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The Democratic Republic of the Congo (DRC) harbors 11% of global malaria cases, yet little is

known about the spatial and genetic structure of the parasite population in that country. We

sequence 2537 Plasmodium falciparum infections, including a nationally representative

population sample from DRC and samples from surrounding countries, using molecular

inversion probes - a high-throughput genotyping tool. We identify an east-west divide in

haplotypes known to confer resistance to chloroquine and sulfadoxine-pyrimethamine. Fur-

thermore, we identify highly related parasites over large geographic distances, indicative of

gene flow and migration. Our results are consistent with a background of isolation by dis-

tance combined with the effects of selection for antimalarial drug resistance. This study

provides a high-resolution view of parasite genetic structure across a large country in Africa

and provides a baseline to study how implementation programs may impact parasite

populations.
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Malaria remains one of the largest global public health
challenges, with an estimated 219 million cases world-
wide in 20171. Despite decades of scale-up in control,

there has been a recent resurgence, particularly in high trans-
mission countries in sub-Saharan Africa1. In addition, the
emergence of antimalarial resistance poses a major threat to
current control and elimination efforts worldwide, and new tools
are needed to quantify the changing landscape of drug resistance
on timescales relevant to malaria control programmes. Genomics
has emerged as an useful method for better understanding
parasite populations that can be leveraged to support the design
of effective interventions against a continually evolving parasite.

Data from genomic studies provides information that is com-
plementary to epidemiological data2, and can help to answer
several key questions, including how parasites are transmitted,
how drug resistance spreads, and how malaria control efforts
impact the diversity of the parasite population. However, to date,
efforts to use genomics to inform malaria control efforts have
suffered from three major limitations. First, much of the work has
been conducted in low transmission regions, such as Asia and
transmission fringe regions of Africa, leaving it unclear how
useful information can be gathered in the highest transmission
settings. Some of these high burden regions have experienced
increasing malaria prevalence in recent years and are now the
center of strategic plans for control efforts3,4. Second, most
genomic studies in Africa have relied upon convenience sampling
from a few sites usually collected for other purposes, rather than
population-representative samples. Lastly, studies have either
relied on relatively few genetic markers, providing limited insight
into the complete genome, or on expensive whole-genome
sequencing, limiting the number of samples studied. Over-
coming these limitations is essential for genomics to have broader
impacts on malaria control.

Within Africa, parasite populations have been shown to vary
significantly between East and West, as demonstrated by their
distinct antimalarial drug susceptibilities and population
genetics5,6. However, few genomic studies have incorporated
samples from central Africa, limiting our understanding of the
connectivity of parasite populations across the continent. The
Democratic Republic of the Congo (DRC) is the largest malaria-
endemic country in Africa, borders nine countries, and harbors
~11% of global P. falciparum malaria cases1. The DRC harbors a
large, understudied parasite population that likely serves as a
bridge between African parasite populations. Limited previous
work has shown that the DRC represents a watershed between
East and West African drug resistant parasite populations for
sulfadoxine-pyrimethamine and chloroquine resistance7–9. More
recently, parasite population structuring due to mutations at these
and other loci associated with antimalarial resistance has been
confirmed within the DRC10. However, studies focusing on
hypervariable surface antigen diversity or neutral microsatellites
have been unable to detect significant structure in the parasite
population10,11, likely due to a lack of high-quality genome-wide
signal. A better understanding of parasite populations and the
spread of antimalarial resistance in the DRC will allow for the
design of more effective interventions accounting for evolutionary
forces.

To address this knowledge gap, we leverage a recent advance in
malaria genomics, high-throughput molecular inversion probe
(MIP) capture and sequencing, to characterize and map parasite
population structure and antimalarial resistance profiles in the
DRC and to define the connections of parasites within the DRC
to East and West African parasite populations12. This approach
provides a cost-effective and scalable method of genome inter-
rogation, without the expense or informatic complexities of
whole-genome sequencing. We previously employed MIPs to

comprehensively genotype known antimalarial resistance genes in
several hundred samples from the DRC10. Here, we introduce an
expanded MIP panel targeted at 1834 single-nucleotide poly-
morphisms (SNPs) distributed throughout the P. falciparum
genome, and designed to quantify differentiation and relatedness
between samples. Using this panel of genome-wide SNP MIPs, in
combination with the previous drug resistance MIP panel, we
evaluate the parasite population diversity in 2537 parasite isolates
from the DRC and surrounding countries in East and West
Africa. We use this information to quantify relatedness of and
gene-flow between parasites over large geographic scales and to
assess the origins of antimalarial resistance mutations.

