
4066–4080 Nucleic Acids Research, 2020, Vol. 48, No. 8 Published online 17 March 2020
doi: 10.1093/nar/gkaa159

Using GARDEN-NET and ChAseR to explore human
haematopoietic 3D chromatin interaction networks
Miguel Madrid-Mencı́a1,2,3,†, Emanuele Raineri4,†, Tran Bich Ngoc Cao5 and
Vera Pancaldi1,2,3,*
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ABSTRACT

We introduce an R package and a web-based visual-
ization tool for the representation, analysis and inte-
gration of epigenomic data in the context of 3D chro-
matin interaction networks. GARDEN-NET allows for
the projection of user-submitted genomic features
on pre-loaded chromatin interaction networks, ex-
ploiting the functionalities of the ChAseR package to
explore the features in combination with chromatin
network topology properties. We demonstrate the ap-
proach using published epigenomic and chromatin
structure datasets in haematopoietic cells, including
a collection of gene expression, DNA methylation
and histone modifications data in primary healthy
myeloid cells from hundreds of individuals. These
datasets allow us to test the robustness of chromatin
assortativity, which highlights which epigenomic fea-
tures, alone or in combination, are more strongly
associated with 3D genome architecture. We find
evidence for genomic regions with specific histone
modifications, DNA methylation, and gene expres-
sion levels to be forming preferential contacts in 3D
nuclear space, to a different extent depending on the
cell type and lineage. Finally, we examine replication
timing data and find it to be the genomic feature most
strongly associated with overall 3D chromatin orga-
nization at multiple scales, consistent with previous
results from the literature.

INTRODUCTION

A decade after the first papers about Hi-C (1), the tech-
niques to detect genomic structure experimentally at differ-

ent scales have multiplied. We can now explore 3D chro-
matin contact dynamics across cell types (2), differentiation
state (3), the cell-cycle (4) and even in single-cells (5). As
the resolution of our datasets improves, the need for new
genome visualization options is apparent. We have devel-
oped a set of tools for the integration and interpretation of
genomics datasets in 3D, based on a network representation
of chromatin contacts.

Despite the great advancement in our knowledge regard-
ing chromatin conformation in the last few years, heatmaps
are still the most widely used visualization frameworks. This
works well, because contact matrices provide symmetric in-
teraction profiles based on binning of contacts at a specific
resolution. This mode of visualization is also ideal to spot
two of the main sub-structures in the genome, namely topo-
logically associated domains (TADs) (6,7), identified pre-
cisely as squares on the diagonal of Hi-C contact heatmaps,
and compartments (1), directly related to the checkerboard
patterns that are also easily observable in this representa-
tion.

Capture Hi-C is a variation of the Hi-C protocol that en-
ables studying interactions involving a set of specific non-
abundant regions of the genome, for example gene promot-
ers (8). Promoter-capture Hi-C confirmed the existence and
importance of long-range chromatin interactions and iden-
tified the role of Polycomb in creating a highly intercon-
nected core of developmentally related genes in mouse em-
bryonic stem cells (9).

Long-range interactions can also be detected in contact
maps generated by identifying chromatin interactions that
are mediated by specific proteins, for example RNA Poly-
merase II (RNAPII), with the ChIA-PET protocol (10,11).
Hi-C datasets allow the detection of these long-range in-
teractions only when extremely deep sequencing of the li-
braries is performed, due to the much higher abundance
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of short-range contacts that saturate sequencing libraries
(12). One factor common to all chromosome conformation
capture techniques is the reliance on hybridization and se-
quencing.

Alternative approaches that do not rely on sequencing,
and even more so the ones that do not require the bias-prone
ligation steps characterizing chromosome capture methods,
provide us with an independent picture of nuclear organi-
zation. For example, different techniques exist for visual-
izing specific previously tagged chromatin regions by mi-
croscopy, leading to the inference of 3D interactions (DNA
FISH Oligopaints (13), Hi-M (14)). Finally, hybrid methods
that infer 3D proximity by segregating genomic fragments
in different locations in the nucleus allow the inference of
3D contact maps independent of proximity ligation (GAM
(15), SPRITE (16)).

There is a clear need to develop frameworks to represent,
compare and integrate these different datasets in an intu-
itive and computationally efficient way. New tools to visu-
alize chromatin will help us go beyond the identification of
TADs and compartments, towards models of gene regula-
tion. We suggest that interpreting chromatin structure as a
network is a useful step in this direction.

A considerable number of papers have suggested inter-
preting chromatin structure as a network, either starting
from Hi-Ccontact maps interpreted as distance matrices,
see for example (17–23), or also increasingly using alter-
native chromosome capture techniques that detect longer-
range specific contacts directly (24). Despite the processing
required to obtain networks from 3C based datasets avail-
able at the time, network methods were shown to provide
biological insight already as far back as 2010 (17). Impor-
tantly, thanks to recent improvements in experimental tech-
niques, we are now able to generate meaningful chromatin
networks directly from the contact datasets, not by filtering
of contacts based on distance (25), and to provide an inte-
gration of epigenomic profiles reconstructing relationships
between different epigenomic marks in 1D (26) or 3D (25).
Network methods have also been used to detect common
structural features such as TADs (27,28) and to identify the
presence of different species in meta-genomic samples (29).
Despite the presence of a considerable number of papers on
network analysis of chromatin contacts and the clear poten-
tial of this analogy, most of the reviews on the subject still
focus on different approaches for the analysis of chromo-
some capture datasets, with one exception to our knowledge
(30).

