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A comparison of the electrical 
characteristics, liquid composition, 
and toxicant emissions of JUUL 
USA and JUUL UK e-cigarettes
Soha Talih1,3, Rola Salman1,3, Rachel El-Hage2,3, Ebrahim Karam1,3, Sally Salam2, 
Nareg Karaoghlanian   1,3, Ahmad El-Hellani2,3, Najat Saliba   2,3 & Alan Shihadeh   1,3 ✉

In 2018, JUUL entered the UK market, where EU regulations limit liquid nicotine concentration to 
20 mg/mL, approximately one-third the level of JUUL products sold in the USA. We hypothesized that 
JUUL’s UK product was engineered to deliver greater electrical power and boost liquid vaporization 
such that the net nicotine delivery rate was similar to the US version. We compared electrical 
characteristics, liquid composition, and aerosol emissions of JUUL devices procured in the USA and 
the UK. Study outcomes included electrical power, total and freebase nicotine, propylene glycol/
vegetable glycerin ratio, carbonyls, and reactive oxygen species. Liquids and aerosols were analyzed 
by GCMS, HPLC, and fluorescence. Compared to the US version, JUUL UK had approximately one-third 
the liquid nicotine concentration in the liquid (5.4 vs. 1.6 wt.%) and aerosol (4.7 and 1.3 wt.%). Other 
than nicotine concentration and yield, we found no differences in any other study outcome, including 
electrical power. Currently, JUUL UK emits nicotine at a far lower rate than the US product, offering an 
opportunity to study how this factor impacts user behavior, JUUL uptake, and other population-level 
outcomes across the two markets.

Regulation of electronic cigarettes for public health ends is a growing challenge, particularly as use by previous 
non-smokers, including children, has risen drastically1–3. A central issue for regulation is nicotine delivery to 
the user. In 2014 the European Union promulgated Directive 2014/40, which limited electronic cigarette liquid 
nicotine concentration to a maximum of 20 mg/ml4. The directive states that this concentration would “allow 
for a delivery of nicotine that is comparable to the permitted dose of nicotine derived from a standard cigarette.” 
However, as we have shown previously5, nicotine emissions from an electronic cigarette are a function of numer-
ous interacting variables. For example, with all else held constant, nicotine concentration and electrical power 
can be traded off to attain a given nicotine emission rate per unit time (or “flux”; see Shihadeh and Eissenberg6). 
Because the flux is approximately proportional to the product of electrical power and liquid concentration5, a user 
of a low-nicotine concentration liquid can increase the power of a variable-power electronic cigarette to attain 
the same or greater nicotine levels as a user of a high nicotine concentration liquid with a lower power device.

JUUL Labs, the producer of the JUUL electronic cigarette, is under investigation by the US FDA for its prod-
uct design and marketing campaigns7, in connection to the widespread uptake of JUUL products by US school 
children8,9. JUUL pioneered the mass marketing of electronic cigarettes loaded with an atypically high nico-
tine concentration of 60–70 mg/ml10. Importantly, the high nicotine concentration aerosol emitted by JUUL was 
likely made palatable by the fact that the nicotine was emitted in the salt form11,12, unlike most other liquids on 
the market, whose nicotine was predominantly in the harsher free-base form12–14. Employing a high nicotine 
concentration aerosol allowed for the JUUL device to incorporate a relatively low power system with a small 
battery, enabling the device to exhibit a form factor similar to that of a USB flash drive. It also meant that a given 
nicotine dose could be delivered to the user in a smaller puff volume, meaning that users could use the device 
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without producing visible aerosol plumes upon exhalation. This feature enabled the practice of “stealth vaping” in 
classrooms (e.g., drawing a puff when the teacher turns to write on the board) and other places where electronic 
cigarette use was prohibited15.