Results
Sample quality and filtering. We obtained 2537 samples col-
lected in 2013–2015 from the DRC and surrounding countries
(DRC= 2039, Ghana= 194, Tanzania= 120, Uganda= 63,
Zambia= 121). All samples were sequenced using two separate
MIP panels: a genome-wide panel designed to capture overall
levels of differentiation and relatedness, and a drug resistance
panel designed to target polymorphic sites known to be associated
with antimalarial resistance10. The genome-wide panel included
739 ostensibly geographically informative SNPs, chosen on the
basis of high differentiation (FST) between surrounding African
countries in publicly available genomic sequences made available
by the Pf3K project (see Supplementary Note 1 and Supple-
mentary Data 1), and 1151 putatively neutral SNPs distributed
throughout the genome, with an overlap of 56 SNPs that were
both neutral and geographically informative. The drug resistance
panel included SNPs in known and putative drug resistance genes
and has been described elsewhere10. The median number of
unique molecular identifiers (UMIs) per MIP was 31 (range:
1–8490) for the genome-wide panel, and 10 (range: 1–32,511) for
the drug resistance panel. Complete UMI depth distributions are
shown in Supplementary Fig. 1. After filtering for samples and
loci with sufficient UMI coverage, we were left with 1382 samples
and 1079 loci from the genome-wide panel, and 674 samples and
1000 loci from the drug resistance panel, with an overlap of
452 samples between both panels. In addition to these samples,
114 controls consisting of known mixtures were sequenced and
used to assess the accuracy of allele calls and frequencies.
Expected versus measured allele frequencies for each SNP, cal-
culated from these controls, are shown in Supplementary Fig. 2.

Complexity of infection in the DRC. Initial analyses focused on
the genome-wide MIP panel only. Complexity of infection (COI)
for each sample was estimated using THE REAL McCOIL13

(Supplementary Fig. 3). The mean COI was estimated at 2.2
(range 1–8) for the study as a whole. We observed significant
differences in COI between countries (Ghana: 1.55 (non-para-
metric bootstrap 95% CI: 1.39–1.73), DRC: 2.23 (2.15– 2.31),
Tanzania: 2.17 (1.83–2.51), Zambia: 2.68 (2.39–3.00), Uganda
2.18 (1.87– 2.51), and within the DRC we observed a statistically
significant relationship between COI and P. falciparum pre-
valence by microscopy at both the province and cluster levels
(Supplementary Fig. 4), with higher COIs observed at higher
prevalences.

Population structure in the DRC. We explored population
structure through principal component analysis (PCA) evaluated
on within-sample allele frequencies at all 1079 genome-wide loci.
We found the same separation between East and West Africa
described in previous studies (Fig. 1) as well as finer structure
between regions within East Africa. DRC samples comprised a
continuum between the East and West African clusters.
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The relative contribution of each locus to each principal
component was quantified through normalized loading values.
Relative contributions to the first four principal components are
shown in Fig. 2. After the fourth principal component the percent
variance explained by subsequent components plateaued (Sup-
plementary Fig. 5). For principal component 1 (PC1) large
contributions came from loci distributed throughout the genome,

and a relatively larger contribution (65.2%) came from putatively
geographically informative SNPs (non-parametric bootstrap, p <
0.001). In contrast, contributions to PC2 were concentrated in a
region on chromosome seven in close proximity to P. falciparum
chloroquine resistance transporter (pfcrt), a known drug
resistance locus, suggesting that resistance to chloroquine or
amodiaquine may be driving differentiation along this secondary
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axis. For PC3, locus contributions were concentrated in three
genic regions: PF3D7_0215300 (8.5%), PF3D7_0220300 (5.0%),
and PF3D7_1127000 (4.3%). The first and largest of these
encodes an acyl-CoA synthetase and is part of a diverse gene
family known to undergo extensive gene conversion and
recombination14. For PC4 we observed a region of high locus
contribution on chromosome eight in close proximity to the
known antifolate drug resistance gene dihydropteroate synthase
(dhps). Combined, these results suggest that geography and drug
resistance are both contributors to the observed population
structure.

