ
Pi�1

i�¼1
Wt iji�ð Þ

¼ ln
Xi�1

i�¼1

Wtði
�jiÞ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

�

� ln
Xi�1

i�¼1

Wtðiji
�Þ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

�

(2)

where, between state i and its lower states i� at time t, Term � includes every transition of cla-

thrin loss; while Term � includes every transition of clathrin gain. D = � - � thus indicates the net

risk for disassembly at every intensity-time state.

We can use this D function to project each trace into a space of disassembly risk (Figure 1C). The

projected trace (Figure 1—figure supplement 1C) then predicts the disassembly risk for an individ-

ual trace of particular intensity at a specific time. For example, In tð Þ in Equation 1 yields a corre-

sponding series of disassembly risk (see Figure 1—figure supplement 1C), written as:

D In tð Þ; t½ � ¼D i; t¼ 1ð Þ!D j; t¼ 2ð Þ! . . .!D k; t¼ tð Þ (3)

Hence, each intensity trace as in Equation 1 is translated into a D series reflecting the risk of dis-

assembly at each time point. Most D i; tð Þ values are either negative (low disassembly risk, that is loss

< gain) or nearly zero (moderate disassembly risk), see Figure 1C, which we interpret as reflective of

two phases of CCP growth and maturation.

1. Early growth phase: Following an initiation event, and during the first few seconds of CME,
almost all CSs, including ACs, grow albeit with fluctuation. Also, most CSs are still small.
Hence, in this earliest phase, Term � < Term � and D i; tð Þ<0. Accordingly, clathrin dissociation
is rare and all traces in this early phase have a low risk of disassembly. However, the risk of
acute disassembly increases as CSs approach the end of this phase. CSs that disassemble early
are potentially ACs, whereas surviving CSs enter the next phase to become CCPs.
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2. Maturation phase: Upon completion of the growth phase, CCP intensities plateau but continue
to fluctuate over many high intensity states at mid to late time points. The fluctuation is equiv-
alent to having a similar chance of gain or loss of clathrin, thus Term � » � and D i; tð Þ » 0.
CCPs in this phase retain a moderate risk of acute disassembly.

In summary, D i; tð Þ<0 is indicative of early stages of clathrin recruitment when disassembly risk is

suppressed; D i; tð Þ ¼ 0 is indicative of intensity fluctuations that occur at later stages of CCP growth

and maturation. Figure 1C displays representative examples of CCP (blue) and AC (red) traces. In

the early growth phase, both traces exhibit D i; tð Þ<0 (dark shaded background). As CCPs reach the

maturation phase they approach the regime D i; tð Þ» 0. At early time points, both ACs and CCPs exist

in the early growth phase (D i; tð Þ<0); however, with time, only CCPs enter the maturation phase

(D i; tð Þ» 0), and accordingly D values increase. Thus, for maturing CCPs D values distribute around

zero, whereas for ACs D values distribute in the negative range.

A small portion of CSs possess abnormally high intensities when first detected, but quickly disap-

pear. Therefore, Term � > Term �, D i; tð Þ>0, and the disassembly risk for high intensity states at

early time points is high (pink traces in Figure 1C and Figure 1—figure supplement 1C). These

atypical CSs frequently appear in regions of high background, which can obscure early and late

detections (Figure 1—figure supplement 1D) and impair the ability to accurately detect small inten-

sity fluctuations. As interpreting the fates of these CSs is difficult, and because they are rare, we

refer to them as outlier traces (OTs).

To quantitatively distinguish the distributions of CCPs and ACs, we examined mean, variation and

skewness of the D series. Considering the nth series D In tð Þ; t½ �, we first calculated its time average:

d1 nð Þ ¼
1

t

Xt

t¼1

D In tð Þ; t½ �

An AC is expected to have d1 nð Þ<0, whereas a CCP is expected to have d1 nð Þ»0. Indeed, for a

population of N > 200,000 CSs tracked in HPV-RPE cells, the distribution of d1 values is bimodal

(Figure 1D), allowing the distinction of ACs and CCPs.

We additionally computed:

d2 nð Þ ¼ ln max D In tð Þ; t½ �ð Þ�min D In tð Þ; t½ �ð Þ½ �=t̂f g

which reflects the lifetime-normalized difference between the maximum and minimum value of a

D series (dimensionless lifetime t̂ ¼ t =1s is used). Note that by definition, the first detection gives

D¼ 0 for both ACs and CCPs (see Figure 1—figure supplement 1C); thus, the maximum D value for

ACs is always 0. For example, the D-series of the CCP trace in Figure 1C (see blue curve in Fig-

ure 1—figure supplement 1C) has a maximum value of 0.2 and minimum value of -0.8, and lasts for

30s. Thus d2 ¼ ln 0:2� �0:8ð Þ½ �=30f g» � 3:4. The D-series of the AC trace (red curve in Figure 1—fig-

ure supplement 1C) has a maximum value of 0 and a minimum value of -1, yielding

d2 ¼ ln 0� �1ð Þ½ �=10f g» � 2:3. The distribution of this feature is also bimodal (Figure 1E) and thus can

strengthen the distinction between ACs and CCPs.

The D series of OTs contain a few initial values that are much higher than those in the D series

associated with either ACs or CCPs (Figure 1—figure supplement 1C). Therefore, such series can

be identified via a modified skewness of D:

d3 nð Þ ¼
1

t

Xt

t¼1

D In tð Þ; t½ �� d1 nð Þ½ �3

s nð Þ3
;

where s nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

P
t

t¼1
D In tð Þ; t½ �� d1 nð Þ½ �2

q

is the standard deviation of the D series.

The distribution of d3 over N series displays two tight populations with the d3 values of OTs easily

separable from the d3 values of ACs and CCPs (Figure 1F).

Using the three summary statistics d1; d2; d3ð Þ we project all CS traces into a feature space

(Figure 2A) and classify ACs (red), CCPs (blue), and OTs (pink) using k-medoids clustering (see

Materials and methods). Values for d3 identify OTs, whereas d1 and d2 complement one another sep-

arating ACs from CCPs. As these features originate from the disproportionate disassembly vs.

assembly of CSs, we term our feature selection the disassembly asymmetry score (DAS), and name
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Figure 2. DASC resolves behaviorally distinct ACs and CCPs. (A) k-medoid classification in three-dimensional feature space d1; d2; d3ð Þ, where

normalized probability densities �
�
d1; d2ð Þ, �

�
d2; d3ð Þ and �

�
d1; d3ð Þ are shown as three landscape plots. �

�
values are scaled according to gray bar.

Examples of CCPs (blue), ACs (red) and OTs (pink) concentrate near the maxima of �
�
. (B) Lifetime distributions of all CCPs (nCCP traces in blue/solid),

ACs (nAC traces in red/dashed), OTs (nOT traces in pink/dotted) and all traces (nCCP þ nAC þ nOT traces in black/solid). Gray region shows lifetime overlap

between CCPs and ACs. (C) Imax distributions and overlap. Color scheme same as in (B). Gray region shows Imax overlap between CCPs and ACs. (D) i.

DAS plot: �
�
d1; d2ð Þ contour map (values indicated by ‘rainbow’ color bar) with modes for CCPs and ACs indicated by circle and diamond, respectively.

Ten representative CCPs and ACs (blue dots) from the lifetime overlap in (B) close to the modes are projected onto d1-d2 coordinate. Traces of the

representative CCPs (ii) and ACs (iii) from i. (E) Same as (D) for the representative CCPs and ACs from the Imax overlap in (C). (F) Five repeats of

Figure 2 continued on next page
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the packaged software DASC as DAS classification, available under https://github.com/DanuserLab/

cmeAnalysis (Wang et al., 2020; copy archived at https://github.com/elifesciences-publications/

cmeAnalysis).

DASC accurately identifies dynamically distinct CS subpopulations
The DASC-resolved subpopulations of CSs exhibit distinct but overlapping lifetimes and intensities

(Figure 2B,C grey zone), confirming the inability of these conventional metrics to distinguish ACs

from CCPs. The lifetimes of ACs (Figure 2B, red) were predominantly short (<20 s) and exhibited an

exponential distribution characteristic of coats that are exposed to an unregulated disassembly pro-

cess. In contrast, CCP lifetimes (Figure 2B, blue) exhibited a unimodal distribution with a highest

probability lifetime of ~26 s. In previous work, we had shown that this distribution is best repre-

sented by a Rayleigh distribution that reflects the kinetics of a three- to four-step maturation process

(Aguet et al., 2013). Interestingly, although partially overlapping with ACs, the intensity distribution

of CCPs (Figure 2C) exhibits a sharp threshold in the minimum intensity, as would be expected

given the minimum number of clathrin triskelia required to form a complete clathrin basket

(Grassart et al., 2014; Ehrlich et al., 2004). The majority of OTs (Figure 2B,C, pink) are highly tran-

sient and bright structures and hence unlikely to be functionally relevant clathrin assemblies.