The introduction of JUUL to the UK in July 2018, where the EU limit on nicotine concentration is in effect, 
presents an opportunity to observe how a regulation limiting liquid nicotine concentration plays out in the nat-
ural environment and may lead to unintended consequences. In this study, we examined how a manufacturer 
might modify device design to comply with this regulation. We hypothesized that JUUL Labs would increase 
the power output of its UK devices to compensate for the lower nicotine concentration allowed in that market. A 
lower nicotine, higher power version of JUUL would in turn translate to greater liquid consumption and toxicant 
output, resulting in a more hazardous product than the USA device. In this study, we analyzed and compared 
USA and UK versions of JUUL in terms of electrical power characteristics, liquid and aerosolized nicotine con-
tent, and emissions of carbonyl compounds (CCs) and reactive oxygen species (ROS). We found that the power 
of the UK and USA devices were the same; JUUL had not increased the power of the UK version of the device 
to compensate for its lower nicotine concentration, and apart from lower nicotine yield of the UK version, there 
were minor differences in measured emissions across the two devices. Thus the null hypotheses held.

Results
Results are summarized in Table 1. We found that both devices utilized pulse-width modulation to deliver an 
average of approximately 1.1 V to the pod during puffing. As we previously reported when studying the auto-
matic temperature control feature of JUUL11, the power circuit initially delivers 2.7 V for approximately the first 
half-second of the puff, decaying to a steady value of approximately 1.1 V as the puff proceeds (see Supplementary 
Fig. S1). Also, both devices automatically cut the power to the pod after a 5.9 sec puff duration has been reached. 
There were no significant differences in measured resistance of the UK and USA pods. Thus the UK version 
appears to possess the same key electrical power characteristics as the USA device; in all likelihood, they are the 
same design.

JUUL UK pods had a nicotine concentration of approximately one-third that of JUUL USA (19 mg/mL vs. 
65 mg/mL, p < 0.001). For both versions, the nicotine was nearly entirely in the protonated form, and the liquid 

JUUL USA JUUL UK

Electrical characteristics

Max puff duration (sec) 5.86(0.03) 5.92(0.03)

Average voltage (V)a 1.06(0.03)–2.73(0.03) 1.13(0.05)–2.72(0.05)

Pod resistance (Ω)b 1.83(0.06) 1.7(0.1)

Computed average power (W) 0.62–4.08 0.75–4.36

Liquid composition

Nicotine concentration (mg/mL) 65(3) 19(1)*

% Freebase 4.2(2.5) 5.6(2.4)

pH 6(0.5) 6.5(0.4)

PG/VG (v/v) 27/73 24/76

Emissions in 15puffs

Total particulate matter (mg) 27.4(0.46) 33.5(6.51)

Nicotine (mg) 1.3(0.1) 0.4(0.1)*

Reactive oxygen species (nmol) 1.01(0.36) 0.13(0.005)

Carbonyl compounds (µg)

Formaldehyde 4.07(0.24) 3.66(0.14)

Acetaldehyde 3.88(0.37) 3.84(0.47)

Acetone 13.27(0.1) 13.46(0.29)

Acrolein ND 0.01(0.001)

Propionaldehyde 0.03(0.005) 0.01(0.03)

Crotonaldehyde 0.4(0.02) 0.4(0.02)

Methacrolein 1.54(0.02) 1.54(0.01)

Butyraldehyde ND ND

Valeraldehyde ND ND

Glyoxal 0.35(0.004) 0.36(0.007)

Methylglyoxal 2.08(0.21) 1.16(0.33)*

Total carbonyls 25.71(0.55) 24.48(0.3)*

Table 1.  Comparison of toxicant emissions, liquid composition and electrical characteristics between JUUL 
devices sold in the USA and UK. Mean (SD), *p < 0.05, N = 3. aVoltage delivered to the coil was found to vary 
during a 6 sec puff, with a maximum average of 2.73(0.04)V for both devices during the first 0.6 sec. The voltage 
stabilizes after that to an average of 1.09(0.05)V. bResistance refers to that of the coil at room temperature; the 
resistance of the coil is expected to change as its temperature increases during puffing.
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solvent was approximately 25/75 PG/VG (v/v); there were no significant differences in these measures across the 
US and UK devices. Thus, the only difference noted in device design across UK and USA JUUL was the nicotine 
concentration of the liquid.