The relationship between the PCA results and the spatial
distribution of parasites was explored by plotting raw principal
component values against the geographic location of samples
(Fig. 3a–d). For PC1 this revealed a complex pattern of spatial
variation, containing both north–south and east–west clines. For
PC2 and PC4 the maps essentially recapitulate the known
geographic distribution of pfcrt and dhps resistance mutations,
respectively (Fig. 3e, f). For PC3 the map indicates some
east–west spatial structuring that is not explained by known
markers of antimalarial resistance and warrants further
investigation.

Between sample relatedness of parasites. The relatedness of all
pairs of samples was explored through pairwise identity by des-
cent (IBD), estimated using a maximum likelihood approach. IBD
describes the relatedness of samples in terms of their shared
evolutionary history, and consequently is not influenced by a
particular allele frequency distribution. This makes it a better
measure than simple identity by state (IBS) when comparing
between studies, as values can be compared directly15. We first
carried out a simulation-based analysis to explore the accuracy of
our maximum likelihood estimator (see Supplementary Note 2
and Supplementary Fig. 6), finding that we were conservatively
biased in cases of high polyclonality. Hence, we expect to
underestimate true IBD by this method. This result did depend

on the number of genotyped positions, with estimates becoming
increasingly unreliable for smaller datasets of 100 or 20 SNP loci.
In the real data, the overall distribution of pairwise IBD was
found to be heavy-tailed, consisting of a large body of weakly
related samples and a tail of very highly related samples (Fig. 4).

Mean IBD was significantly higher within clusters compared to
between clusters (0.06 vs. 0.02, two-sample t-test, p < 0.001).
When plotted against geographic separation there was a clear fall-
off of IBD with distance (Fig. 5a), consistent with the classical
pattern expected under isolation-by-distance16,17. Focussing on
the tail of highly related samples, which includes the major strain
in complex infections, there were 12 sample pairs with a
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relatedness greater than IBD= 0.9. Comparison of raw allele
frequency distributions confirmed that these were likely clones
(Supplementary Fig. 7). These highly related pairs were found
more often within the same cluster than in different clusters (7 vs.
5, respectively, chi-squared test, p < 0.001), suggesting the
presence of local clonal transmission chains. The five between-
cluster highly related pairs (Fig. 5b) were spread over large
geographic distances (281–1331 km), far beyond the normal
expected scale of the breakdown in genetic relatedness (Fig. 5a),
suggesting recent long distance migration.

Prevalence of markers of antimalarial resistance. Based on
previous findings of an east–west divide in molecular markers of
antimalarial resistance in the DRC8,9, all samples in the DRC
were divided by geographically weighted K-means clustering into
two populations (Supplementary Fig. 8). The prevalence of every
mutation identified by the drug resistance MIP panel was cal-
culated in eastern and western DRC, as well as at the country
level. Table 1 gives a summary of all mutations that reached a
prevalence >5% in any geographic unit, and a complete list of all
identified mutations along with their prevalence is given in
Supplementary Data 2. Note that in the dhpsmutation G437A the
reference is resistant, hence this is re-coded as A437G and pre-
valence values indicate the prevalence of the reference allele.
Estimated prevalences of these alleles in the DRC as a whole were
broadly similar to previously published estimates10. However, we
did identify several polymorphisms in known and putative
resistance genes not previously reported in the DRC, including
kelch K189T and pfatp6 N569K, both of which have been
described at appreciable frequencies elsewhere in Africa18–20.

Geographic distribution of antimalarial resistant haplotypes.
Previous studies have demonstrated that mutations associated
with antimalarial resistance are clustered into east–west group-
ings within DRC8,10. Focusing on the 107 samples from DRC that
were identified as monoclonal from the REAL McCOIL analysis,
we explored the joint distribution of all combinations of mutant
haplotypes in both the dhps and crt genes. Raw combinations of
mutations were visualized using the UpSetR package in R21, and
the spatial distribution of haplotypes in the DRC was explored by
plotting these same mutant combinations against their corre-
sponding DHS cluster locations (Fig. 6). Our results for dhps
recapitulate those found previously, showing a clear east–west

divide with the K540E and A581G mutants concentrated in the
east, and S436A and A437G concentrated in the west. For crt we
also find evidence of an east–west divide, with haplotypes con-
taining N326S and F325C concentrated in the east and those
containing I356T concentrated in the west.