The network representation is particularly useful when
using PCHi-C networks, where we can subdivide the whole
network into interactions involving only promoters (PP
subnetwork) or those involving a promoter and an Other-
end (PO subnetwork). This distinction can lead to interest-
ing differences between these two types of genomic contacts,
which are characterized by the presence of specific epige-
nomic features (25).

MATERIALS AND METHODS

ChAseR

The ChAseR package provides functions to read chro-
matin contact networks and many kinds of data available

in bed file or other similar formats (gene lists, ChipSeq
datasets, expression values) and perform the integration of
the dataset onto a 3D chromatin structure network (Figure
1A). Once the data have been assigned to nodes in the net-
work, ChAseR performs correlation analyses. Specifically,
the ChAseR::ChAs function computes different forms of
network correlations: assortativities, cross-assortativities,
AND-assortativities, node by node correlation functions,
assortativity for categorical features (see ChAseR vignette
in Supplementary Material).

The value of chromatin assortativity is dependent on net-
work topology, on features abundance (number of network
nodes covered by the feature) and also on the relationship
between the two (e.g. whether the feature tends to be found
in nodes with high degree). It is therefore essential to per-
form randomizations to estimate the expected value of as-
sortativity for a specific feature and compare it to its mea-
sured value.

Randomization strategies. We implemented
three randomization algorithms in the function
ChAseR::randomize. The first consists in redistributing
the features at random across nodes (Supplementary
Figure S1A). This obviously preserves the average value of
each feature in the network exactly.

A further option allows the user to split the nodes in
the network in two non overlapping sets; features are ran-
domly reshuffled but only among nodes belonging to the
same set. For example, if the first set contains nodes (a, b, c)
with feature values (1, 2, 3) and the second set contains
nodes (d, f, g) with feature values (10, 11, 12), a possi-
ble randomization could associate nodes (a, b, c) with fea-
tures (2, 3, 1) and nodes (d, e, f) with features (12, 11, 10);
but the feature of a node from the first set can not be
swapped with a feature from the second set. This might be
useful, for example, when one wants to permute features
distinguishing promoters from other-ends, thus preserving
the mean abundance for each of these two specific node
subsets.

Finally, the third algorithm rewires the network edges so
that the distribution of edge distances (the genomic dis-
tance spanned by two nodes connected by an edge) af-
ter randomization is similar to the distribution of edge
distances in the original network. Specifically, each loga-
rithmic decade of edge distances (103−104, 104−105, . . . )
contains approximately the same numbers of edges in the
real and randomized networks (see Supplementary Fig-
ure S1B). This does not change the assignment of fea-
ture values to nodes, so that feature abundance is also
preserved.

This last option is useful for the many features that have
broad peaks, which are likely to overlap multiple fragments
that are linearly close in the genome. In these cases, not pre-
serving distance would produce a distortion of the genomic
correlation and would lead to randomized ChAs values dis-
tributed around 0 for all features. On the contrary, using the
distance-preserving randomizations leads to expected ChAs
values that can be positive and high, so that only ChAs val-
ues outside of these random ranges can be considered sig-
nificant (Supplementary Figure S1C).
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Figure 1. Schematic overview of the two tools presented to perform chromatin network analysis. (A) Schematic view of the functionalities of the ChAseR
R package. (B) A screen shot of the GARDEN-NET web-tool showing the main components: 1) the viewer on the left shows the network for the selected
species and cell type; 2) the tool-tip shows properties of the node; 3) the search box allows to search for genes or genomic regions; 4) the viewer on the
right shows the searched region or neighbours of selected genes; 5) the menu on the right allows for choosing chromosome (including the option PP to
visualize the entire PP network for PCHi-C networks), selecting features to be displayed, and uploading user-defined features. The table under the menu
displays calculated correlations and network properties of nodes with the selected feature. The legend at the center that can be opened from the option on
the left-viewer shows the mapping between features and visual properties.

GARDEN-NET

Generating chromatin contact networks. Chromatin net-
works are assembled starting from standard outputs of
chromosome capture analysis software. We mostly focused
on ‘targeted’ genome-wide techniques such as Capture Hi-
C, ChIA-PET or Hi-ChIP, but also standard Hi-C datasets
can be used to create networks, after filtering for significant
interactions or detection of loops. To illustrate GARDEN-
NET we will here consider data produced by Promoter-
Capture Hi-C (PCHi-C).

This technique identifies contacts involving promoters,
returning pairs of contacting fragments, stored for exam-

ple as interaction files in .ibed format. The protocol is very
similar to Hi-C, except the extra step of hybridization with a
library of promoter baits. Similar to Hi-C, significant con-
tacts have to be identified against a background of noise.
The data in (2) is processed using the CHiCAGO pipeline,
which uses a convolution noise model accounting for noise
due to both distance-dependence of the signal (short ge-
nomic distance interactions are more likely) and ‘techni-
cal’ noise due to sequencing (37). An alternative pipeline
presented in (38) was shown to better identify promoter–
enhancer contacts but was not suited to identify promoter–
promoter contacts, which are of interest in this study. We
constructed networks from the CHiCAGO output, simply
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considering all contacts with CHiCAGO score >5 as edges,
as suggested by the package guidelines. The networks are
hence unweighted.

The other kind of contact datasets that we have included
in GARDEN-NET are Hi-C derived networks (see Table
1). Hi-C data was generated and processed with the FitHiC
pipeline (39), which allows us to retrieve a list of highly
confident interactions associated with a P-value, generating
chromatin contacts maps that are quite comparable to the
PCHi-C networks.