In 15 puffs, mean total particulate matter emitted by each device was the same (approximately 30 mg), but 
nicotine yield of JUUL USA was approximately three times that of JUUL UK (1.3 mg vs. 0.4 mg, p < 0.001), mir-
roring the difference in liquid nicotine concentration. Apart from methylglyoxal, both JUUL versions were found 
to emit similar levels of CCs, at much lower levels than found in combustible cigarettes (total CCs 25 µg/15 puffs 
vs. 2000 µg/combustible cigarette11). JUUL USA exhibited approximately double the methylglyoxal as JUUL UK, 
accounting for the small but significant difference in total CCs observed across the two devices. ROS emissions 
were not significantly different across devices, and were much lower than ROS emitted by a single combustible 
cigarette (less than 1 nmol/15 puffs vs. 25nmol/combustible cigarette16). Thus by virtue of the lower nicotine yield, 
JUUL UK’s toxicant emissions are approximately three times those of JUUL USA, per unit nicotine emitted.

Discussion
JUUL devices sold in the UK were generally found to be the same in every measure as those sold in the USA 
except for nicotine liquid concentration and yield, which were approximately one-third those of the USA version. 
At the time these products were procured, JUUL Labs thus appeared to have complied with EU restriction on 
nicotine content, without re-engineering the device or liquid itself, apart from reducing nicotine concentration. 
The hypothesis that JUUL UK would have greater electrical power failed.

These findings thus highlight an ongoing natural experiment on the manipulation of nicotine content in what 
is likely the world’s most popular electronic cigarette product. Observation of JUUL user behavior in the UK and 
USA may provide valuable insights on how population characteristics, toxicant exposure, pod consumption, and 
reported health effects vary when nicotine concentration is regulated.

For example, users of JUUL UK devices may adjust their puffing patterns to obtain similar levels of nicotine 
as obtained with the JUUL USA devices. It has been reported that when given low nicotine concentration liquids, 
electronic cigarette users increased puff frequency, duration and liquid consumption17, and the more intensive 
puffing regimen associated with the reduced nicotine liquids resulted in higher measured carbonyl emissions18. 
This factor and the results from the current study would, therefore, suggest that to the extent that users seek a 
given nicotine dose, exclusive users of JUUL devices may be exposed to three times the CC and ROS emissions 
when using JUUL UK relative to JUUL USA.

Methods
We analyzed and compared liquid composition (nicotine concentration, pH, and PG/VG ratio), and emissions 
(nicotine, CCs, and ROS) of tobacco flavored JUUL pods procured in the USA and the UK using previously 
described methods5,13,16,19. In brief, for each device aerosol was generated using the AUB Aerosol Lab Vaping 
Instrument (ALVIN), programmed to execute 15 puffs of 4 sec duration, 10 sec interpuff interval and 1 L/min flow 
rate20. The aerosol exiting the ECIG was trapped on glass fiber filters, and nicotine in the aerosol was extracted 
and analyzed for protonated and free-base fractions using a liquid-liquid extraction method and GCMS, as in 
El-Hellani, et al.13. We note that Duell et al.12 suggest that the method described in El-Hellani et al. may be biased 
due to dilution and re-equilibration phenomena during the extraction process, however because we work with 
nicotine concentrations greater than 600 μg/mL, the maximum bias introduced by our analytical method is 0.15% 
for the worst-case scenario of a highly acidic ECIG liquid, as we have shown13.

CCs were trapped on DNPH cartridges, eluted with 90/10 (vol/vol) ethanol/acetonitrile and quantified by 
HPLC-UV, as in El-Hellani, et al.19. ROS reported as H2O2 equivalent were analyzed by immersing the particu-
late filter pads in 20 mL of freshly prepared DCFH probe solution. Fluorescence was read on a SpectraMax M5 
microplate reader acting as a fluorimeter, as in Haddad, et al.16. All analyses were performed in triplicate, using a 
new pod for each puffing bout.

JUUL electrical power characteristics were determined by disassembling the power unit of each device and 
connecting the JUUL power control circuit output leads to a data acquisition device sampling at 20 kHz while 
drawing three consecutive 10 sec duration puffs at 1 L/min via ALVIN. Also, the resistance of 3 different pods 
from each the UK and USA devices were measured at ambient temperature (25 °C) using a laboratory Ohmmeter.
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