Selective sweep and haplotype analysis of antimalarial resis-
tance. Using the antimalarial resistance MIPs and genome-wide
SNP MIPs combined, the extended haplotypes of the monoclonal
infections were determined for 200 kb upstream and downstream
of each putative drug resistance allele that had at least 5% overall
prevalence in the DRC. The CVIET haplotype within the crt gene
showed a signal of positive selection, with longer haplotype blocks
in western DRC as compared to eastern DRC (Fig. 7; p’XP-
EHHD < 0.05). In the east, patterns of haplotype homozygosity
are consistent with positive selection for the derived I356T hap-
lotype (Supplementary Fig. 9), although a XP-EHHD statistic
could not be calculated for this locus because the derived hap-
lotype was absent in western DRC, supporting the geographic
localization of the I356T mutation in the east (Fig. 6).

Mutations in dhps were more difficult to interpret. This gene
has undergone multiple selective sweeps associated with increas-
ing drug resistance. The most recently introduced mutation into
the DRC, dhps A581G, showed relatively conserved local
haplotypes around the mutation in both eastern and western
DRC (Supplementary Fig. 10). Extended haplotypes around the
other mutations (Supplementary Figs. 11 and 12) are inconsistent
with a classical hard sweep, perhaps due to selection on multiple
independent haplotypes or to interference between A581G and
other linked alleles. Finally, we did not detect any strong signals
of differing patterns of recent positive selection between the
eastern and western DRC among the dhfr and mdr2 genes
(Supplementary Table 1, Supplementary Fig. 13).

Discussion
Here we provide the first large-scale, robustly sampled study of
falciparum malaria in central Africa using MIP capture and
sequencing, a high-throughput genotyping approach that is
appropriate for large population based surveys. Using a panel of
probes designed to detect genome-wide SNPs, combined with a
second panel targeting drug resistance genes, we were able to
show that the parasite population in the DRC contains a signal of
differentiation by geographic separation, consistent with the
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classical pattern of isolation-by-distance. This background
population structure is overlaid with the clear impacts of drug
resistance mutations, which cause distinct structure between East
and West African parasite populations. Additionally, the use of
relatively dense genome-wide SNPs allowed us to carry out
relatedness analysis, revealing a handful of cases where human
hosts separated by many hundreds of kilometers were infected by
essentially identical clones. Given the rapid breakdown of distinct
genotypes by recombination in high transmission areas, it is
highly likely that these events represent relatively recent infection
and migration events. With this in mind, it is interesting to note
that pairwise links of high relatedness tend to fall along the Congo
River, an important route of transportation in DRC. Lastly, the
combination of the two MIP panels allowed us to examine
extended haplotypes surrounding drug resistance genes, revealing
rapid breakdown of haplotypes in the population and different
signals of selection in East vs. West DRC.

We previously investigated population structure using MIPs
targeting 20 microsatellites in the DRC10, failing to detect a
strong signal of population structure based upon these markers.
Here we leveraged the same 552 samples as the previous study,
plus additional samples from the DRC and neighboring countries,
to identify clear structure with an improved SNP-based geno-
typing method. Our ability to detect population structure in the
present study is likely due to several factors. First, the SNP panel
contains nearly two orders of magnitude more markers than the
previous panel. While this SNP MIP panel expanded the number
of loci interrogated, we have yet to achieve the full potential of
MIPs. Specifically, massively increased, multiplexed probe sets
that target additional portions of the genome are feasible. MIPs
have now been used in human studies to detect as many as 55,000
markers in a single reaction22. Second, a large number of
genome-wide SNPs in this study were chosen based on high FST

values in publically available samples from surrounding countries.
This increases our power to detect geographic differentiation, but
comes at the cost of not being able to comment on the relative
importance of geography vs. drug resistance, which would require
random genetic sampling or alternatively whole genomes. Simi-
larly, we should be cautious when interpreting spatial clines in
population structure from our data, as we may have greater power
to detect structure along some axes than others due to the
unequal distribution of surrounding countries in publically
available samples, although in general we have good representa-
tion in both the East–West and North–South directions.