GARDEN-NET allows choosing specific species and cell
types and returns a chromosome-wide visualization of the
chromatin contact network on the left panel (Figure 1B).
The user can then search for a specific region of interest
by entering genomic coordinates, the gene name, or sim-
ply by right-clicking on one of the nodes in the left panel.
After the search is activated, the panel on the right will
display the neighbourhood of this region/gene while the
zoomed-in regions are highlighted in the left panel. Al-
ternatively, the user can select to visualize the entire net-
work of only PP interactions and, in this case, connections
between a selected promoter and other ends interacting
with it will appear only on the right panel and after the
search.

This visualization is based on a web implementation of
Cytoscape (40,41) and hence visual properties of the graph-
ics can be coupled to the represented dataset. In the case
of PCHi-C, nodes can be either baits used in the promoter
capture experiments (circles), or other ends (squares). All
nodes are annotated with the names of genes that over-
lap the corresponding genomic fragment (tool-tip), and are
linked to genome browser views of the regions (left-click).
Bait nodes are additionally labelled with the name of the
gene whose promoter was targeted by the capture system.
Other ends often overlap with intronic regions, in which
case the name of the gene harbouring the intron is shown
in the tool-tip. The node border colour denotes the chro-
mosome, to facilitate detection of inter-chromosomal in-
teractions. A series of tabs above the left-most viewer win-
dow allow for resetting of the zoom, downloading of the
data and images and loading of a table listing general net-
work characteristics (number of nodes, number of promoter
nodes etc.) and network statistics (average degree, size of
connected component etc.) for the network represented on
the left panel (either a single chromosome or the entire
PP network).

Chromatin features. The second main function of
GARDEN-NET is assigning the chromatin features to the
nodes of the 3D structure network, which is performed
by ChAseR. Depending on the organism and cell type
chosen, a list of features is available in the drop-down
menu on the right. In the case of mESCs, these are the
features that were considered in a previous work (25) and
include histone modifications, binding peaks of different
transcription factors and cytosine modifications (see
Table 1). For human haematopoietic cells, we currently
provide expression, methylation, histone modifications
and expression averaged over hundred of healthy indi-

viduals, as well as replication timing for cell lines (see
Table 1).

Once one of these features is selected, it will be repre-
sented on the network visualization panel with a colour
code mapping the node colour to the value. The tool-tip
will show the exact value for the feature on the node and the
range of feature values in the whole network for compari-
son. Upon selection of a feature, a table will also appear be-
low the feature selection drop-down menu with a list of net-
work statistics specific to the selected feature. This includes
the proportion of nodes having the feature, their average de-
gree and also the feature’s chromatin assortativity (ChAs)
value, calculated on the whole network or subnetworks (see
ChAseR manual about the mapping procedure), with ran-
domized values for reference. Users are invited to submit
their own features through a menu which will require spec-
ifying the feature type and providing a feature file (multi-
ple formats are accepted including bed3, bed6, chromhmm)
and, once the feature is uploaded, users will be able to visu-
alize their features on the chromatin network and calculate
related statistics. More technical details about GARDEN-
NET front and back-end can be found in Supplementary
Material.

RESULTS AND DISCUSSION

ChAseR and GARDEN-NET

Given the flexibility and efficiency of representing chro-
matin as a network, we have designed a pair of tools which
can be used together or separately for the analysis of chro-
mosome conformation capture data: GARDEN-NET and
ChAseR (Figure 2). ChAseR is a stand-alone computa-
tional tool implemented as an R package, which provides
functions to build and analyse chromatin interaction net-
works efficiently, integrate different epigenomic features on
the network, and investigate the relation between chromatin
structure and other genomic properties. For example, we
have recently introduced the concept of chromatin assor-
tativity (ChAs), which allows us to identify whether chro-
matin with specific features (chromatin marks, binding of
transcription factors and replication timing, amongst oth-
ers) tends to form preferential 3D contacts in the nucleus
(25,42). ChAseR provides efficient calculations of ChAs
and other related measures, including combined feature as-
sortativity, local assortativity defined in linear or 3D space,
and tools to explore these patterns (Figure 2B). GARDEN-
NET is a web-based tool that exploits Cytoscape (40,41)
functionality to allow exploration of pre-loaded chromatin
contact networks (PCHi-C datasets in human haematopoi-
etic cells (2) and mESCs (43)), in combination with dif-
ferent pre-loaded epigenomic datasets (histone modifica-
tions, expression, DNA methylation (32) and replication
timing) also allowing users to submit features (.bed and
other formats accepted). It provides user-friendly visualiza-
tion and search of networks, calculations of network mea-
sures and ChAseR functionalities, including calculation
of ChAs.
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Table 1. Data sources for GARDEN-NET and for the present manuscript

Data type Cell types Reference Notes

Promoter Capture Hi-C Human heamatopoietic primary cells (2) v.37
Promoter Capture Hi-C mESC (8) v.mm9
Hi-C mESC (31) v. mm9
Hi-C GM06990 (1) v.37
ChIP-Seq (78 features) mESC (26) v.mm9
ChIP-Seq (4 hist. marks) Human primary Monocytes, Neutrofils and Tcells (32) v.37
ChIP-Seq (6 hist. marks) Human primary B cells (33) v.38
ChIP-Seq (2 hist. marks) GM06990 (34) v.37
ATAC-seq Human primary B cells (33) v.38
Repli-Chip GM12978 (35) v.37
Repli-Chip GM06990 (35) v.37
RNAseq Human primary Monocytes, Neutrofils and Tcells (32)
RNAseq Human primary B cells (33)
RNAseq Human primary haematopoietic cells (36)
RNAseq GM06990 (34)
DNA methylation Human primary Monocytes, Neutrofils and Tcells (32) WGBS
DNA methylation GM06990 ENCODE (GSM999353) 450K

