
1/11https://immunenetwork.org

ABSTRACT

Type 2 diabetic nephropathy (T2DN) progresses with an increasingly inflammatory milieu, 
wherein various immune cells are relevant. Herein, we investigated the levels of myeloid-
derived suppressor cells (MDSCs) and their clinical implication in patients with T2DN. A 
total of 91 subjects (T2DN, n=80; healthy, n=11) were recruited and their PBMCs were used 
for flow cytometric analysis of polymorphonuclear (PMN-) and monocytic (M-) MDSCs, 
in addition to other immune cell subsets. The risk of renal progression was evaluated 
according to the quartiles of MDSC levels using the Cox model. The proportion of MDSCs 
in T2DN patients was higher than in healthy individuals (median, 6.7% vs. 2.5%). PMN-
MDSCs accounted for 96% of MDSCs, and 78% of PMN-MDSCs expressed Lox-1. The 
expansion of PMN-MDSCs was not related to the stage of T2DN or other kidney disease 
parameters such as glomerular filtration rate and proteinuria. The production of ROS in 
PMN-MDSCs of patients was higher than in neutrophils of patients or in immune cells of 
healthy individuals, and this production was augmented under hyperglycemic conditions. 
The 4th quartile group of PMN-MDSCs had a higher risk of renal progression than the 1st 
quartile group, irrespective of adjusting for multiple clinical and laboratory variables. In 
conclusion, PMN-MDSCs are expanded in patients with T2DN, and may represent as an 
immunological biomarker of renal progression.

Keywords: Diabetic nephropathy; End-stage renal disease; Immunology; Monocyte;  
Myeloid-derived suppressor cell

INTRODUCTION

Diabetic nephropathy (DN) is an important health condition because it is the leading 
cause of end-stage renal disease worldwide (1). The proportion of patients with DN has 
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been increasing and reached up to 50% of patients with end-stage renal disease (2), with 
frequently encountering risks of higher morbidity and mortality (3,4). When these burdens 
in addition to socioeconomic illness are considered (5), development of an appropriate 
therapeutic approach for DN is a critical issue, yet there are no reversing or targeting agents 
except for supportive care such as glycemic control and anti-hypertensive agents.

The disease progression of DN can be classified by decreased kidney function (graded 1–5) 
and proteinuria (graded A1–3) (6). These progressions are clinically heterogeneous and 
may have different courses depending on patient status (7). This feature may be because 
the mechanism of DN is heterogeneous and not determined, and includes metabolic, 
hemodynamic, and oxidative stress processes, which interact with one another (8). The 
inflammatory milieu is related to the progression of DN, and several immune cell subsets 
play roles in DN, contributing to dysregulated metabolism, cell stress, and chronic 
inflammation (9). Tracking immune cell subsets may be helpful because specific subsets 
may underlie the progression of DN and thus represent potential novel targets to abrogate 
the disease.

Myeloid-derived suppressor cells (MDSCs) are a regulatory immune cell subset with the 
ability to suppress other immune cells including T, B, and NK cells (10). MDSCs are expanded 
in the tumor environment and can promote the severity and metastasis of tumors (11). 
There are 2 representative subtypes of MDSCs: polymorphonuclear MDSCs (PMN-MDSCs) 
and monocytic MDSC (M-MDSCs). Intriguingly, their detection is not limited to patients 
with tumors and they are frequently observed in several pathologic conditions such as 
autoimmune diseases (12,13). Patients with type 1 diabetes mellitus display an increased 
number of MDSCs in peripheral blood (14), but this cell type has not been comprehensively 
investigated in type 2 DN (T2DN). Herein, we investigated the expansion of the MDSC subset 
and its relationship with progression in a cohort of patients with T2DN.

MATERIALS AND METHODS

Study subjects
The study protocol complied with the ethical principles of the Declaration of Helsinki and 
received full approval from the Institutional Review Boards of Seoul National University 
Hospital (H-1702-049-831). A total of 80 patients who had been clinically diagnosed with 
T2DN were recruited from July 2017 to February 2018. To compare the proportion of immune 
subsets, 11 healthy individuals without evidence of kidney disease, hypertension, or diabetes 
mellitus were recruited during the same period. All study subjects provided written informed 
consent for the donation and use of their specimens in the present study.