Despite their overlapping lifetimes and intensities, AC and CCP traces are well resolved by DASC

as represented in two-dimensional, normalized probability density maps �
�
d1; d2ð Þ (Figure 2Di), from

here on referred to as DAS plots (see Materials and methods for details). To illustrate this point, we

selected 10 CSs with overlapping lifetime distributions (10-25 s, gray zone Figure 2B) that fall close

to the associated modes of either the AC or CCP populations in the DAS plot, that is the two max-

ima of �
�
d1; d2ð Þ denoted by a diamond for ACs and circle for CCPs in Fig. 2Di. Blue dots show the

d1; d2ð Þ locations of the selected CSs. Their intensity traces are shown in Figure 2Dii-iii. Although the

lifetimes are almost identical, the CCP and AC traces show characteristic differences in their intensity

evolution. CCP intensities rise to a clear maximum as they assemble a complete clathrin coat

(Figure 2Dii), followed by a falling limb, which is associated with CCV internalization and/or uncoat-

ing. In contrast, AC intensities are lower and more random (Figure 2Diii), suggesting that these

coats, trapped in the early growth phase, undergo continuous exchange of clathrin subunits without

significant net assembly. We occasionally observed rapidly fluctuating, high intensity CSs amongst

the AC traces. These likely correspond to previously identified ‘visitors’ (i.e. endosome-associated

coats transiting through the TIRF field), which make up ~10% of all detected CSs (Aguet et al.,

2013).

We next selected 10 CSs (indicated as blue dots in Figure 2Ei) from the AC and CCP populations

that fall into the overlap region in the distributions of intensity maxima (gray zone, Figure 2C).

Although the intensity ranges are nearly identical, the selected CCP traces again display a rising and

falling limb and lifetimes of ~60 s (Figure 2Eii). In sharp contrast, ACs fluctuate about the same

intensity values (Figure 2Eiii) and exhibit much shorter lifetimes of ~10 s.

To establish the statistical robustness and reproducibility of the DASC-based metrics, we

acquired 24 movies from the same WT condition on the same day and randomly separated them

into pairs of 12 movies each. We then applied DASC to the movies, and calculated percent contribu-

tion of bona fide CCPs, CCP% ¼ nCCP= nCCP þ nAC þ nOTð Þ � 100% (where n indicates population), for

each movie using the first 12 as the control set, the other 12 as the test set, and compared the two

data sets. This permutation test was repeated 1000 times. Figure 2F shows 5 example pairs

Figure 2 continued

comparing CCP% ¼ nCCP= nCCP þ nAC þ nOTð Þ � 100% between 12 and another 12 movies of siControl cells imaged on the same day. A total of 24

movies were randomly shuffled to obtained 12-12 pairs. (G) Normalized probability of given p-values using Wilcoxon rank sum test. 1. Blue asters: 1000

repeats of the same shuffle in (F); 2. Red solid line: exact solution to 12-12 random sample test; 3. Light-blue dashed line: simulation of 1000 tests

between 12 normally distributed random numbers (NRN) with mean � ¼ 0 and standard deviation s ¼ 1 and another 12 NRNs with � ¼ 0:5 and s ¼ 1.

Shaded area as 95% confidence interval obtained from 10 repeated simulations.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. ‘Elbow’ method for estimating optimal cluster number.

Figure supplement 2. Ambiguity of traces at the hard boundary between AC and CCP populations generated by k-medoids clustering.
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indicating no significant difference between samples (statistical significance obtained using Wilcoxon

rank sum method). Then, we calculated p-values, p, from all repeats and presented the values as nor-

malized probabilities P pð Þ (blue asters in Figure 2G). Note that the number of possible p-values

resulting from the small sample 12-12 Wilcoxon rank sum is finite. Therefore, P pð Þ equals to a histo-

gram of discrete p-values. The expected p-value histogram for a 12-12 Wilcoxon rank sum test of

random samples is presented as a reference curve (red). The data follows this curve closely. In con-

trast, a comparison between Gaussian random numbers with different means led to a significant shift

from the reference curve (light blue, dashed line). These test results confirmed that no significant dif-

ference exists between movies from the same condition. Thus, DASC is statistically robust and not

overly sensitive to movie-to-movie variations in data collected on the same day.

Together, these data demonstrate that DASC is a robust tool to discriminate between two

completely distinct clathrin coat assembly and disassembly processes that, by inference, are associ-

ated with abortive coats and bona fide CCPs. This has not been possible based on more conven-

tional features such as lifetime and intensity (Aguet et al., 2013; Loerke et al., 2009;

Kadlecova et al., 2017; Hong et al., 2015; Ehrlich et al., 2004; Bucher et al., 2018).

DASC detects 3 populations of CSs in multiple cell types
The qualitative inspection of the d1;2;3-feature spread follows three modes; hence we initially

assigned k ¼ 3 clusters to distinguish AC, CCP, and OT populations. Although previous work also

suggested three CS subpopulations (Aguet et al., 2013; Loerke et al., 2009), we wished to validate

this parameter selection more broadly. Besides HPV-RPE we applied DASC analysis to several other

cell lines expressing eGFP or mRuby-CLCa, including ARPE, SK-Mel-2 (SKML), H1299 and A549.

After calculating the three DAS features d1;2;3, we applied k-medoids clustering for various cluster

number k ¼ 1 . . . 7 in these cells. The total distance from all the traces to their host clusters’ centers

in the d1;2;3 space is calculated for each k. We observed that for all cell lines tested, except for A549,

a clear “elbow” appears at k ¼ 3 (see Figure 2—figure supplement 1), indicating the optimal clus-

ter/population number is consistently 3 (Kodinariya and Makwana, 2013). As previously described

for cmeAnalysis (Aguet et al., 2013; Mettlen and Danuser, 2014), the signal:noise in cells express-

ing genome-edited CLCa was unsuitable for DASC analysis (not shown). Nor could we apply DASC

to cells with large fractions of static CCPs (e.g. A549 cells, Figure 2—figure supplement 1 ii). None-

theless, from this we conclude that DASC is reliably transferable to multiple cell lines exhibiting

dynamic, diffraction-limited CSs.

To determine how sharp the boundaries are between the k-medoids generated AC and CCP

populations, we identified the 10% traces that locate at equal distances to the AC and CCP medoid

(Figure 2—figure supplement 2A). As expected for a clustering of continuously distributed data,

the lifetime and maximal intensity histograms of these edge traces fell in between the corresponding

distributions of AC and CCP (Figure 2—figure supplement 2B,C). Also, the intensity cohorts show

that CCPs and edge traces are similar in dynamics, although CCPs have higher intensities (Figure 2—

figure supplement 2D). However, this ambiguity of edge traces has no effect on DASC’s ability to

resolve functionally, structurally and kinetically distinct AC and CCP populations. We confirmed this

by testing whether the exclusion of 10% edge traces would change the phenotype of a molecular

perturbation such as CALM KD. Focusing on the CCP% as a readout of the phenotype, elimination

of edge traces slightly reduced the values for both siControl and siCALM (Figure 2—figure supple-

ment 2E), but the relative difference in CCP% between the two conditions remained the same.

Thus, conclusions drawn from DASC on shifts in AC and CCP populations are robust, even though

the AC and CCP populations per se are not fully separable.

Validation through perturbation of established CCP initiation and
stabilization pathways
We next tested the performance of DASC against conditions known to perturb early stages in CME.

AP2 complexes recruit clathrin to the plasma membrane and undergo a series of allosterically-regu-

lated conformational changes needed to stabilize nascent CCPs (Kadlecova et al., 2017;

Jackson et al., 2010; Kelly et al., 2008; Collins et al., 2002). Previous studies based on siRNA-

mediated knockdown (KD) of the a subunit of AP2 and reconstitution with either WT, designated

aAP2(WT), or a mutant defective in PIP2 binding, designated aAP2(PIP2-), in hTERT-RPE cells have
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established that aAP2-PIP2 interactions are critical mediators of AP2 activity (Kadlecova et al.,

2017). We repeated these experiments in HPV-RPE cells using DASC and detected pronounced dif-

ferences in the DAS plots derived from aAP2(WT) vs aAP2(PIP2-) cells (Figure 3Ai–ii). A DAS differ-

ence � aAP2 WTð Þ;aAP2 PIP2�ð Þ½ � map (see Materials and methods) shows a dramatic increase (yellow)

in the fraction of ACs and a corresponding decrease (black) in the fraction of CCPs (Figure 3B), as

expected given the known role of aAP2-PIP2 interactions in CCP stabilization.

We also observed an increase in CS initiation rate (CS init.) (Figure 3Ci), measured by total track-

able CSs detected per minute per cell surface area (see Material and methods for detail definition).