Figure 2. Schematic representation of the chromatin assortativity approach to study genome organization. (A) Schema representing the different chromatin
contact detection methods and different representations of these datasets. (B) Schema representing the different components that should be used as input
in ChAseR and chromatin assortativity calculations and the two main ChAseR outputs: chromatin networks annotated with features and ChAs calculated
on them. Mapping features on the networks involves assigning a value corresponding to a feature on the represented genomic fragment to each chromatin
network node. Chromatin assortativity estimates whether there are preferential contacts connecting chromatin fragments that have a specific feature (blue
nodes in the schematic). The ChAs calculation can be used to represent two types of plots: a ChAs versus abundance plot or, for networks that can be
subdivided into PO and PP subnetworks, a plot showing ChAs in the PO vs PP subnetworks. These two plots suggest respectively whether the ChAs of
the feature of interest (purple circle) is high compared to random expectation (blue smaller circles, see Materials and Methods) and whether it is most
important for PP or PO contacts.

Assortativity analysis of histone modifications in primary
neutrophils

We demonstrate the use of ChAseR and GARDEN-NET
on epigenome datasets from the BLUEPRINT project, in
which reference histone modifications, DNA methylation
and gene expression were characterised for neutrophils,
monocytes and T cells in 150 healthy individuals (32). We

considered contacts identified using PCHi-C (2), taking all
interactions called by CHiCAGO as unweighted (see Mate-
rials and Methods).

These networks include both contacts between promoter
(P) nodes, denoted as PP edges, and contacts between a
promoter (P) and another genomic region (O) denoted as
PO edges. The total PCHi-C networks can hence be subdi-
vided into PP and PO subnetworks. Comprehensive epige-
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nomic data was collected for neutrophils, including four his-
tone modifications, DNA methylation and expression levels
across all individuals, allowing us to test the robustness of
our findings in this cell type. For each of the following anal-
yses we performed randomizations to test the significance of
assortativity values, as described in Material and Methods.

We studied the assortativity of four histone marks
in neutrophils from a single individual of the EPIVAR
project (32). We first plotted ChAs of each histone mark on
the PP subnetwork against each mark’s abundance on the
same subnetwork (Figure 3A), also showing the ChAs re-
sulting from distance-preserving randomizations (see Ma-
terials and Methods). We also investigated the relationship
between ChAs calculated in the PO versus the PP network
for each histone mark (Figure 3B).

The first feature that we examined was tri-methylation
of Lysine 27 on histone 3 (H3K27me3), a chromatin mark
which is strongly associated with Polycomb repressed chro-
matin (44) that was found to be assortative in mESCs (25).
Confirming these results, H3K27me3 was found to have
positive and significant ChAs in neutrophils in both PP and
PO subnetworks. These results suggest the association of
Polycomb with 3D chromatin contacts even in differenti-
ated cells (Figure 3a,b). These results were confirmed for
most of the individuals investigated (Supplementary Figure
S2).

We then examined lysine 4 mono-methylation on histone
3 (H3K4me1), which has been associated to enhancers and
promoters (44) and was found to be assortative in mESC
(25). H3K4me1 was found to be assortative in neutrophils
(Figure 3A and B). ChAs values were higher in the PP
than in the PO subnetwork, suggesting that this mark is
mostly associated to promoters that are in 3D contact with
each other, but it can also be found in some regulatory re-
gions in contact with promoters. These observations were
strengthened by looking across individuals, which revelaed
this mark to have very reproducible ChAs values (Supple-
mentary Figure S2).

Next, we considered, acetylation on Lysine 27 of his-
tone 3 (H3K27ac), an activation mark which is often en-
countered on active gene promoters and active enhancers
(44) and was also found to be assortative in mESCs (25).
Strangely, in the single specific individual considered in Fig-
ure 3B, this mark was found to be neither assortative nor
disassortative, with ChAs = 0 on the PO network, while hav-
ing a significant ChAs on the PP network. Looking at mul-
tiple individuals, we observed variable levels of H3K27ac
assortativity, especially in the PO subnetwork with ChAs
values ranging from –0.1 to 0.1, compared to a range of 0.1
to 0.35 in PP (Figure 3C). This suggests that for all indi-
viduals there is a strong tendency for interactions between
promoters that have similar levels of activation, but only
in some individuals, regulatory regions in contact with ac-
tive promoters also have this mark. The ChAs values on the
PP networks are also variable, but all are found to be sig-
nificantly higher than expected by distance-preserving ran-
domizations (Figure 3D). This finding might suggest mod-
ulated expression levels of the genes across individuals de-
pending on the presence of the H3K27ac activation mark on
the corresponding enhancers. Neutrophils were previously
found to display high levels of transcriptomic and epige-

nomic variability, even taking into account genetic differ-
ences between individuals, likely due to their role as the im-
mune system’s first responders (45).

Finally, we looked at peaks of trimethylation on Lysine 4
of the same histone 3 (H3K4me3), a mark associated with
active promoters (44). We observed strong assortativity in
the promoter-promoter network and negative assortativity
in the PO network (Figure 3B), consistent with what was
found in mESC (25) and also with the expected behaviour
for a promoter-specific mark. The ChAs values for this
mark were found to be considerably less variable across in-
dividuals (Supplementary Figure S2). Results for H3K27ac
and H3K4me1 could be largely confirmed in monocytes
and T cells (Supplementary Figure S3).