Study variables and outcome
Clinical data on age, sex, and medications such as metformin, sulfonylurea, meglitinide, 
thiazolidinedione, dipeptidyl peptidase-4 inhibitor, glucagon-like peptide-1 receptor agonist, 
and insulin were collected. Laboratory findings, including serum creatinine, glucose, 
hemoglobin A1c, and random urine protein-to-creatinine ratio (uPCR) were obtained. The 
estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease 
Epidemiology Collaboration equation (15). Renal progression as a primary outcome was 
defined when a doubling of serum creatinine, ≥50% decrease of eGFR, or end-stage renal 
disease (i.e., dialysis or kidney transplantation) occurred during the follow-up period.
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Analysis of immune cells in peripheral blood samples
PBMCs were immediately isolated from heparinized whole blood by density gradient 
centrifugation with Ficoll-Paque (GE Healthcare, Chicago, IL, USA). Cells were washed, 
resuspended in staining buffer consisting of 2% horse serum and 0.05% sodium azide, 
blocked with anti-human Fc receptor binding inhibitor (eBioscience, San Diego, CA, USA), 
and then incubated with primary Abs. Samples were processed using a BD Fortessa™ 
machine (BD Biosciences, San Jose, CA, USA) and analyzed with FlowJo software (FlowJo, 
Ashland, OR, USA). Singlet cells were selected based on the scatter profiles, and dead 
cells were stained with DAPI (Molecular Probes, Eugene, OR, USA) and excluded from the 
analysis. The Abs used for flow cytometry are listed in Supplementary Table 1.

ROS production
Production of ROS in PBMCs and neutrophils from T2DN patients (n=18) and healthy 
individuals (n=8) were measured using the oxidation-sensitive dye, DCFDA (Invitrogen, 
Carlsbad, CA, USA). In brief, cells were labeled for surface markers, washed, and incubated 
at 37°C in serum-free RPMI media with 3 μM of DCFDA for 30 min. ROS production was 
measured by flow cytometry and presented as mean fluorescence intensity. In another 
experiment, PMN-MDSCs from patients with T2DN were cultured with indicated glucose 
concentrations for 12 h and their ROS production was measured as stated above.

Statistical analysis
All analyses and calculations were performed using SPSS (version 23.0; IBM Corp., Armonk, 
NY, USA) and GraphPad Prism (version 7.0; GraphPad Software, Inc., La Jolla, CA, USA). 
Categorical and continuous variables are expressed as proportions and the means±SD for 
normally distributed variables and as the median with interquartile range for non-normally 
distributed variables. The normality of distribution was analyzed via the Kolmogorov-
Smirnov test. The χ2 test was used to compare categorical variables (Fisher's exact test, if not 
applicable). The Student's t-test or the Mann-Whitney U test was used to compare continuous 
variables with or without normal distributions, respectively. The correlation coefficient 
between continuous variables was measured using Pearson's correlation test. Kaplan-Meier 
survival curves were constructed and compared using the log-rank test. A Cox proportional 
hazards regression model was applied to calculate hazard ratios of renal progression. All 
p-values were 2-sided, and values <0.05 were considered significant.

RESULTS

Baseline characteristics
Table 1 shows baseline characteristics of patients with T2DN. The mean age was 69±9 years, and 
63.7% were male. The median value of eGFR was 36.9 ml/min/1.73 m2 (17.1–54.2 ml/min/1.73 m2). 
When peripheral blood immune subsets were analyzed (Table 1 and Supplementary Table 2), 
the main subsets were CD3+ T cells, NK cells, and monocytes. Most MDSCs belonged to the PMN 
subset, whereas the proportion of M-MDSC was less than 1% of immune cells. The 78% of PMN-
MDSC additionally expressed Lox-1 (i.e., Lox-1+ PMN-MDSCs).

Comparison of immune cell subsets between patients and healthy 
individuals
Gating strategies for immune cell subsets are shown in Fig. 1A. While the proportion of 
M-MDSCs did not differ between T2DN patients and healthy individuals except for those 
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with stage 4 T2DN, the proportion of PMN-MDSC was significantly higher in patients with 
T2DN than in healthy individuals (Fig. 1B). Lox-1, which has been known to distinguish 
the population of human PMN-MDSCs from neutrophils in cancer patients, was further 
analyzed (16,17). The proportion of Lox-1+ PMN-MDSCs was elevated in patients with 
T2DN compared with healthy individuals, except for stage 3a. The overall trend in the 
absolute cell number results was similar to that in the proportion results, which is shown in 
Supplementary Fig. 1.