Previous studies reported a decrease in CS initiation rate (Kadlecova et al., 2017). This apparent

discrepancy likely reflects our use of all detected traces to calculate CS initiation rate as compared

to previous use of only ‘valid’ tracks (see Materials and methods). As the CSs observed in the aAP2-

PIP2- cells were significantly dimmer than those detected in WT cells (see Figure 3—figure supple-

ment 1), more initiation events would have been scored as ‘invalid’ in the previous analysis due to

flawed detections, especially at early stages of CCP assembly.

DASC analysis revealed multiple defects in early stages of CME in the aAP2(PIP2-) cells compared

to aAP2(WT) cells. Note that the k-medoids clustering was determined based on control movies and

then the boundaries between control populations were applied to the traces extracted from movies

with experimental perturbations. We detected a pronounced decrease in the efficiency of CCP stabi-

lization, measured as CCP% (Figure 3Cii), which was calculated as the fraction of CCPs in all the

valid traces (see Material and methods). The AC% increased proportionally to the decrease in CCP%

as expected (data not shown). The lifetime distributions of CCPs also shifted to shorter lifetimes

(Figure 3Ciii, left panel), resulting in decreased median lifetimes (Table 1) in aAP2(PIP2-) cells com-

pared to aAP2(WT) cells. This lifetime shift indicates that the mutation can also cause instability in

fully grown clathrin coats, as previously reported (Kadlecova et al., 2017). There was no change in

lifetime distribution of ACs (Figure 3Ciii, right panel).

We next compared the kinetics and extent of recruitment of AP2 and clathrin to ACs and CCPs.

For this we applied two-color imaging and ‘master-slave’ analysis (Aguet et al., 2013) to simulta-

neously track clathrin and AP2 in ARPE cells stably expressing mRuby2-CLC as the master channel

and the wild-type a subunit of AP2 encoding eGFP within its flexible linker region (a-eGFP-AP2) as

the slave channel. For this and our further comparisons, we focused on traces with lifetimes in the

range 15 s to 25 s (Loerke et al., 2011) as these corresponded to the maximum overlap between

ACs and CCPs (grey zone, Figure 2B). Applying DASC to the mRuby2-CLCa signal to distinguish

CCPs from ACs we observed, as expected, that CCPs reach significantly higher average clathrin

intensity than ACs (Figure 3Di–ii, additional 5–15 s and 25–35 s cohorts are shown in Figure 3—fig-

ure supplement 2). We also observed significantly higher levels of AP2 a subunit, relative to clathrin,

present at CCPs than ACs. Moreover, as previously shown for statistically-defined abortive vs. pro-

ductive pits (Loerke et al., 2011), the initial rates of recruitment to CSs of both clathrin and AP2,

determined by the derivative of intensity, were much greater for CCPs than ACs (Figure 3Ei–ii).

Together these data corroborate the known stabilization function of AP2 during CCP initiation

(Kadlecova et al., 2017; Owen et al., 2004), and serve to validate the ability of DASC to distinguish

different regimes of molecular regulation at early stages of CME.

Validation through curvature acquisition and CCP stabilization
Previous studies have suggested that curvature generation within nascent CCPs is a critical factor for

their maturation and that CCPs that fail to gain curvature are aborted (Aguet et al., 2013;

Loerke et al., 2009; Bucher et al., 2018; Mettlen et al., 2009). Therefore, we compared the acqui-

sition of curvature in DASC-identified ACs and CCPs (Figure 3F). To this end, we applied DASC to

traces acquired by near simultaneous epifluorescence (EPI)-TIRF microscopy (Aguet et al., 2013;

Loerke et al., 2009). Because of the differential fluorescence excitation depths of TIRF- and epi-illu-

mination fields, the ratio of EPI:TIRF intensities of individual CSs provides a measure of curvature

(Figure 3—figure supplement 3A). CSs were classified as ACs or CCPs based on the TIRF channel

traces and then grouped into lifetime cohorts to obtain average invagination depth Dz (See Materials

and methods and materials). DASC-defined CCPs in the 20s cohort reached maxima

Dzmax=h ¼ max Dz tð Þ½ �=h>0:3 (Figure 3F), which corresponds to an invagination depth of >35nm

(h ¼ 115nm is the characteristic depth of our TIRF illumination field, see Materials and methods). In

contrast, DASC-defined ACs in the 20 s cohort fail to gain significant curvature. Other cohorts
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Figure 3. Validation of DASC. (A) DAS plots showing �
�
d1; d2ð Þ contour as ‘rainbow’ color map and color bar for aAP2(WT) cells (i) and aAP2(PIP2-) cells

(ii). (B) DAS difference plot (difference in d1d2 distribution) of aAP2(PIP2
-) minus aAP2(WT) cells as contour in ‘heat’ map. (C) Comparison of DASC-

derived metrics for CCP dynamics in aAP2(WT) vs aAP2(PIP2-) cells, (i) CS initiation rate and (ii) CCP% in aAP2(WT) and aAP2(PIP2-) cells. Dots

represent jittered raw data from individual movies, box plots show mean as red line and 95% and 1 standard deviation as red and blue blocks,

respectively (see Materials and methods). (iii) CCP lifetime distribution of aAP2(WT) vs aAP2(PIP2-) cells. (iv) Imax distribution of ACs in aAP2(WT) vs

aAP2(PIP2-) cells. (D) 20 second cohorts from dual channel movies of CLC-mRuby (magenta, solid) and a-AP2-eGFP (green, dashed) for CCPs (i) and

ACs (ii). (E) Time derivative of CLC-mRuby (i) and a-AP2-eGFP (ii) intensities for the first 10 seconds in the dual channel cohorts of CCPs and ACs in (D).

(F) Time course of invagination depth Dz tð Þ=h (TIRF characteristic depth h ¼ 115nm) for CCPs (blue) and ACs (red) measured by Epi-TIRF. Statistical

Figure 3 continued on next page
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supporting this CCP-curvature relation are presented in Figure 3—figure supplement 3B-D. Impor-

tantly, the relationship is conserved even when we analyzed a subset of ACs and CCPs that exhibit

the same range of maximal intensities (Figure 3—figure supplement 3E-G). Together, these data

establish that DASC-resolved ACs and CCPs are, indeed, structurally and functionally distinct.

Differential effects of endocytic accessory proteins (EAPs) on CCP
dynamics revealed by DASC
Equipped with DASC as a robust and validated tool to distinguish bona fide CCPs from ACs and to

quantitatively measure early stages of CME, we next tested its ability to analyze and phenotypically

distinguish EAP function. For this we chose a subset of eleven EAPs previously implicated in early

stages of CCP initiation and maturation (Cocucci et al., 2012; Henne et al., 2010; Ma et al., 2016;

Umasankar et al., 2014; Ritter et al., 2013; Beacham et al., 2018; Wang et al., 2016;

Srinivasan et al., 2018; Daste et al., 2017; Lo et al., 2017; Hawryluk et al., 2006; Boucrot et al.,

2012), which are uniquely captured by DASC. Our measurements allow us to segment the early

dynamics in CME into discrete stages (Figure 4A), including stage 1: initiation, measured by CS initi-

ation rate (CS init. in min�1�m�2), and stage 2: stabilization, quantified by CCP%, which is a measure

of the efficiency of nascent CCP stabilization (Figure 4A). Combining stage 1 and 2 measurements,

we calculated CCP rate (min�1�m�2), that is the number of CCPs appearing per unit time normalized

by cell area (see Materials and methods for a detailed definition and computation of the three met-

rics). We further measured the lifetime distribution of CCPs, which reflects CCP maturation (stage 3).

Finally, we also measured the efficiency of transferrin receptor (TfR) uptake, TfReff, using traditional

bulk measurement of internalized TfRs as a percentage of their total surface levels, which is not

Figure 3 continued

analysis of the data used the Wilcoxon rank sum test. *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05, n.s. (non-significant) p-value > 0.05.

Shaded area indicates 95% confidence interval for all plots.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Single frame from movies of aAP2(WT) and aAP2(PIP2-) cells.

Figure supplement 2. 10 s (i–ii) and 30 s (iii-iv) cohorts of CCPs and ACs obtained from CLC-mRuby and a-AP2-eGFP movies.

Figure supplement 3. DASC combined with EPI-TIRF approach reveals CME invagination kinetics.

Table 1. Quantitative summary of EAP experiments.