The flexible nature of MIP panels allows for multiplex detec-
tion of SNPs associated with drug resistance in any known or
putative resistance loci for which they are designed. This allowed
for a more detailed evaluation of molecular markers associated
with antimalarial resistance than has previously been possible in
the DRC. To date, studies of antimalarial resistance markers in
the DRC have focused primarily on pfcrt (K76T), dhfr (N51I,
C59R, S108N, I164L), dhps (I431V, S436A, A437G, K540E,
A581G, A613S), pfmdr (N86Y, F184Y, D1246Y), and a few kelch
mutations23–29. The data suggests that mutations associated with
artemisinin resistance remained absent in the country as of 2014.
The World Health Organization identified nine mutations within
the K13 propeller region that are validated in terms of their
clinical phenotype of artemisinin resistance, and a further 11
mutations that are candidates associated with the phenotype of
delayed clearance30. We identified 14 mutations within the K13
gene (Supplementary Data 2), although none of these correspond
to validated or candidate artemisinin resistance mutations.

Beyond looking at mutations within drug resistance genes,
differences in extended haplotypes around drug resistance genes
have been used to understand evolution and spread31. Though
not originally designed for this purpose, the genome-wide MIP

Table 1 Prevalence (%) of mutations identified by the drug resistance MIP panel.

Prevalence

Gene Chromosome Position Mutation Name Overall DRC DRC West DRC East Ghana Uganda Zambia

atp6 chr1 267007 I723V 1.1 0.3 0.7 0.0 4.2 7.3 0.0
atp6 chr1 267257 G639D 2.0 1.8 2.9 1.0 0.0 7.3 0.0
atp6 chr1 267467 N569K 24.1 21.9 18.8 24.0 16.7 41.5 28.9
atp6 chr1 267882 E431K 15.3 17.0 18.8 15.7 16.7 9.8 6.7
atp6 chr1 267970 L402V 7.1 8.2 10.1 6.9 12.5 0.0 2.2
dhfr-ts chr4 748239 N51I 83.0 79.5 81.2 78.4 75.0 100.0 97.8
dhfr-ts chr4 748262 C59R 71.2 63.2 63.0 63.2 95.8 95.1 97.8
dhfr-ts chr4 748410 S108N 97.8 97.1 97.1 97.1 100.0 100.0 100.0
dhfr-ts chr4 748577 I164L 3.1 0.6 0.0 1.0 0.0 29.3 0.0
mdr1 chr5 958145 N86Y 12.4 14.3 18.8 11.3 16.7 7.3 0.0
mdr1 chr5 958440 Y184F 37.4 36.5 39.9 34.3 58.3 31.7 37.8
mdr1 chr5 958484 T199S 1.3 0.0 0.0 0.0 0.0 14.6 0.0
mdr1 chr5 958584 S232Y 2.7 3.5 5.1 2.5 0.0 0.0 0.0
mdr1 chr5 961625 D1246Y 4.4 2.9 3.6 2.5 0.0 24.4 0.0
crt chr7 403620 M74I 30.3 28.7 37.7 22.5 16.7 85.4 0.0
crt chr7 403621 N75E 30.3 28.7 37.7 22.5 16.7 85.4 0.0
crt chr7 403625 K76T 30.3 28.7 37.7 22.5 16.7 85.4 0.0
crt chr7 404407 A220S 28.1 24.6 31.9 19.6 8.3 100.0 0.0
crt chr7 405600 I356T 7.1 9.4 21.0 1.5 0.0 0.0 0.0
dhps chr8 549681 S436A 15.0 17.3 28.3 9.8 37.5 0.0 0.0
dhps chr8 549685 G437A 26.8 32.7 27.5 36.3 4.2 0.0 17.8
dhps chr8 549993 K540E 25.4 17.0 9.4 22.1 0.0 85.4 48.9
dhps chr8 550117 A581G 8.2 6.1 2.2 8.8 0.0 34.1 4.4
k13 chr13 1726431 K189T 14.8 14.9 18.8 12.3 54.2 0.0 6.7
mdr2 chr14 1956202 I492V 23.2 21.3 22.5 20.6 20.8 31.7 31.1
mdr2 chr14 1956408 F423Y 31.4 30.1 28.3 31.4 29.2 36.6 37.8

Includes all mutations that reached a prevalence >5% in any given geographic unit.
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panel can be leveraged for conducting similar analyses. For
example, the differences in CVIET EHH between the West and
East suggests that the CVIET haplotype in the West has poten-
tially been more recently introduced, has experienced less
breakdown through recombination, or has undergone stronger
recent positive selection as compared to the East. Redesign of the
selected targets with denser sampling around known drug resis-
tance genes will allow for more robust assessment of these
selected regions.