When other immune cell subsets were evaluated, the proportions of total, CD4+, and CD8+ 
T cells decreased in T2DN patients compared with healthy individuals (Fig. 1C). Other T cell 
subsets such as Treg and NKT cells did not differ between patients and healthy individuals 
(Fig. 1D). The proportion of B cells decreased in patients with advanced stages of T2DN, 
whereas that of NK cells increased in patients with early stage T2DN compared with healthy 
individuals (Fig. 1E). The calculated proportions of immune cell subsets are shown in 
Supplementary Table 2. When the relationships between MDSC and the parameters of 
kidney dysfunctions were explored, none of the MDSC subtypes had a linear relationship 
with the levels of eGFR (Fig. 2A-C) and uPCR (Fig. 2D-F). Collectively, PMN-MDSCs, but not 
M-MDSCs, were expanded in patients with T2DN, although stage of chronic kidney disease 
and levels of eGFR and uPCR did not correlate with this expansion.
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Table 1. Baseline characteristics and immune profiling according to the progression of diabetic nephropathy
Variables Total (n=80) Non-progression (n=60) Progression (n=20) p
Age (years) 69.0±8.8 69.8±8.5 66.5±9.1 0.159
Male (%) 63.7 63.3 65.0 0.893
Weight (kg) 68.1±11.7 69.9±11.8 62.6±9.7 0.002
Comorbidities (%)

History of ischemic heart disease 23.8 21.7 30.0 0.448
History of stroke 8.8 8.3 10.0 0.819
Diabetic retinopathy 32.5 31.7 35.0 0.783

Laboratory findings
Creatinine (mg/dl) 1.7 (1.2–2.9) 1.5 (1.1–2.2) 3.6 (2.7–5.4) <0.001
eGFR (ml/min/1.73 m2) 36.9 (17.1–54.2) 43.3 (29.8–61.4) 13.7 (9.8–21.8) <0.001
Random uPCR (g/g) 1.0 (0.2–4.1) 0.5 (0.1–1.8) 5.7 (2.1–9.0) <0.001
Fasting glucose (mg/dL) 136.3±41.1 141.6±43.4 120.2±28.4 0.015
Hemoglobin A1c (%) 7.0±1.2 7.2±1.2 6.5±1.1 0.033

Medications (%)
Metformin 50.0 55.0 35.0 0.121
Sulfonylurea 36.3 33.3 45.0 0.347
Meglitinide 2.5 3.3 0 0.408
Thiazolidinedione 2.5 3.3 0 0.408
DPP4 inhibitor 56.3 53.3 65.0 0.362
GLP1 receptor agonist 0 0 0 NA
Insulin 31.3 31.7 30.0 0.889

Immune cell subset (%)
CD3+ T cells 40.5±10.7 40.5±10.7 40.7±11.0 0.943
CD3+ CD4+ T cells 25.1±8.4 25.4±8.3 24.5±8.7 0.679
CD3+ CD8+ T cells 11.1±5.4 10.9±5.2 11.7±5.9 0.603
CD3+ CD4+ CD25+ CD127low/− Treg cells 0.8±0.5 0.8±0.5 0.7±0.5 0.691
CD3+ CD56+ NKT cells 3.4 (1.8–5.1) 3.4 (1.8–5.3) 3.2 (1.4–4.4) 0.420
CD19+ B cells 6.3±3.6 6.8±3.9 4.7±1.7 0.022
CD56+ NK cells 16.7±9.2 17.7±9.6 13.8±7.5 0.068
CD14+ monocytes 15.0±6.6 14.7±6.8 15.9±6.0 0.463
M-MDSCs 0.2 (0.1–0.3) 0.2 (0.2–0.3) 0.2 (0.1–0.3) 0.356
PMN-MDSCs 6.5 (3.7–11.9) 5.6 (3.5–10.5) 9.7 (4.4–22.5) 0.016
Lox-1+ PMN-MDSCs 5.1 (3.0–9.6) 4.5 (2.7–8.5) 8.8 (3.9–16.7) 0.004