EAP Movie number Initiation Stabilization
Initiation
+Stabilization Maturation

Biochemical measurements of
CME

siRNA or mutant nsiCtrl;
nsiEAP

CS initiation rate CCP% CCP rate Median lifetime of CCP TfRint
(internal)

TfReff
(internal/surface bound)

a-PIP2 19, 20 "36%*** #27%*** "27%** #* – –

CALM 20, 19 #38%*** #30%*** #67%*** "25%*** "21%*** #64%***

epsin1 23, 22 fi #30%*** #24%** fi #37%*** fi

Eps15 –, 23 #21%*** #31%*** #46%*** #12%** fi "22%**

Eps15R –, 24 #19%** #17%** #35%*** fi #13%*** fi

FCHO1 24, 24 fi fi fi "10%* #30%*** fi

FCHO2 –, 24 fi #12%** fi fi #22%*** #34%***

ITSN1 20, 19 fi #33%*** #30%** fi #22%*** #9%*

ITSN2 –, 22 #13%* #19%*** #37%*** "16%*** #31%*** #21%***

NECAP1 22, 21 fi #26%*** #39%*** "20%* fi #24%**

NECAP2 –, 21 fi fi fi fi fi #13%**

SNX9 24, 24 #33%*** #38%*** #64%*** "54%*** "21%*** #57%***

"=increase; #=decrease; fi=no significant change, p-value>0.05; *** p-value<0.001; ** p-value<0.01; * p-value<0.05 (statistical tests explained in Materials

and methods). P-values and percentage changes are mean values obtained from 300 bootstraps comparing between KD conditions and bootstrapped

siControl.
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stage specific but reflects the overall process of CME (see Figure 4A, Figure 4—figure supplement

1A–C and Materials and methods).

The KD effects of these EAPs relative to siControl (i.e. cells treated with a non-specific siRNA)

were evaluated by percentage difference and statistical significance in DASC measurements, as well

as TfReff. KD efficiency is shown in Figure 4—figure supplement 1D. In order to compare the mag-

nitude of the KD effects relative to potential day-to-day viability, we pooled all of the siControl

Figure 4. Stage specific phenotypes detected by DASC compared to transferrin uptake measurement. (A) Schematic of 4 stages of CME: CS initiation,

CCP stabilization, CCP maturation and CCV internalization. Stage 1-3 are quantified by CS initiation rate (CS init. in min�1�m�2), CCP% and CCP

lifetime distribution. Bulk assays for transferrin receptor uptake (TfReff) measure CCV formation are not stage specific. CCP rate (min�1�m�2) measures

the combination of initiation and stabilization. Effects of siRNA knockdown of CALM, epsin1 and Eps15 on (B) CS initiation rate, (C) CCP%, (D) CCP

rate, (E) CCP lifetime distribution and (F) TfReff (internalized over surface bound transferrin receptors, error bars as 95% confidence interval and

statistical significance explained in Materials and methods). 20 bootstrapped siControl movies from all experimental days as siControl* are compared

to the specific siRNA conditions to obtained the DASC determined phenotypes in (B–D). (G) Probability distribution of �log10p of CCP% for 300

bootstraps. The 3 conditions in (B–D) plus siMock (20 more of bootstrapped siControl movies) are shown. Veridical lines indicates location of n.s.

(p>0:05) and *** (p<0:001) significance. See details on data pooling in Materials and methods.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Measurements of transferrin receptor uptake and siRNA knockdown efficiency.
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movies (133 in total collected on multiple days) and randomly selected 20 from the pool to create a

bootstrapped condition of control movies (herein referred to simply as siControl*). Then we com-

pared all the KD conditions (~20 movies each, collected on the same day) to the bootstrapped

siControl*. In addition, we randomly selected another 20 control movies from the pool to mimic the

null effect, named siMock. This bootstrap process was then repeated 300 times to obtain reliable

phenotype evaluation (see Materials and methods and materials for more details).

Three examples from a single bootstrap comparing cells treated with EAP-specific siRNA vs non-

targeting siRNA on stage 1-initiation, stage 2-stabilization, stage 1 plus 2 and stage 3-maturation

are shown in Figure 4B–E. Additionally, the result of TfReff for these conditions is shown in

Figure 4F. KD of CALM dramatically decreased initiation (Figure 4B), stabilization (Figure 4C) and

TfReff (Figure 4F), and also significantly altered the lifetime distribution of CCPs (Figure 4E). These

changes included increases in both short- and long-lived CCPs, indicative of a role for CALM in mul-

tiple aspects of CCP maturation. Conversely, KD of epsin1 selectively perturbed CCP stabilization

without affecting initiation, CCP lifetime or TfReff (Figure 4B–F). Initiation and stabilization were sig-

nificantly decreased upon KD of Eps15, while CCP lifetime was not significantly affected; on the

other hand, TfReff was slightly increased (Figure 4F), suggesting a compensatory effect. Together,

these examples show consistent and significant defects in early stage(s) caused by the three EAPs,

despite their differential and less interpretable effects on the efficiency of transferrin receptor

uptake.

300 repetitions of the bootstrap confirm the significance of the above observations. As an exam-

ple in Figure 4G, the p-values of the 300 bootstraps for effects on CCP% after siRNA KD of CALM,

epsin and Eps15 all exceed the significance of p<0:001, whereas the p-values of the siMock condition

(reflecting day-to-day viability) are almost exclusively insignificant. Thus, the DASC phenotypes

caused by the missing EAP functions (Figure 4B-F) are far more significant than day-to-day variability

and by using the pooling-bootstrapping method, movies acquired on different days can be directly

compared.

Multiple EAPs affect early stages in CCP stabilization and maturation
The above analysis was extended to all 11 EAPs. For a given condition, as above, we bootstrapped

and obtained 300 percentage difference (Dr) and p-values (p) relative to siControl* in every DASC

variable. For example, this computation results in relatively large standard deviations of p for siepsin

(Figure 5A, the yellow box plot with dotted edges, corresponding to the y axis) but extremely nar-

row 95% confidence intervals (small black region in the middle of the box). These data indicate that

the evaluation of the mean p-values p
�
¼ ph i

300 bootstrap is highly reliable. Similarly, the mean Dr,

Dr ¼ Drh i
300 bootstrap, corresponding to the x axis and indicated by the horizontal box plot with

magenta edge is also reliable. p
�
and Dr for other conditions show a similar pattern. We thus use Dr

and p
�
to define all the phenotypes (Figure 5—figure supplement 1A and Table 1). From this we

observe that FCHO1/2, ITSN1/2, NECAP1 and Eps15/15R (Ma et al., 2016) selectively altered CCP

initiation and/or stabilization without affecting CCP maturation rates, and have only relatively mild

effects on the efficiency of TfR uptake (Table 1). In sum, DASC is a statistically reliable method to

detect and distinguish phenotypes caused by KD of individual EAPs, thus enabling their effects on

specific stage(s) of CCP dynamics to be mechanistically dissected.

Phenotypes detected by DASC analysis are not reflected by
biochemical measurements of CME efficiency
We next evaluated the sensitivity of DASC and its relation to bulk biochemical measurement of

transferrin uptake (TfReff), the commonly used assessment of CME efficiency. Strikingly, KD of most

EAPs significantly reduced CCP rate (by over 30%) but caused less and/or uncorrelated shifts in

TfReff (Figure 4D, F and Table 1). To further explore this observation, for each KD condition we

replotted Dr for each of the DASC phenotypes, as well as DrTfReff in a colored ‘heat’ map

(Figure 5B). We also included Dr of transferrin receptor internalization (DrTfRint), which is indepen-

dent of potential changes in surface levels of the recycling TfR, as this parameter is often measured

by FACS or fluorescence imaging. As is evident from this plot, DASC-detected changes in early

stages of CME, that is DrCCP% and especially DrCCP rate, were typically more severe than effects

measured by cargo uptake, that is DrTfRint and DrTfReff. Notably, few of the early acting EAPs
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affected CCP median lifetime (Drt CCP) and thus later stages of CCP maturation. However, those that

did (i.e. CALM, SNX9, NECAP1 and ITSN2) also exhibited the strongest effects on cargo uptake.

To further illustrate the distinguishing power of DASC vs. biochemical CME measurements, we

reduced the dimensionality of the extracted features for the entire collection of EAP KDs using a

principal component analysis (PCA) (implemented in Matlab’s function pca). The original data

(Figure 5B) contained 11 observations (11 EAP KDs) of 6 variables/dimensions (6 relative changes).