DRC’s location in central Africa and the enormous number of
malaria cases in the country means that malaria control in Africa
likely depends on improving our understanding on Congolese
malaria. This represents the largest study of falciparum popula-
tion genetics in the DRC and, unlike other large population
genetic studies of malaria in Africa, leverages a nationally
representative sampling approach. Thus, this study provides the
first data on fine-scale genetic structure of parasites at a national
scale in Africa, and provides a baseline that can be used to study
how implementation programs impact parasite populations in the
region. The MIP platform represents a highly scalable and cost-
effective means of providing genome-wide genetic data, relative to
whole-genome sequencing10. The highly flexible nature of the
platform allows it to be rapidly scaled in terms of targets and
samples leading it to be applicable across malaria-endemic
countries.

Methods
Study populations. Chelex-extracted DNA samples from dried blood spots, col-
lected as part of the 2013–2014 DRC Demographic Health Survey (DHS), were
tested using quantitative real-time PCR to detect Plasmodium falciparum lactate
dehydrogenase (pfldh)32,33. Previously published DRC samples10 were included
(n= 589), and used to set a Ct threshold of <30 for inclusion for sequencing, which
was applied to the remaining DRC samples (n= 1450), resulting in a total of 2039
DRC samples sent for sequencing. These samples represented 369 of the overall 539
DHS clusters. In addition, dried blood spot samples from four further counties
were used: Ghana (n= 194), Tanzania (n= 120), Uganda (n= 63), and Zambia
(n= 121). Samples from Ghana were collected in 2014 from symptomatic RDT
and/or microscopy positive individuals presenting at health care facilities in Begoro
(n= 94) and Cape Coast (n= 98)34. Samples from Tanzania were collected in 2015
from symptomatic RDT-positive patients of all ages at Kharumwa Health Center in
Northwest Tanzania35. Samples from Uganda were collected in 2013 from RDT-
positive symptomatic patients at Kanungu in Southwest Uganda36. Finally, samples
from Zambia were collected in 2013 from RDT-positive individuals from a com-
munity survey of all ages in Nchelenge District in northeast Zambia on the border
with the DRC. All non-DRC samples were Chelex extracted, except for the Gha-
naian samples which were extracted using QiaQuick per protocol (Qiagen, Hilden,
Germany). This study was approved by the Internal Review Board at UNC and the
Ethics Committee of the Kinshasa School of Public Health.

Design of MIP panels. We used two distinct MIP panels—a genome-wide panel
designed to capture overall levels of differentiation and relatedness, and a drug
resistance panel designed to target polymorphic sites known to be associated with
antimalarial resistance (Supplementary Note 1). When selecting targets for the
genome-wide panel, we used the publicly available P. falciparum whole-genome
sequences provided by the Pf3k and P. falciparum Community projects from the
MalariaGEN Consortium. This consisted of sample sets from Cameroon (n= 134),
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DRC (n= 285), Kenya (n= 52), Malawi (n= 369), Nigeria (n= 5), Tanzania (n=
66) and Uganda (n= 12) (Supplementary Data 1). The genomic sequence from
these samples underwent alignment, variant calling, and variant-filtering following
the Pf3k strategy consistent with the Genome Analysis Toolkit (GATK, version 3.6
unless otherwise indicated) Best Practices with minor modifications37–40. Full
details of the bioinformatic pipeline used in MIP design are given in the Supple-
mentary Note 1. Samples from Nigeria and Uganda were dropped after variant
calling due to small sample sizes, and the final filtered sequences were used to
calculate Weir and Cochran’s FST41 with respect to country for each biallelic locus.
The 1000 loci with the highest FST values were considered for MIP design as
phylogeographically informative loci. Of these 1000 potential loci, 739 were
identified as regions that were suitable for MIP-probe design. Separately, from the
combined SNP file, we identified 1595 loci that had a minor-allele frequency >5%,
had an FST value between 0.005 and 0.2, and were annotated by SnpEff (version 4-
3t) as functionally silent mutations. These loci were identified as putatively neutral
SNPs, and 1151 were found to be suitable for MIP design. The distribution of MIPs
is shown in Supplementary Fig. 14 and MIP sequences and targets are shown in
Supplementary Data 3.