Taken together, these results are consistent with recent
reports of the existence of interactions between functional
regulatory domains that can be evinced from correlation
of histone marks (H3K4me3 and H3k27ac) across a large
number of individuals (46). Moreover, we confirmed an as-
sociation of chromatin marks to chromatin structure that
leads to preferential contacts between chromatin regions
with similar chromatin (47).

DNA methylation is assortative in primary neutrophil
promoter-promoter networks

Given the strong association between de-methylation at
gene promoters and active gene states, we went on to test
assortativity of DNA methylation Beta values in the neu-
trophil PCHi-C PP subnetwork. We found positive values
above 0.20 (Supplementary Figure S4). Using the corrfun
option of theChAseR::ChAs function,ChAseR allows for
a more detailed investigation of the correlation of features
in interacting genomic regions. We can plot the correlation
between the value of methylation at one promoter and val-
ues of methylation of its 3D neighbouring promoters, sep-
arating methylation values in quartiles (Figure 3E). This
correlation was clearly positive, indicating concordance of
methylation states at interacting promoters.

Gene expression is assortative in primary neutrophil
promoter–promoter networks

Having observed a strong relationship between chromatin
marks related to gene expression and chromatin 3D struc-
ture, we predicted that gene expression levels of genes whose
promoters establish contacts with each other should be cor-
related. We confirmed this hypothesis measuring a signif-
icant value of assortativity of gene expression on the cell-
type specific PP subnetwork in all individuals and in all
three cell types analysed (Supplementary Figure S5). This
tendency was also evident as a correlation between expres-
sion quartiles on promoters and expression on their pro-
moter neighbours on the PP subnetwork (Figure 3F).

Assortativity analysis of reference epigenome marks on B
cells

To test assortativity of a larger number of epigenomic
features, we considered the data from (33). We down-
loaded the six reference histone modifications (H3K9me3,
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Figure 3. Analysis of the assortativity of epigenomic features in primary neutrophils. (A) ChAs vs abundance on PCHi-C PP networks for 4 different histone
modifications in a single individual of the EPIVAR project (32). Empty grey circles represent ChAs calculated on distance-preserving randomizations. (B)
ChAs calculated for the same features as (A) in the PO and PP PCHi-C networks. The black line shows the diagonal (x = y). (C) ChAs for H3K27ac in the
PO and PP PCHi-C networks for 150 different healthy individuals from EPIVAR. The black line shows the diagonal (x = y). (D) ChAs vs abundance for
H3K27ac across all individuals from the same dataset as (C). Small dots correspond to ChAs values obtained for distance-preserving randomized networks
and colours identify individuals. (E) Correlation between methylation quartiles at promoter baits and average methylation at neighbouring promoters in
the PCHi-C PP neutrophil network. (F) Correlation between expression quantiles at promoter baits and average expression at neighbouring promoters in
the PCHi-C PP neutrophil network.
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H3K27me3, H3K4me1, H3K4me3, H3K36me3, H3K27ac)
and ATAC-seq datasets (marking accessible chromatin)
from B cells and projected them onto the B cell PCHi-C
network (combining total and naive B cells). In addition
to the previously discussed marks, this included methyla-
tion on Lysine 36 of histone 3, a modification, thought to
be marking regions involved in active transcription and ex-
ons, and H3K9me3, a mark associated to constitutive hete-
rochromatin.

As expected, we found all modifications to be signifi-
cantly assortative with respect to random, as these marks
are associated with chromatin states that are known to be
attracting each other, such as active chromatin, making con-
tacts within the active compartment, and heterochromatin
and polycomb domains, also making preferential contacts
with other regions with the same marks (Figure 4A).

H3K36me3 was the mark with the least increased ChAs
in the PP subnetwork compared to distance preserving ran-
domization, showing a moderate impact of 3D interac-
tions in the preferential contacts established between re-
gions with the mark. On the contrary, H3K9me3, followed
by active chromatin marks, displayed strong assortativi-
ties. Separating the PP and PO networks we observe higher
ChAs than expected for all features apart from H3K36me3
and H3K27me3 in the PP subnetwork, with ATAC-seq and
H3K4me3 having strongly negative ChAs in the PO subnet-
work (Figure 4B).

Whereas the negative PO subnetwork assortativity of
H4K4me3 is to be expected for a promoter-specific mark,
the similar ChAs value for ATAC-seq suggests a discor-
dance between DNAse hypersensitivity of promoters with
their connected regulatory regions. This might be related
to differences in transcription factor occupancy at these re-
gions. Again the H3K27ac is found to have a value close to
0 in the PO subnetworks, suggesting great variability across
individuals, an aspect that could not be evaluated for this
dataset.

Cross-ChAs and AND-ChAs, assortativity of combined
features

Since ChAseR offers the possibility to calculate the com-
bined correlation of two features, we decided to use the
cross-ChAs and AND-ChAs options to evaluate ChAs of
all the possible combinations of epigenomic marks included
in this dataset. In this mode, ChAseR returns a matrix of
values, which can be visualized as a heatmap highlighting
which types of features are found to be in preferentially in-
teracting chromatin fragments, either with one feature on
each of the interacting fragments, or with both features on
interacting fragments (Figure 4C, D).

We constructed a cross-ChAs matrix for the above
mentioned features on B cells, as shown in Figure 4C.
Clearly the diagonal of this matrix returns the traditional
ChAs values (correlations of a feature with itself) but the
off-diagonal elements can, in some cases, point to specific
combinations of features present on interacting fragments
or excluding each other.