First, the original observations were re-centered, rescaled and projected into a new 2-dimensional

PCA space, spanned by Component 1 and Component 2, which are linear combinations of the origi-

nal 6 dimensions (Figure 5C, implemented in Matlab’s function biplot). The variance of the original

data was largely maintained (>85%) in this new space, shown by Component 1 (65.90% of total vari-

ance) and Component 2 (21.16% of total variance). Hence, the dimensionality reduction to a 2D

space caused no substantial information loss. This analysis reveals that DrCCP rate was almost

Figure 5. DASC is a sensitive measure of stage-specific defects in CME not detected by bulk measurement of transferrin uptake. (A) Dr (percentage

difference) and p-values in CCP rate by comparing 11 EAP KD conditions plus siMock (Fig. 4G) to bootstrapped siControl*. Both quantities are

obtained 300 times through bootstrapping. Colored boxes with black dotted edges, correspond to the p-values in the vertical axis; boxes outlined by

magenta edges, correspond to Dr values in the horizontal axis. Red lines represent means (p
�
and Dr ) the black regions represent 95% confidence

intervals and 1 standard deviations as colored blocks of the 300 bootstrap results. Legend shows the color for each condition. Significance level is

indicated by the dashed horizontal lines. (B) Summary of phenotypes of the 11 conditions evaluated by the Dr in CS initiation rate (CS init.), CCP%, CCP

rate, and CCP median lifetime (tCCP), and Dr in transferrin receptor uptake: internalized and efficiency (TfRint and TfReff) relative to control. EAP KD

sorted from low Dr CCP rate to high. (C) Principle component analysis (PCA). Projection of 6 variable values from 11 conditions in (B) into principle

component space. First and second component (Component 1 and 2) account for 65.90% and 21.16% of total variance, respectively. Projection of

original variable axes presented as red vectors with blue arrows.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Shifts in CS initiation rate and CCP% upon EAP knockdowns and correlations between all the variables.
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perpendicular to DrTfReff. This striking lack of correlation indicates that manipulations of early CME

stages have almost no direct influence on the bulk efficiency of cargo uptake. We supplemented the

PCA with a correlation map (Figure 5—figure supplement 1B). Indeed, DrCCP rate among other

early variables shows little correlation to DrTfReff, whereas changes in median lifetime (Drt CCP)

showed the strongest correlation to DrTfReff. These comparisons highlight the value of DASC for

increased sensitivity and greater phenotypic resolution over bulk biochemical measurements of

cargo uptake, which can often obscure effects of EAP KD due to the resilience of CME.

Discussion

Unbiased classification of functionally and physically distinct abortive
coats and bona fide CCPs by DASC
Live cell imaging has revealed remarkable heterogeneity in the intensities and lifetimes of eGFP-

CLCa-labeled CCPs in mammalian cells, even amongst productive pits that internalize cargo

(Mettlen and Danuser, 2014). Consequently, it has been challenging based on these two parame-

ters to track CME progression in general and to objectively distinguish abortive coats (ACs) from

bona fide CCPs, in particular, in order to define the contributions of the many EAPs to CCV forma-

tion. Here, we introduce DAS as a new feature space for describing CS dynamic behaviors, in which

ACs and bona fide CCPs are accurately resolved. The DAS features exploit fluctuations in the inher-

ently noisy intensity traces of individual CSs. The associated software pipeline, DASC, reliably sepa-

rates dynamically, structurally and functionally distinct CS subpopulations without imposing any prior

assumptions or the need for additional markers. While we have applied this method to the classifica-

tion of CSs during CME, the DASC framework should be applicable to any localized macromolecular

assembly process for which statistically sufficient traces of the addition and exchange of subunits can

be provided.

Characterization of the DASC-resolved AC and CCP subpopulations shows that ACs: i) have

much lower average intensities than CCPs, ii) have much shorter average lifetimes than CCPs, iii)

exhibit unregulated exponentially decaying lifetime distributions, as compared to the Rayleigh dis-

tributed CCP lifetimes, iv) contain fewer AP2 complexes than CCPs, v) recruit both clathrin and AP2

at a much slower rate than CCPs, and vi) acquire less curvature than CCPs. All of these features

reproduce the properties of abortive coats inferred from previous studies (Aguet et al., 2013;

Loerke et al., 2009), thus both validating the robustness of DASC for distinguishing ACs from bona

fide CCPs and providing unambiguous mechanistic insight into physical and functional properties

required to stabilize nascent CCPs. Importantly, however, the distributions of each of these distin-

guishing properties have strong overlap between ACs and CCPs, preventing the use of any single or

combined feature set as a marker for AC vs CCP classification. DASC is thus a powerful new tool for

stratifying individual CSs into these groups and is uniquely applicable to single channel imaging.

The applicability and application of DASC
DASC exploits spontaneous fluctuations in the assembly of the clathrin coat. Implicitly, the DAS

algorithm relies on the assumption that these structurally-driven fluctuations dominate other image

fluctuations, in particular those associated with image acquisition. To satisfy this condition, DASC

imposes certain requirements on the processed movies. First, movies need to be sampled near the

frequency of clathrin exchange with the assembling coat. Several studies have documented a unit

turnover at the scale of ~2s, based on fluorescence recovery after photobleaching (FRAP) measure-

ments (Avinoam et al., 2015; Wu et al., 2001; Loerke et al., 2005). Accordingly, all our movies

were acquired at a frame rate of 1 s�1. Second, for computing the 1) disassembly risk function

D i; tð Þ, which needs statistically sufficient intensity numbers; and 2) p-values of DASC variables, which

need sufficient movies to capture movie-to-movie variation, it is necessary to aggregate data sets

per molecular condition that encompass �200, 000 intensity traces from ~20 movies. In addition, the

movies must provide sufficient signal-to-noise ratio (SNR) for the detection of the dim, AC-related

structures. As discussed before (Aguet et al., 2013), even with the most efficient camera equipment

for image capture, cells expressing endogenous levels of fluorescent clathrin generate too dim a sig-

nal for the analysis of early coat assembly (Figure 2—figure supplement 1). Finally, movies must be

long enough to capture the vast majority of long-lived CSs without truncation artifacts. In our case,
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we filmed cells for 7.5 minutes. Note that the long acquisition could cause photobleaching. There-

fore, to avoid photobleaching but maintain sufficient SNR, the laser power must be carefully tuned,

as described in Materials and methods.

Identifying molecular markers that distinguish ACs from CCPs
Numerous studies have attempted to define molecular requirements and markers that determine

CCP stabilization and maturation. However, in the absence of unbiased means to distinguish

between abortive and productive CCPs from clathrin signals alone, attempts have been made to

identify secondary markers that unambiguously identify productive events. Besides complicating

data collection, most commonly used markers remain ambiguous. For example, while a burst of

Dyn2-eGFP recruitment often occurs at later stages of CCP maturation, accompanying membrane

fission, the timing and intensity of these bursts vary considerably (Taylor et al., 2011; Cocucci et al.,

2014); and in some cases are undetectable (Taylor et al., 2011). Although CCPs lacking detectable

Dyn2 were indeed, on average, shorter-lived than those bearing Dyn2, the lifetime distributions of

these two populations significantly overlap (Aguet et al., 2013; Ehrlich et al., 2004). Moreover,

Dyn2 has been shown to be recruited at earlier stages in parallel to CCP growth (Aguet et al.,

2013; Ehrlich et al., 2004; Taylor et al., 2012; Cocucci et al., 2014), and has been suggested to

function in regulating the turnover of abortive pits (Loerke et al., 2009). Thus, the recruitment of

Dyn2 does not unambiguously distinguish ACs from CCPs. Currently, the only unambiguous marker

of a productive fission event is the internalization of pH sensitive-cargo (Taylor et al., 2011), with

the obvious drawback of requiring a complex perfusion apparatus and 3-color imaging.

Others have suggested that cargo recruitment is a critical determinant of CCP maturation

(Loerke et al., 2009; Ehrlich et al., 2004), and indeed CCPs with higher concentrations of TfR tend

to have longer lifetimes than those bearing fewer TfR (Liu et al., 2010), although again there is sig-

nificant overlap. However, because AP2-cargo interactions are essential for activation of AP2 com-

plexes (Jackson et al., 2010) and for CCP initiation and stabilization (Kadlecova et al., 2017), cargo

loading is also not a definitive molecular marker for ACs vs CCPs. Indeed, TfR intensity has been

shown to correlate precisely with clathrin intensity in both small and large CCPs (Taylor et al.,

2011). Interestingly, we have shown that the rate and extent of AP2 recruitment to nascent CCPs,

which might be a surrogate for cargo recruitment, is a distinguishing feature of ACs and CCPs. Fur-

ther studies will be needed to define other potential markers that either qualitatively, or more likely

quantitatively, co-segregate with ACs or CCPs. We speculate that combinations of interdependent

molecules rather than a single molecular event will be needed to drive and therefore define produc-

tive endocytic events.