MIP capture and sequencing. In addition to patient samples, control samples
were known mixtures of 4 strains of genomic DNA from malaria at the following
ratios: 67% 3D7 (MRA-102, BEI Resources, Manasas, VA), 14% HB3 (MRA-155),
13% 7G8 (MRA-154) and 6% DD2 (MRA-156). They were also represented at two
different parasite densities (29 and 467 parasites/µl). MIP capture and sequencing
library preparation were carried out as described in the Supplementary Note 110.
Drug resistance libraries were sequenced on Illumina MiSeq instrument using
250 bp paired end sequencing with dual indexing using MiSeq Reagent Kit v2.
Genome-wide libraries were sequenced on Illumina Nextseq 500 instrument using

150 bp paired end sequencing with dual indexing using Nextseq 500/550 Mid-
output Kit v2.

MIP variant calling and filtering. MIP variant calling is summarized in the
Supplementary Note 110. Within each sample, variants were dropped if they had a
Phred-scaled quality score of <20. Across samples, variant sites were dropped if
they were observed only in one sample, or if they had a total UMI count of <5
across all samples. This data set was considered the final raw data used for addi-
tional filtering.

Additional filters were applied to both genome-wide and drug resistance
datasets prior to carrying out analysis. Sites were restricted to SNPs, and in the case
of the genome-wide panel these were filtered to the pre-designed biallelic target
SNP sites. Any variant that was represented by a single UMI in a sample, or that
had a within-sample allele frequency (WSAF), UMI count of allele/total UM less
than 1%, was eliminated. Any site that was invariant across the entire dataset after
this procedure was dropped. Samples were assessed for quality in terms of the
proportion of low-coverage sites, where low-coverage was defined as fewer than
10 supporting UMIs. Samples with >50% low-coverage loci were dropped. Variant
sites were then assessed by the same means in terms of the proportion of low-
coverage samples, and sites with >50% low-coverage samples were dropped.
Samples were then combined with metadata, including geographic information,
and were only retained if there were at least 10 samples in a given country. This
resulted in dropping Tanzanian samples from the drug resistance dataset, but no
other countries were dropped. Post-filtering, genome-wide data consisted of
1382 samples (DRC= 1111, Ghana= 114, Tanzania= 30, Uganda= 45, Zambia
= 82) and 1079 loci, and drug resistance data consisted of 674 samples (DRC=
557, Ghana= 29, Uganda= 43, Zambia= 45) and 1000 loci. The complete
bioinformatic pipeline is shown in Supplementary Fig. 15.
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Complexity of infection. We applied THE REAL McCOIL (v2) categorical method
to the SNP genotyped samples to estimate the COI of each individual13. Details of
the analysis are in the Supplementary Note 1.

Analysis of population structure. WSAFs were calculated for all genome-wide
SNPs, with missing values imputed as the mean per locus. Principal component
analysis (PCA) was carried out on WSAFs using the prcomp function in R version
3.5.1. The relative contribution of each locus was calculated from the loading values
as lij j=PL

i¼1 lij j, where lij j is the absolute value of the loading at locus i, and L is the
total number of loci. PCA results were explored in a spatial context by taking the
mean of the raw principal component values over all samples in a given DHS
cluster, and plotting this against the geoposition of the cluster.

Identity by descent analysis. Pairwise IBD was calculated between all samples
from the genome-wide SNPs. We used Malécot’s42 definition of f as the probability
of identity by descent, where fuv can be defined as the probability of a randomly
chosen locus being IBD between samples u and v. At locus i, let A denote the
reference allele, which occurs at population allele frequency pi , and let a denote the
non-reference allele, which occurs at population allele frequency qi ¼ 1� pi .
Assuming that both samples u and v are monoclonal, let Xui denote the observed
allele at locus i in sample u, and equivalently let Xvi denote the observed allele in
sample v. Then the probabilities of all possible observed allele combinations
between the two samples can be written:

PrðXui ¼ A;Xvi ¼ AjfuvÞ ¼ fuvpi þ ð1� fuvÞp2i
PrðXui ¼ A;Xvi ¼ ajfuvÞ ¼ ð1� fuvÞpiqi
PrðXui ¼ a;Xvi ¼ AjfuvÞ ¼ ð1� fuvÞpiqi
PrðXui ¼ a;Xvi ¼ ajfuvÞ ¼ fuvqi þ ð1� fuvÞq2i