This is the case, for example, for heterochromatin, which
shows high ChAs only with itself, moderate cross-ChAs
with H3K27me3, and negative cross-ChAs with all other

features. It is in fact interesting to observe the difference
between these cross-ChAs values in the two separate
PP and PO subnetworks and to consider the values ob-
tained by distance-preserving randomizations (Supplemen-
tary Figure S6). The tendencies observed for cross-ChAs
for H3K9me3 are already present in the randomized net-
works, suggesting that 3D interactions might not have a
strong effect on cross-ChAs estimations, apart from the
cross-occurrence with H3K27me3, a mark heavily involved
in 3D interactions. This is also confirmed looking at the
cross-ChAs z-score (Supplementary Figure S6e).

The AND-ChAs matrix shows the strong tendency for
fragments with both H3K4me1 and H3K4me3 to interact
preferentially and also for fragments with any of these two
features and H3K27ac to interact preferentially. The results
show decreased tendency of regions with both H3K27me3
and H3K36me3 to establish preferential contacts but a
strong likelihood for regions with both H3K27me3 and
H3K9me3 to form contacts (Figure 4D). Comparing to the
values obtained with distance-preserving randomizations
(Supplementary Figure S6C and F) suggests that 3D in-
teractions affect mostly the H3K27me3 mark AND-ChAs
values when it is colocalized with H3K36me3. Both types
of combined ChAs show an increased tendency for pref-
erential contacts between active promoters (regions with
H3K4me3 and H3K27ac especially (Figure 4C, D)).

Finally, we might want to compare the assortativity
of combinations of features on the same or opposite
nodes. In Figure 4E, we display the assortativity of all
feature combinations where features are either on the
same node (AND-ChAs) or on opposite interacting nodes
(cross-ChAs). AND-ChAs values are generally higher
than cross-ChAs and we also notice pairs including re-
pressive marks (H3K27me3 or H3K9me3) to display lower
ChAs than all other combinations. Results show combina-
tions of 1 active and 1 repressive mark to be assortative in
AND-ChAs but to have negative cross-ChAs. It must be
mentioned that these results might be affected by the size of
chromatin fragments considered (median: 5 kb) and the dif-
ferent average sizes of peaks of these epigenomic marks that
might mean that features in different regions of a fragment
appear to colocalize on our nodes.

Assortativity of chromatin states

Since specific histone marks are known to co-occur along
the genome, denoting chromatin states, we investigated
whether chromatin states are assortative on the PCHi-C
networks. We downloaded chromatin states from (48) (11
states) for 15 haematopoietic primary samples (including T
cells, monocytes, neutrophils and macrophages), assigned
each PCHi-C network fragment the most abundant state
along the fragment, and measured assortativity of the states
using the categorical option of the ChAser::ChAs func-
tion.

We found categorical ChAs values of chromatin state to
be larger than those obtained with distance-preserving ran-
domization (Supplementary Figure S7), to a varying extent
depending on the cell types. These findings suggest that the
strong assortativity between regions with repressive marks,
either constitutive heterochromatin or facultative poised
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Figure 4. Analysis of assortativity of six histone modifications and DNA accessibility (33) on the PCHi-C network for B cells. (A) ChAs versus Abundance
calculated on the PCHi-C PP subnetwork for B cells (red circles) and values obtained by distance-preserving randomizations (grey circles). (B) ChAs in PO
vs PP network for dataset in (A). (C) cross-ChAs of all possible feature combinations on the PCHi-C PP B cells network (the diagonal values correspond
to single-feature ChAs). (D) AND-ChAs of all possible feature combinations on the PCHi-C PP B cells network. (E) Comparison between values of AND-
ChAs and cross-ChAs. The insets show schematic representations of the two possible combined ChAs scenarios in the case of TF binding or histone
modfications.cross-ChAs detects the presence of preferential contacts between regions with feature 1 and other regions with feature 2. AND-ChAs detects
preferential contacts involving regions presenting both feature 1 and feature 2. Smaller coloured dots represent corresponding combined ChAs expected
values according to distance preserving randomizations. All histone modifications are on histone 3 lysins (H3K removed for clarity from datapoint names).
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Polycomb regions, drives a tendency for chromatin states
assortativity. However, when analysed separately as single
features, different chromatin states have varying levels of as-
sortativity (data not shown).

Assortativity analysis of histone modifications, DNA methy-
lation and expression in Hi-C derived contact networks

To confirm the applicability of our method to the widely
available Hi-C datasets, we applied the same approach de-
scribed above to measure assortativity of histone modifica-
tions on chromatin Hi-C networks derived from the lym-
phoblastoid cell line GM06990 (34). Hi-C data is inherently
genome-wide and is thus not limited to interactions involv-
ing promoters. Interactions derived from Hi-C are normally
binned at specific resolutions and can be associated to a
score that determines whether the number of contacts join-
ing two bins corresponding to genomic regions is significant
compared to what would be expected based on the genomic
distance between the regions, much like what is done for
PCHi-C.

FitHiC is a method to estimate the significance of con-
tacts based on modelling the random looping that is ex-
pected to occur in polymers (39). Thus FitHiC returns a
P-value for each detected contact. We generated chromatin
contact networks based on significant interactions detected
in the GM06990 cell line by Hi-C processed with FitHiC at
a 50 kb resolution.