Are all DASC-defined CCPs productive?
Our earliest studies defined statistically distinct subpopulations of CSs, which we termed early abor-

tive, late abortive and productive (Loerke et al., 2009). Later, as the sensitivity of detection

increased, we used cmeAnalysis to define subthreshold CSs based on their failure to grow past a

defined intensity threshold, likely encompassing the previously identified early abortive events

(Aguet et al., 2013). The remaining ‘bona fide’ CCPs, which likely encompassed both ‘late abortive’

and ‘productive’ CCPs, exhibited a broad, Rayleigh-type distribution of life-times reflective of a reg-

ulated process. In support of this, we found a remarkable shift in the distribution of ‘bona fide’ CCPs

towards short-lived exponentially decaying lifetimes when the recruitment of multiple EAPs to AP2

adaptors was perturbed by deletion of the a-appendage domain (Aguet et al., 2013). Interestingly,

these short-lived CCPs also failed to gain curvature. We interpreted the abortive turn-over of these

flat, but full-sized CCPs, as reflecting the existence of a regulatory endocytic check point. However,

we have since reported other conditions that result in a shift in distribution of ‘bona fide’ CCPs to

more rapid and exponentially decaying lifetimes, for example after acute activation of Dyn1

(Reis et al., 2015) or the complete replacement of CLCa with CLCb (Chen et al., 2017). Both of

these effects on lifetime distribution were interpreted as an increase in the rate of maturation of pro-

ductive CCPs (Reis et al., 2015; Chen et al., 2017). These examples highlight the current subjectiv-

ity of analyses, by us and others, and the importance of DASC for the unbiased discrimination of

ACs and CCPs.
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We expect that the CCPs identified by DASC also encompass a fraction of late abortive CCPs

whose numbers will increase when the endocytic checkpoint is triggered. Future studies are needed

to identify these factors, and importantly to verify their association with kinetically distinct subpopu-

lations through dual channel imaging and computational segregation of DASC-defined CCPs. Given

the robustness of CME and the functional redundancy of EAPs, we underline again that efficient

CCP maturation is likely driven by a complex mixture of conditionally coupled EAPs and that the

compositional differences between productive and late abortive CCPs thus will be quantitative (i.e.

determined by conditional probability distributions) rather than qualitative (i.e. all or none).

DASC reveals functions of early acting EAPs not detectable by bulk
biochemical measurements
The power of DASC to unambiguously classify ACs from CCPs was used to analyze early acting

EAPs. We could assign their differential functions to specific stages of CCV formation even when sin-

gle isoforms were individually depleted and bulk rates of cargo uptake were not or only mildly

affected. Thus, DASC enables sensitive, phenotypic assignment of individual EAPs to discrete stages

of CME. The poor/lack of correlation between CCP rate and transferrin uptake suggests the exis-

tence of compensatory mechanisms (Aguet et al., 2013; Chen et al., 2017) and/or molecular redun-

dancy (Kirchhausen et al., 2014) that could account for restoring or maintaining efficient cargo

uptake. These resilient aspects of CME against the effects of KD of individual components of the

endocytic machinery are also evident in the inability of multiple genome-wide screens based on

ligand internalization assays to detect EAPs (Kozik et al., 2013; Bassik et al., 2013;

Gulbranson et al., 2019; Collinet et al., 2010). Thus, DASC will be a critical tool for future studies

aimed at identifying possible compensatory mechanisms able to restore transferrin receptor internal-

ization. In particular, we and others (Aguet et al., 2013; Loerke et al., 2009; Ehrlich et al., 2004;

Chen et al., 2019) have proposed that CCP maturation is controlled by an endocytic checkpoint.

While the existence of such a checkpoint was inferred from statistical analysis of CS lifetimes and

associated considerations of the maturation kinetics (Aguet et al., 2013; Loerke et al., 2009), the

molecular nature of this checkpoint has remained elusive, in part because of the complexities in char-

acterizing multi-component molecular machinery. DASC’s single-marker classification of ACs and

CCPs opens an opportunity to identify the molecular conditions of such a checkpoint through multi-

channel imaging of EAPs, especially of early EAPs.

We report a strong effect on the efficiency of TfR uptake in cells depleted of CALM and SNX9,

whereas others have reported only minor or no effects (Xiao et al., 2012; Huang et al., 2004;

Posor et al., 2013; Bendris et al., 2016). These differences may reflect cell type specific expression

levels and/or activities of functionally redundant isoforms such as AP180 or SNX18 in the case of

CALM and SNX9, respectively (Posor et al., 2013). Interestingly, the effects we observe on TfR

uptake correlate most strongly with the effects on CCP maturation resulting from depletion of

CALM, SNX9 and, to a lesser extent, other EAPs (Figure 5—figure supplement 1). Nonetheless,

being uncorrelated to but more sensitive than TfR uptake assays, DASC perhaps suggests a limita-

tion of using deterministic biochemical approaches to study mesoscopic systems that are molecularly

dense and complex, like CME. As a new method towards these considerations, DASC sheds some

light on the effectiveness of statistics and fluctuation-based approaches for analysis of such systems.

In summary, DASC classifies the previously unresolvable ACs and CCPs using data derived from

single channel live cell TIRF imaging, thus providing an accurate measure of progression of CME

through its early stages. This comprehensive, unbiased and sensitive tool enables the determination

of the distinct contributions of early EAPs to clathrin recruitment and/or stabilization of nascent

CCPs. The stage-specific analysis by DASC is essential to characterize the functions of EAPs that

were previously masked by detection limits and incompleteness of current experimental approaches.

Going forward, DASC will be essential to functionally and comprehensively characterize the roles of

the complete set of >70 EAPs in CME dynamics.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line
(Homo-sapiens)

ARPE19/HPV16
eGFP_CLCa

This paper See Materials
and methods

Cell line
(Homo-sapiens)

ARPE19/HPV16
eGFP_CLCa+a-AP2-WT

This paper See Materials
and methods

Cell line
(Homo-sapiens)

ARPE19/HPV16
eGFP_CLCa+a-AP2-PIP2-

This paper See Materials
and methods

Transfected
construct (human)

siRNA to EPS15 Dharmacon CONJB-000059 Sense sequence:
AAACGGAGCUACAGAUUAUUU

Transfected
construct (human)

siRNA to EPS15R Dharmacon CONJB-000061 Sense sequence:
GCACUUGGAUCGAGAUGAGUU

Transfected
construct (human)

siRNA to epsin1 Dharmacon CONJB-000063 Sense sequence:
GGAAGACGCCGGAGUCAUUUU

Transfected
construct (human)

siRNA to SNX9
(pool of two)

Dharmacon Sense sequence: #1:
AAGCACUUUGACUGGUUAUU
#2:AACAGUCGUGCUAGUUCCUCA

Transfected
construct (human)

siRNA to FCHO1 Santa Cruz Sc-97726 transfected construct
(human)

Transfected
construct (human)

siRNA to NECAP1
(stealth)

Invitrogen HSS177973 Sense sequence:
GCUCUUUGCUCAG
GCACCAGUAGAA

Transfected
construct (human)

siRNA to NECAP2
(stealth)

Invitrogen HSS148087 Sense sequence:
CCGGCUGAGGAUCA
CUGCAAAGGGA

Transfected
construct (human)

siRNA to CALM Miller et al.
Cell 2011

Sense sequence:
ACAGTTGGCAGACAGTTTA

Transfected
construct (human)

siRNA to FCHO2 Santa Cruz Sc-91916 transfected
construct (human)

Transfected
construct (human)

siRNA to ITSN1 Qiagen Sense sequence:
GCAAAUGCUUGGAAGACUU

Transfected
construct (human)

siRNA to ITSN2 Qiagen Sense sequence:
CGUAAAGCCCAGAAAGAAA

Antibody Anti-alpha Adaptin
(Mouse monoclonal,
AC1-M11)

ThermoFisher
Scientific

MA3-061 WB (1:1000)

Antibody Anti-PICALM antibody
[EPR12177]
(Rabbit monocolonal)

Abcam ab172962 WB (1:1000)

Antibody Anti-FCHO1 antibody -
C-terminal
(rabbit polycolonal)

Abcam ab229255 WB (1:1000)

Antibody Anti-FCHO2
(Rabbit polycolonal)

Novus NBP2-32694 WB (1:1000)

Antibody Anti-ITSN1
(rabbit polycolonal)

Sigma HPA018007 WB (1:1000)

Antibody Anti-b-Actin
(Mouse monoclonal)

Sigma A1978 WB (1:5000)

Antibody Anti-SNX9
(Rabbit polyclonal)

Sigma HPA031410 WB (1:1000)

Antibody Anti-ITSN2
(Mouse polyclonal)

Abnova H00050618-A01 WB (1:1000)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Transferrin receptor
(mouse monocolonal)

in-house antibody,
HTR-D65,
PMID:1908470

generated in-house
from hybridomas, recognizes
the ectodomain of the
transferrin receptor

Antibody Anti-ESPS15
(Rabbit polycolonal)

Santa Cruz Sc-534 WB (1:1000)

Antibody Anti-ESPS15R
(Rabbit polycolonal)

in-house antibody WB (1:1000)

Antibody Anti-NECAP1 (3585)
(Rabbit polycolonal)

Ritter et al. Biochem.
Soc. Trans., 2004

WB (1:1000)

Antibody Anti-NECAP2 (3148)
(Rabbit polycolonal)

From Brigitte Ritter WB (1:1000)

Antibody Anti-epsin1
(goat polycolonal)

Santa Cruz Sc-8673 WB (1:1000)

Software DASC (integrated
to cmeAnalysis)

https://github.com/
DanuserLab/cmeAnalysis

Computational flow of DAS analysis

1. Acquire intensity traces using cmeAnalysis (Aguet et al., 2013) to analyze live-cell imaging
movies. From the software output, determine the total number of traces, Ntot, which
includes both valid traces (N entries, that is always diffraction-limited with no consecutive
gaps) and invalid traces (Niv entries, that is not always diffraction limited, and/or contain
consecutive gaps) and calculate the CS initiation rate (CS init.), which equals to Ntot= A � Tð Þ,
where A is the cell area and T ¼ 451s is the duration of each movie. Repeat this step for con-
trol and all the experimental conditions that have been collected on the same day. It is criti-
cal that a new control be performed with each data set.