ð1Þ

from which we can calculate the likelihood of a given value of fuv over all loci as:

Lðfuv jXu;XvÞ ¼
YL

i¼1

PrðXui;XvijfuvÞ: ð2Þ

In practice, population allele frequencies (pi) were calculated using the mean
WSAF for that locus over all samples. Samples were then coerced to monoclonal by
calling the dominant allele at every locus. The likelihood was evaluated using
Eq. (2) in log-space for a range of values of fuv distributed between 0 and 1 in equal
increments of 0.02. The maximum likelihood estimate f̂uv ¼ argmaxf Lðf jXu;XvÞ
was calculated between all sample pairs. Hereafter the terms IBD and f̂uv are used
interchangeably.

The validity of this method of coercing samples to monoclonal before
estimating IBD via maximum likelihood was rigorously explored in a simulation-
based analysis. First, a simulation framework was created that permitted simulating
samples with variable polyclonality. This framework is described in detail in
Supplementary Note 2. Second, true vs. estimated IBD were plotted for a range of
polyclonal settings and a range of sub-sampled data sizes going down from the true
data to 500, 100, and 20 SNPs. Any positive or negative bias introduced by forcing
samples to be monoclonal would be reflected and quantified in this plot.

Mean IBD was calculated within and between DHS clusters, and compared
using a two-sample t-test. Sample pairs were also binned into groups based on
geographic separation (great circle distance) in 100 km bins, with an additional bin
at distance 0 km to capture within-cluster comparisons. Mean and 95% confidence
intervals of IBD were calculated for each group. Finally, sample pairs with IBD >
0.9 were identified, and explored in terms of their WSAFs and their spatial
distribution.

Estimating mutation prevalence from drug resistance panel. Given previous
findings of an East–West divide in molecular markers of antimalarial resistance in
the DRC8,9, all samples in the DRC were divided by geographically weighted K-
means clustering into two populations. The prevalence of every mutation identified
by the drug resistance MIP panel was then calculated in East and West DRC, as
well as at the country level. Prevalences in each DHS cluster were used to produce
smooth prevalence maps using PrevMap version 1.4.2 in R43.

Analysis of monoclonal haplotypes. Results of the previous COI analysis on the
genome-wide SNPs with THE REAL McCOIL were used to identify samples that
were monoclonal with a high degree of confidence. Samples were defined as
monoclonal if the upper 95% credible interval did not include any COI greater than
one. This resulted in 408 monoclonal samples, of which 143 overlapped with the drug
resistance MIP dataset and therefore could be used to explore the joint distribution of
mutations in drug resistance genes. 107 of these were from DRC. Analysis focussed
on the dhps and crt genes. Raw combinations of mutations were visualized using the
UpSet package in R21, and the spatial distribution of haplotypes was explored by
plotting these same mutant combinations against DHS cluster geoposition.

Extended haplotype homozygosity analysis. In order to improve our power to
detect hard-sweeps and capture patterns of linkage-disequilibrium with EHH
statistics among putative drug resistance SNPs, we combined the genome-wide and

the drug resistance filtered biallelic SNPs into a single dataset (Supplementary
Note 1). All associated EHH calculations were carried out using the R-package rehh
(version 2.0.4), and were truncated when fewer than two haplotypes were present
or the EHH statistic fell below 0.0544,45. In addition, we allowed EHH integration
calculations to be made without respect to “borders,” which were frequent due to
the MIP-probe design. Although this would result in an inflated integration statistic
if the EHH statistic had not yet reached 0 within the region of investigation, this
problem was mitigated by only comparing between subpopulations, and not
between loci. EHH decay, bifurcation plots, and haplotype plots were adapted from
the rehh package objects and modified using ggplot46.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
DHS data for the 2013 DRC DHS is available here: https://dhsprogram.com/what-we-do/
survey/survey-display-421.cfm. This includes clinical and GPS information and is
available upon request from the DHS program. All raw sequencing data is available at the
NCBI SRA (Accession numbers: PRJNA454490, PRJNA545345, and PRJNA545347).

Code availability
Tools for MIP variant calling and filtering are available at https://github.com/bailey-lab/
MIPTools (v.0.19.12.13) and https://github.com/Mrc-ide/mipanalyzer (v.1.0.0). Code
and data are available for each figure at https://github.com/bobverity/
antimalarial_resistance_DRC. Code access is unrestricted.
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