Two replicates of ChipSeq for H3K27me3 and
H3K36me3 were downloaded from (34). We confirmed
that polycomb marked chromatin identified through
H3K27me3 peaks was more assortative than expected at
random (Supplementary Figure S8A). The ChAs values
of H3K27me3 were comparable but lower than those
obtained for PCHi-C neutrophil networks (median = 0.23
compared to 0.3 in neutrophils). We found H3K36me3 to
be significantly assortative in both replicates on the FitHiC
generated network of GM06990 cells (ChAs = 0.26), be-
yond what can be expected at random, possibly indicating
preferential contacts between gene bodies occupied by
RNAPII (Supplementary Figure S8). It should be noted
that whereas there is variability in the two replicates of
the ChIP experiments, as can be seen by differences in the
abundance of the mark, the values of ChAs are much more
comparable between replicates, pointing to the robustness
of the ChAs statistics (Supplementary Figure S8A).

To consider a larger number of histone modifications and
estimate consistency between results on Hi-Cand PCHi-
C networks, we calculated Chas of the six histone marks
and ATAC-seq from (33) on the FitHiC network for the
lymphoblastoid cell line GM06990 (Supplementary Figure
S8B). Despite the probable differences between primary B
cells and the B cell derived cell line, we could see similar val-
ues of ChAs for all epigenomic marks on the Hi-C networks
and the PP PCHi-C subnetwork (Figure 5A), with only the
H3K27me3 and H3K9me3 marks having lower assortativ-
ity in Hi-C compared to PCHi-C (see Supplementary Fig-
ure S9 for other comparisons).

We then considered DNA methylation data for the
GM06690 cell line. Contrary to our finding in neutrophil
(ChAs in PP > 0.2, cf. Figure 3E), DNA methylation was

not found to be assortative in these Hi-C networks (Supple-
mentary Figure S10), as could be expected given that Hi-C
data does not capture exclusively promoter interacting re-
gions. However, gene expression as estimated by FPKM val-
ues for GM06990 (34) had significant ChAs (0.17, distance-
preserving randomization between 0.07 and 0.9) (Supple-
mentary Figure S10B), higher than the value found in neu-
trophils (ChAs PCHi-C PP = 0.12).

The lower assortativity of both heterochromatic marks
and methylation in the FitHiC network might be explained
by differences in the coverage of interactions spanning par-
ticular ranges of chromosomic distances between the two
experimental techniques.

We compared the frequency distribution of distances
spanned in the interactions of PCHi-C PP and FitHiC net-
works (Figure 5B). The FitHiC network displays a different
distribution of interactions distances, possibly due to inher-
ent limitation of sequencing depth in the original Hi-C ex-
periments which limit the detection of long-range (>10MB)
interactions. This difference in coverage of long-range inter-
actions between Hi-C and PCHi-C might explain the ob-
served differences in ChAs for repressive marks (faculta-
tive and constitutive heterochromatin), which are known to
involve long-range contacts. The FitHiC and PCHi-C PP
networks are topologically very different from each other
(Figure 5C, D and Supplementary Figure S11). In addi-
tion, Hi-C cannot easily assess the significance of inter-
chromosomal interactions. These differences in topology
are reflected also by the network measures reported in Fig-
ure 5E (Supplementary Figure S11). Interestingly, consid-
ering the PCHi-C PP networks, we observe a strong dif-
ference between myeloid and lymphoid lineages: lymphoid
networks have higher degrees and they show fewer and
larger connected components, a stronger similarity to un-
differentiated pluripotent cells, suggesting their possibly en-
hanced plasticity compared to myeloid ones.

Replication timing is the most assortative feature on
promoter-promoter chromatin networks

The general applicability of ChAseR and GARDEN-NET
allows us to investigate assortativity of any feature defined
along the genome. For example, we found replication tim-
ing (RT) of genes to be the most assortative genomic fea-
ture of the ones analysed, with a value ranging from 0.6 in
mESCs to 0.77 in neutrophils (Figure 6). Looking at a spe-
cific neighbourhood on the neutrophil network, we observe
the separation of early and late RT domains (Figure 6A),
which is reflected in a strong correlation between RT values
at neighbouring fragments (Figure 6B). This separation be-
tween early and late RT regions is maintained when looking
at the PP subnetwork (Figure 6C).

It should be noted that distance preserving randomiza-
tions return very high values of expected ChAs in the neu-
trophils (0.66), due to a strong linear correlation in RT val-
ues. These correlations have been observed in the past by
Pope et al. (35) amongst others, who proposed that TADs
would correspond to replication domains. Our values of
ChAs, which are higher than expected based on the lin-
ear correlation of RT values (Supplementary Figure S12),
suggest an important role for 3D long-range contacts in
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Figure 5. Comparison of PCHi-C and Hi-C networks. (A) Comparison of ChAs values calculated for histone modifications on the Hi-C network compared
to the PCHi-C PP subnetwork. Grey dots indicate distance preserving randomizations. (B) Distribution of distances spanned by different networks. PCHi-
C PP networks for neutrophils (blue) and B cells (red), GM06990 Hi-C network with FitHiC P-value < 0.05 (black), GM06990 Hi-C network with all
contacts identified by FitHiC (grey). (C) A portion of the PCHi-C PP subnetwork for neutrophils. Expression is denoted by node color (yellow RPKM <

1, blue RPKM > 1, (32)). (D) A portion chromosome 1 on the Hi-C network for GM06690 (35) showing contacts with FitHiC P-value < 0.05. Expression
is denoted by node color (yellow RPKM < 1, blue RPKM > 1 (34)). (E) Topological network properties of haematopoietic networks. PO P degree =
degree of promoter nodes in the PO subnetwork. CC = connected component.
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Figure 6. Replication timing on the neutrophil PCHi-C network. (A) A portion of the PCHi-C network for neutrophils (2). (B) Correlation between
replication timing (RT) at one promoter node with average RT on interacting promoters. (C) A portion of the PCHi-C PP subnetwork extracted from (a)
highlighting interactors of the DDX23 and XRCC6BP1 genes, showing a clear separation between early and late RT neighbourhoods. (D) PP interactions
of the DDX23 and XRCC6BP1 genes. DDX23 is an early RT gene involved in splicing which interacts with other early RT genes involved in other basic
cellular processes (chromatin remodelling, protein modifications etc. see Supplementary Text). XRCC6BP1 (ATP23) is a gene involved in DNA break
repair, often amplified in glioblastoma. Its neighbouring promoters include other cancer-related genes with functions in development, cell cycle control
and apoptosis (see Supplementary Text and Supplementary Figure S13).