2. Include only ‘valid’ traces in the following DAS analysis (described below) to identify subpo-
pulations of CSs.

3. Align each trace to its first frame, which is the first statistically significant detection
(Aguet et al., 2013). Then, for each trace, every intensity value is rounded to its nearest
integer, i 2 1; imax½ � a:u:ð Þ, where imax is the maximal rounded intensity among all the traces
acquired on the same day.

4. Calculate conditional probabilities Wt i
�jið Þ (i.e. increase in intensity from t to t+1) and

Wt iji
�ð Þ (i.e. decrease in intensity from t to t+1), t 2 1; T½ �, using the entire population of

traces from the control condition:

Wt i
�jið Þ ¼

� i�; tþ 1ð Þ \ i; tð Þ½ �

� i; tð Þ
;

where � i; tð Þ is the probability of traces that reach i; tð Þ, and � i�; t þ 1ð Þ \ i; tð Þ½ � is the joint
probability of traces that reach i; tð Þ but also reach i�; t þ 1ð Þ. Conversely,

Wt iji
�ð Þ ¼

� i; tþ 1ð Þ\ i�; tð Þ½ �

� i�; tð Þ
:

Note that large numbers of traces (>200,000), typically obtained from >20 movies per con-
dition, are required to obtain stable values of Wt.

5. Calculate the function D i; tð Þ, based on Equation 2 (see main text). Note that the D function
is only calculated once using control traces. The same D, which in essence serves as a ‘stan-
dard function’, will be applied to directly compare data between different conditions, if col-
lected on the same day.

6. Convert each trace to a D series by substituting its intensity at each time frame (i.e. Equa-
tion 1) into its D function (i.e. Equation 3). Repeat this step for all conditions.

7. Calculate the three features d1, d2 and d3 of every D series, resulting in a N by 3 data set,
where N is the total number of D series. Repeat this step for all the conditions.
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8. Make the three features numerically comparable by normalizing d1, d2 and d3 from different
conditions using means and standard deviations of the control. For any given condition, the
normalized d reads:

d
�

a ¼
da��ctrl

a

� �

sctrl
a

; for a¼ 1;2;3;

where �ctrl
a is the mean of all da and sctrl

a is the standard deviation of all da in control
condition.

9. Apply the k-medoid method, using d
�

1, d
�

2 and d
�

3 as features, to separate the traces from a
single condition into 3 clusters, CCP, AC and OT, using Euclidean distance. k-medoids
(implemented in Matlab’s function kmedoids) is chosen for its robustness over k-means.
Repeat this step for all the conditions from the same day.

10. Calculate metrics such as lifetime and maximal intensity distributions and medians, popula-
tion size, etc. for all traces within the same cluster. See more details of these calculations in
the following sections. Repeat this step for all the conditions.

11. Calculate the fraction of CCPs, CCP% ¼ nCCP=N � 100% (the efficiency of CCP stabilization),
as the population of CCPs, nCCP, divided by the entire population of valid traces,
N ¼ nCCP þ nAC þ nOT . Similarly, calculate AC% ¼ nAC=N � 100%. Box plots with p-values are
shown for CS init. and CCP% using Matlab’s exchange file function raacampbell/sigstar by
Rob Campbell. Repeat this step for all the conditions.

12. Calculate CCP rate that equals to nCCP= A � Tð Þ as the evaluation of the combined result of
initiation and stabilization.

13. Evaluate statistical significance using Wilcoxon rank sum test (implemented in Matlab’s func-
tion ranksum).

Statistical confidence bands of probability density functions based on
bootstrapping
A new statistical analysis evaluating the variation of probability density function (pdf) is developed

for the data in this paper, where movie-movie variation is considered to be the dominant source of

variation. First, for a given choice of variable x, e.g. lifetime or maximal intensity in either CCP or AC

subpopulations, x values pooled from all Nm movies in a certain experimental condition are obtained.

To equalize the contribution from different movies, x values in each movie are resampled to match

the same size (nx) before pooling, where nx is the median of the Nm movies’ CCP or AC number per

movie. The pdf p xð Þ is then computed using Matlab’s function ksdensity (default kernel smoothing

factor is applied to all pdf calculations). Next, to evaluate the movie-movie variation, the Nm movies

are bootstrapped to obtain Nm resampled movies. x values from these bootstrapped movies are

pooled to compute the first bootstrapped pdf p�i¼1
xð Þ using ksdensity, where i indicates bootstrap

number. Repeating this part 400 times, p�i¼1
xð Þ for i ¼ 1 . . . 400 are obtained. Finally, at any given

value x, the 95% confidence band is obtained as a lower and upper bound p# xð Þ; p" xð Þ
� �

, where p# ¼

2.5th percentile and p" ¼ 97.5th percentile of the 400 p�i¼1...400 xð Þ values. The final presentation of pdf

is therefore p xð Þ as the main curve with the confidence band defined by p# xð Þ and p" xð Þ.

Data pooling for conditions acquired on different days
For a given day dð Þ of experiments, all the intensity traces from the siControl movies over time tð Þ as

In t; dð Þ, are first adjusted to the traces from the siControl movies acquired on a standard day as

Im t; sdð Þ, through a linear transformation I 0n t; dð Þ ¼ aIn t; dð Þ þ b for all n ¼ 1 . . .Ntot. The final a0 and b0

values are determined such that the difference between the cumulative distributions of I 0n t; dð Þ and

Im t; sdð Þ for all n and m is minimized. Then all of the traces on day d, including movies of siEAP cells,

are transformed linearly using a0 and b0.

Next, all of the siControl movies after intensity adjustment are pooled together. Then, to begin

one bootstrap, 20 movies from the pool are randomly selected (no repeat) as the bootstrapped

siControl*. Another 20 movies from the pool are randomly selected as siMock. All of the movies

from the siEAP conditions (~20 movies per condition) plus the 20 siMock movies as experimental

conditions are paired with the 20 siControl* movies as control to go through the DASC computa-

tional flow. This bootstrap process is repeated for 300 times. After each bootstrap, CS initiation
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rate, AC%, CCP%, CCP rate and t CCP of the siEAP and siMock conditions are compared to the

bootstrapped siControl* for a pair of Dr and p. Finally, 300 Dr and 300 p values for each DASC varia-

bles (Figure 5A and Figure 5—figure supplement 1) are averaged to give Dr

�

CCP%, p
�
of CCP%,

Dr

�

CCP rate, p
�
of CCP rate and so on.

The intensity adjustment reduces day-day viability in laser power and optical conditions. In addi-

tion, there also exists intrinsic cell physiological heterogeneity, e.g. difference in expression level of

endocytic proteins and etc., mainly caused by the variation in passage number across different days.

However, the resulting day-day viability is insignificant as shown by siMock in Figures 4G and

5A, and Figure 5—figure supplement 1.

Normalized two-dimensional distributions
DAS plots (e.g. Figure 2D), calculated as �

�
d1; d2ð Þ ¼ � d1; d2ð Þ=max � d1; d2ð Þ½ � represent the 2D proba-

bility density normalized by maximum, where � d1; d2ð Þ is the probability density in d1-d2 space,

binned by Dd1 ¼ 0:2 and Dd2 ¼ 0:5. The normalized probability density projections of the data in the

(d1, d2, d3) space in Figure 2A is computed in the same way, adding bins of Dd3 ¼ 0:5.

The DAS difference maps (e.g. Figure 3B) show the difference between the normalized 2D densi-

ties of two given conditions divided by their integrations (condition one as control),

D� cond:1;cond:2ð Þ ¼
�
�

cond:2 d1;d2ð Þ
P

d1

P

d2
�
�

cond:2 d1;d2ð ÞDd1Dd2
�

�
�

cond:1 d1;d2ð Þ
P

d1

P

d2
�
�

cond:1 d1;d2ð ÞDd1Dd2
:

Averaged intensity and Dz time course
For a given cohort lifetime t , the traces within lifetime range t � 5s are averaged using the cohort

method described in Aguet et al. (2013). The average values are presented as lines, and their error

(standard deviation) as bands.