DPP4, dipeptidyl peptidase-4; GLP1, glucagon-like peptide-1.
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Figure 1. Profiling of immune cell subsets of patients with T2DN. (A) Gating strategies for peripheral blood immune cells. Proportions of (B) M-, PMN-, and Lox-1+ 
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ROS production in PMN-MDSC
As a representative function of PMN-MDSC, we evaluated the production of ROS (18). ROS 
production was higher in PMN-MDSCs from T2DN patients than in neutrophils from both 
patients and healthy individuals (Fig. 3A). When PMN-MDSCs from patients with T2DN 
were cultured with high concentrations of glucose, ROS production was further augmented 
depending on the glucose concentrations (Fig. 3B and C). Collectively, ROS production in 
PMN-MDSCs of T2DN patients was elevated compared with neutrophils, and this might be 
enhanced by the diabetic condition.
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Effect of PMN-MDSCs on renal progression
Renal progression occurred in 20 patients during the median period of 17 months (7–20 
months; maximum 2 years). The progression group had higher levels of serum creatinine 
and uPCR, but lower levels of eGFR, glucose, and hemoglobin A1c than the non-progression 
group (Table 1). The medications used did not differ between the 2 groups. In terms of 
immune cell subsets, the proportion of total or Lox-1+ PMN-MDSCs was higher in the 
progression group than in the non-progression group. The proportion of B cells was also 
different between the 2 groups. To calculate hazard ratios for renal progression, we divided 
patients into quartiles of each MDSC subset. Fig. 4 shows Kaplan-Meier curves of renal 
progression according to the quartiles of MDSCs. The 4 quartile groups of M-MDSC had a 
similar rate of renal progression (Fig. 4A), but the 4th quartile group of PMN-MDSC had a 
higher rate of renal progression than the lower 3 quartile groups (Fig. 4B). This trend was 
similar to the results for the quartile groups of Lox-1+ PMN-MDSC (Fig. 4C). To identify 
independent relationships, stepwise multivariate Cox models were applied (Table 2). High 
levels of PMN-MDSCs seemed to correlate with the risk of renal progression independently 
of other variables, although the significances were marginal. Lox-1+ PMN-MDSCs had a more 
independent relationship with renal progression than PMN-MDSCs. Levels of M-MDSC were 
not associated with renal progression.
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Table 2. Renal progression-predicting model with MDSCs
Variables Quartiles Model 1 Model 2 Model 3 Model 4

HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p
M-MDSCs 1st Q 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)

2nd Q 1.05 (0.26–4.20) 0.949 0.83 (0.20–3.54) 0.804 1.01 (0.16–6.21) 0.994 0.73 (0.128–4.22) 0.729
3rd Q 1.64 (0.46–5.82) 0.446 1.30 (0.36–4.79) 0.689 1.22 (0.28–5.43) 0.793 1.95 (0.35–10.99) 0.451
4th Q 1.59 (0.45–5.64) 0.477 1.90 (0.51–7.13) 0.340 1.63 (0.35–7.63) 0.534 1.41 (0.26–7.52) 0.690

PMN-MDSCs 1st Q 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)
2nd Q 0.96 (0.19–4.79) 0.963 0.74 (0.14–3.96) 0.726 0.83 (0.13–5.21) 0.840 0.83 (0.12–6.04) 0.857
3rd Q 1.69 (0.40–7.12) 0.472 1.02 (0.23–4.44) 0.983 0.82 (0.14–4.95) 0.827 1.08 (0.20–6.00) 0.927
4th Q 3.07 (0.83–11.37) 0.093 4.40 (1.07–18.06) 0.040 4.02 (0.84–19.29) 0.082 5.95 (0.97–36.61) 0.054

Lox-1+ PMN-MDSCs 1st Q 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)
2nd Q 0.71 (0.12–4.29) 0.708 0.55 (0.09–3.39) 0.521 0.44 (0.07–2.86) 0.391 0.51 (0.05–5.24) 0.567
3rd Q 1.49 (0.35–6.28) 0.587 1.28 (0.28–5.92) 0.749 3.71 (0.48–28.66) 0.209 3.11 (0.43–22.27) 0.259
4th Q 4.03 (1.09–14.93) 0.037 6.85 (1.54–30.38) 0.011 12.32 (1.78–85.24) 0.011 37.69 (2.45–579.44) 0.009

Model 1: Unadjusted. Model 2: Adjusted for age, sex, and eGFR. Model 3: Adjusted for other clinical and laboratory variables plus Model 2. Model 4: Adjusted for 
other immune cell subset plus Model 2.
HR, hazard ratio; CI, confidence interval; Q, quartile.
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DISCUSSION

T2DN is regarded as an inflammatory disease, and renal function is aggravated by 
inflammatory insults. However, this inflammatory milieu generated by several immune 
cell subsets in T2DN has not been fully explored. The present study focused on MDSCs 
and identified that PMN-MDSCs were primarily expanded in patients with T2DN and their 
ROS production as a functional capacity was potentially maintained and augmented by the 
diabetic condition. Higher expansions of total and Lox-1+ PMN-MDSCs were associated with 
worse renal outcome than less expanded counterparts, which suggests that PMN-MDSCs 
could be an immune biomarker or a therapeutic target in T2DN.