bringing together regions and genes with similar replica-
tion timing across large distances. Similar observations re-
garding the 3D organization of RT have been made on Hi-
C based datasets (39) mostly considering contacts within
TADs. We think that targeted capture methods, very deep
Hi-C libraries or non-sequencing based methods offer the
potential to observe chromatin interactions at longer dis-
tances, reinforcing evidence for a strong 3D organization of
replication and other biological processes across scales (49).

CONCLUSION

We have presented two complementary approaches to in-
vestigate genome-wide datasets in the context of the orga-

nization of chromatin inside the nucleus. GARDEN-NET
is a chromatin network visualization tool, which allows to
upload user-defined feature files and project these features
on the available 3D chromatin contact networks. The under-
lying functionalities of GARDEN-NET for the production
and investigation of chromatin networks and for the map-
ping of genome-wide features on them are provided by the
ChAseR package, which can also be used on its own. We be-
lieve these two tools will empower researchers interested in
epigenomics, enabling them to perform both genome-wide
and region-specific investigations of their data within the
context of 3D genome architecture evinced by chromosome
capture experiments, especially when separating different
subnetworks is of interest. It should also be noted that con-
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tact networks generated by any other method, including
non-sequencing based techniques, can be just as easily used
in ChAseR, once the experimentally detected contacts are
expressed as a list of pairs of nodes corresponding to chro-
matin fragments.

Even if assortativity can summarise relationships be-
tween 3D structure and specific features with a single cor-
relation coefficient, the complexity of genome architecture
will rarely be fully resolved by this approach. For this rea-
son, we have provided additional tools to more carefully
dissect each feature or combination of features in the con-
text of 3D contacts. This can involve using extensions of the
concept of chromatin assortativity to local and global mea-
sures specific for the feature types, or exploring scatter plots
and violin plots to study the robustness of the correlation at
a more granular level. We have provided extensive descrip-
tions of the randomization procedures employed to assess
significance of ChAs values obtained. Further work will be
required to provide a randomization strategy that correctly
preserves distance-relationships and works on asymmetric
networks (for example PO subnetworks).

We have shown how users can easily perform integrated
analyses of (epi)genomic data in the context of 3D chro-
matin structure networks, efficiently gaining a quantitative
insight on which genome properties potentially display spa-
tial organization patterns in 3D nuclear space.

We find histone modifications to have similar assorta-
tivity patterns in haematopoietic human cells to the ones
described in mESCs (25). We also noticed a highly vari-
able abundance and assortativity of H3K27ac, especially
in the PO subnetworks and especially in neutrophils, which
might be related to the previously documented high inter-
individual variability in methylation and expression in this
cell type (45), related to the plasticity required by these
cells. We were also able to estimate assortativity of fea-
ture pairs (histone modifications) either appearing on the
same chromatin fragment or each on one of two interact-
ing fragments. Interestingly, higher assortativity was ob-
served for feature pairs involving combinations of active
marks (H3K27ac, ATAC-seq and H3K36me3), with an im-
portant role played by 3D contacts (as shown by distance-
preserving randomizations). Two-mark combinations in-
volving repressive marks (H3K27me3 and H3K9me3) on
the same fragment showed high assortativity (AND-ChAs),
while the same marks were not found preferentially on op-
posite ends of contacts (low cross-ChAs). Further work
on higher resolution capture Hi-C networks could shed fur-
ther light on the biological meaning of these results.

Finally, we compared our results between two network
types: PCHi-C datasets and Hi-Cdata processed with the
FitHiC pipeline. We observed very consistent results of as-
sortativity of expression, histone modifications and repli-
cation timing between these two types of networks, despite
clear differences in their topology. DNA methylation was
found to be assortative in the PCHi-C PP subnetwork of
neutrophils but not in the Hi-C networks for a lymphoblas-
toid cell line. These results can be due to the different cov-
erage of interactions spanning defined genomic distances
in the two networks, to the different coverage of promoter
regions in the two networks (no ChAs of DNA methyla-

tion on PO networks), and to the different roles methylation
plays outside of promoters.

Our recent findings of assortativity of efficiency of repli-
cation origins strengthen reported results that replication
could have a major association with 3D chromatin structure
across scales (49) and be a major force in shaping genome
architecture, both in terms of replication timing and of sin-
gle origin activation.

Beyond the examples given in this paper, the tools pro-
vided will allow researchers with or without advanced
bioinformatics skills to test hypotheses on 3D organization
of any genomic property that can be measured at specific
positions along the genome.

DATA AVAILABILITY

GARDEN-NET is available at https://pancaldi.bsc.
es/garden-net/ and on GitHub https://github.com/
VeraPancaldiLab/GARDEN-NET while ChAseR can
be downloaded at https://bitbucket.org/eraineri/ChAseR/
Code to generate all examples is available at
https://github.com/VeraPancaldiLab/ChAseR demo.
Published data used is listed in Table 1.
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Supplementary Data are available at NAR Online.
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