Using the microscopy setup illustrated in Figure 3—figure supplement 3A, Epi and TIRF intensi-

ties over the lifetimes of each cohort (Figure 3—figure supplement 3B-D) and errors of EPI and

TIRF channels are obtained, that is IE tð Þ � DIE tð Þ and IT tð Þ � DIT tð Þ. Following the approach devel-

oped by Saffarian and Kirchhausen (2008), we then derived the distance between the center of the

CS (*) and the initial position of assembled clathrin (+) as the invagination depth Dz (Figure 3—fig-

ure supplement 3A). For each cohort we calculated Dz tð Þ=h ¼ ln
I
0

E
tð Þ

IT tð Þ, where the normalization factor

is the characteristic depth of the TIRF field, h ¼ 115nm based on our TIRF setting, similar to

Loerke et al. (2011). I
0

E tð Þ defines the Epi intensity trace adjusted to match the initial growth rate of

clathrin measured in the TIRF intensity trace.

IE and IT are different in linear range of intensity measurement, that is the same intensity signal

may have different readings from EPI and TIRF channel. To correct for this, IE tð Þ is adjusted along fol-

lowing protocol: 1) the 1th, 3rd and 4th data points in IE tð Þ and IT tð Þ are initially considered for linear

fitting to obtain PE tð Þ and PT tð Þ respectively. The 2nd data point is removed for obvious unsmooth-

ness in IE and IT at t ¼ 2s, see Figure 4Bi. Then, 5rd . . . 10th data points are one by one added to the

linear fitting to reduce fitting residue. The collection of data points and associating PE tð Þ and PT tð Þ

are determined for the smallest residue. Then the initial growth rate for both channels is approxi-

mated as

kE ¼
dPE

dt
jt¼1

;

kT ¼
dPT

dt
jt¼1

;

and IE tð Þ adjusted such that the growth rate of the corrected series I
0

E tð Þ matches kT , that is

I
0

E tð Þ ¼
kT

kE
IE tð Þþ I0; (S1)

and I0 is an additive correction factor (see below). The averaged invagination depth is then extracted

from the relation
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IT tð Þ ¼ I
0

E tð Þexp �
Dz

h

� �

; (S2)

that is

Dz tð Þ

h
¼ ln

I
0

E tð Þ

IT tð Þ

� �

: (S3)

Considering the approximation that Dz t¼ 1ð Þ»0, I0 is obtained by substituting Equation S1 into

Equation S3, and then replacing IE and IT at t¼ 1s with the corresponding fitted values from PE and

PT ,

I0 ¼�
kT

kE
PE t¼ 1sð ÞþPT t¼ 1sð Þ:

z tð Þ is then expressed as a function of IT and the original IE with calculated parameter values,

z tð Þ

h
¼ ln

kT
kE
IE tð Þþ I0

IT tð Þ

" #

:

The error of Dz tð Þ is obtained through error propagation for the two variables IE tð Þ�DIE tð Þ and

IT tð Þ�DIT tð Þ using Matlab’s exchange file function PropError by Brad Ridder. Note that at early and

late time points, high background but weak foreground intensity prohibits accurate calculation of IE
and hence Dz (Figure 3F and Figure 3—figure supplement 3). We also detected too few ACs in the

40s cohort for robust analysis (Figure 3—figure supplement 3A).

Cell culture and cell engineering
ARPE19 and ARPE-19/HPV-16 (ATCC CRL-2502) cells were obtained from ATCC and cultured in

DMEM/F12 medium with 10% (v/v) FBS at 37˚C under 5% CO2. ARPE-19/HPV-16 cells were infected

with recombinant lentiviruses encoding eGFP-CLCa in a pMIEG3 vector, and sorted by FACS after

72 hr (Aguet et al., 2013). AP2 reconstitution was achieved by infecting the eGFP CLCa-expressed

ARPE-19/HPV-16 cells (ARPE/HPV16 eGFP_CLCa) with retroviruses encoding siRNA resistant WT or

PIP2- (K57E/Y58E) AP2 alpha subunit in a pMIEG3-mTagBFP vector and FACS sorted based on BFP

intensity (Kadlecova et al., 2017). Western blotting was used to confirm reconstituted-protein

expression and knockdown efficiency of the generated cell lines using anti-alpha-adaptin (Thermo

Fisher Scientific, #AC1-M11) and anti-CALM (Abcam, #ab172962) antibodies. APRE19 cells with sta-

ble expression of mRuby2-CLCa and a-eGFP-AP2 were also generated via lenti- and retroviral trans-

duction, respectively.

H1299 and A549 nonsmall cell lung cancer cell lines were obtained from John Minna and are

from the Hamon Cancer cell Center Collection (UT Southwestern). Their identity was authenticated

by DNA fingerprinting (I.e. STR analysis) using Powerplex 1.2 kit (Promega). SK-Mel-2 (SKML) human

skin melanoma cells, originally purchased from ATCC and verified by STR were genome-edited to

endogenously tag Dyn2 by and obtained from David Drubin (Berkeley). All cell lines were checked

for mycoplasm at least annually using ‘MycoScope’ from GenLantis and were mycoplasm free.

siRNA transfection
200,000 ARPE-19/HPV-16 cells were plated on each well of a 6-well plate for �3 hr before transfec-

tion. Transfections for siRNA knockdown were assisted with Lipofectamin RNAiMAX (Life Technolo-

gies, Carlsbad, CA). Briefly, 6.5 ml of Lipofectamin RNAiMax and 5.5 ml of 20 mM siRNA were added

separately into 100 ml OptiMEM and incubated separately for 5 min at room temperature. SiRNA

were next mixed with lipofectamin RNAiMAX and incubated at room temperature for another 10

min before being added dropwise to the cells with fresh medium. Measurements were performed at

day five after plating cells following two rounds of siRNA transfection (time gap = 24–48 hr between

transfections). Western blotting confirmed that the knockdown efficiency for all proteins was over

80%. Control cells were transfected in parallel with control siRNA (siCtrl) purchased from QIAGEN

(Germantown, MD).
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Transferrin receptor internalization assay
Internalization of transferrin receptor was quantified by in-cell ELISA following established protocol

(Srinivasan et al., 2018). ARPE-19/HPV-16 cells were plated in 96 well plates (15,000 cells/well,

Costar) and grown overnight. Before assay, cells were starved in PBS4+ (1X PBS buffer with addition

of 0.2% bovine serum albumin, 1 mM CaCl2, 1 mM MgCl2, and 5 mM D-glucose) for 30 min at 37˚C

incubator with 5% CO2 and then cooled down to 4˚C and supplied with 100 ml 5 mg/ml HTR-D65

(anti-TfR mAb) (Schmid and Smythe, 1991). Some cells were kept at 4˚C for the measurement of

surface-bound HTR-D65, while some cells were moved to 37˚C water bath for 10 min internalization

and then acid washed to remove surface-bound HTR-D65. All cells were fixed with 4% paraformalde-

hyde (PFA) (Electron Microscopy Sciences, PA) and penetrated with 0.1% Triton-X100 (Sigma-

Aldrich). After blocking with Q-PBS (PBS, 2% BSA, 0.1% lysine, 0.01% saponin, pH 7.4) for 30 min,

surface and internalized HTR-D65 was probed by HRP-conjugated goat-anti-mouse antibody (Sigma-

Aldrich). Color developed after adding OPD solution (Sigma-Aldrich) and absorbance was read at

490 nm (Biotek Synergy H1 Hybrid Reader).

Statistical significance of changes in internalized and surface-bound transferrin receptors (TfRint

and TfRsuf) were obtained by two-sample t-test (implemented in Matlab’s function test2). Statistical

significance of changes and 95% confidence intervals in efficiency of transferrin receptor uptake

(TfReff = TfRint/TfRsuf) were obtained using a statistical test for ratios (Ugrankar et al., 2015)

(implemented in a customized Matlab’s function).

Microscopy imaging and quantification
Total Internal Reflection Fluorescence (TIRF) Microscopy imaging was conducted as previously

described (Loerke et al., 2009). Cells were grown on a gelatin-coated 22 � 22 mm glass (Corning,

#2850–22) overnight and then mounted to a 25 � 75 mm cover slide (Thermo Scientific, #3050).

Imaging was conducted with a 60X, 1.49-NA Apo TIRF objective (Nikon) mounted on a Ti-Eclipse

inverted microscope equipped with an additional 1.8X tube lens, yielding a final magnification of

108X. Perfect focus was applied during time-lapsed imaging. For EPI-TIRF imaging, nearly simulta-

neous two channel (488 epifluorescence/TIRF) movies were acquired with multi-dimension acquisi-

tion (MDA). Movies were acquired at the rate of 1 frame/s. cmeAnalysis was applied for CCP

detection and tracking (Aguet et al., 2013; Jaqaman et al., 2008; Loerke et al., 2011). Variation

could arise from the heterogeneity of cover glass by itself and the gelatin-coating.
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Posor Y, Eichhorn-Gruenig M, Puchkov D, Schöneberg J, Ullrich A, Lampe A, Müller R, Zarbakhsh S, Gulluni F,
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