MDSCs are one type of immunosuppressive cell (19). These cells are frequently expanded 
in tumor conditions and their unique functions, such as production of ROS, arginase, 
nitric oxide, and anti-inflammatory cytokines, and the expression of inhibitory immune 
checkpoint molecules promote tumor progression (11). Interestingly, the presence of MDSCs 
has been documented in several non-tumorous conditions such as autoimmune or chronic 
inflammatory diseases (12,13). Inflamed tissues may attract the migration of MDSCs although 
the linking molecules have not been comprehensively identified (20). In accordance with 
these observations, a preclinical model under diabetic condition displays an enriched MDSC 
subset (14), and thus, suggests MDSCs could be a therapeutic tool (21). Diabetic patients have 
shown an expansion of MDSC (14), but this issue has been documented primarily in type 1 
diabetes. One study focused on 24 patients with type 2 diabetes, but these patients did not 
receive oral anti-diabetic drugs (i.e., taking insulin alone) and did not have T2DN, and thus, 
may not be representative of patients with treated type 2 diabetes or T2DN (22). Furthermore, 
that study did not differentiate target cells into M-MDSCs and PMN-MDSCs in the analyses. 
The indicated proportion of MDSCs seemed to be approximately 6%–7% (the study did not 
report the exact proportion), and this was similar to the findings in the present study (median, 
6.7% [3.9%–12.3%]). The present study further identified that 96% of MDSCs were the PMN-
subset; and 78% of PMN-MDSCs expressed Lox-1. Their functional capacity, illustrated using 
ROS production, was augmented by hyperglycemic conditions. These results have clinical 
implications because therapeutic targeting can be further focused on PMN-MDSCs in T2DN.

Preclinical models have found that MDSCs regulate the severity of kidney injury. In acute 
renal inflammatory models such as ischemia-reperfusion injury (23) and doxorubicin-
induced glomerulonephritis (24), MDSCs were expanded in both blood and injured kidneys 
and their adoptive transfer reduced renal damage. The expansion of MDSCs was also 
identified in a chronic fibrosis model using adenine (25), and renal fibrosis was reduced by 
the infusion of MDSCs in a streptozotocin-induced DN model (26). One human study of 
49 patients with end-stage renal disease found that PMN-MDSCs were primarily elevated 
in these patients and the M-MDSC subset was intriguingly elevated after a session of 
hemodialysis alone, although the underlying mechanism was not provided (27). The present 
study increases the knowledge of MDSCs in kidney diseases, specifically in T2DN, which is 
the most common cause of end-stage renal disease (1).

The presence or expansion of MDSCs has frequently been associated with poorer outcomes 
of patients with cancer (28). In the present study, high expansion of PMN-MDSCs correlated 
with subsequent renal progression, although the increase in MDSCs was not dependent 
on the stage of T2DN or other parameters of kidney dysfunction such as eGFR and uPCR. 
When their anti-inflammatory functions are considered, this relationship seems to be 
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counterintuitive. Some hypotheses may be suggested regarding this reversed relationship. 
The anti-inflammatory capacity of PMN-MDSCs in T2DN might be insufficient to maintain 
kidney function, because several other inflammatory cells, cytokines, adipokines, and 
chemokines would participate in and aggravate the renal inflammatory milieu (9,29). 
Additionally, the capacity of PMN-MDSCs might be altered in T2DN compared with 
tumorous conditions. Particularly, uremic conditions are known to blunt the anti-
inflammatory function of immune cells (30). This potential alteration of functions has 
been much explored in the Treg subset. The number of Tregs is infrequently elevated in the 
diabetic state (31,32), and their functions are reduced in chronic kidney disease irrespective 
of stage (33,34). To improve the anti-inflammatory function of PMN-MDSCs and make them 
a potential therapeutic target in T2DN, other solutions may be needed such as expansion of ex 
vivo or in vivo cytokine-augmented MDSCs (14,26).

Understanding of the inflammatory milieu in T2DN is essential to develop immune cell-
targeting therapy for prevention of renal damage. The present study identifies the expansion 
of PMN-MDSCs in T2DN, and their high expansion is related to renal outcome. These results 
will form the basis of future studies to understand the pathophysiology of human T2DN and 
to develop immune cell-targeting therapy.
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