TABLE 1.
Summary of the advances in expression and purification of NHase in recent 5 years.
| Origin | Expression host and (plasmid) | Optimization of expression and purification approach | substrate | Catalytic ability | References |
| Pseudomonas putida F1 | E. ColiBL21(DE3) (pCDFDuet-1) | N-terminal 6 × His tag | 3-Cyanopyridine Acrylonitrile Isobutyronitrile 4-Chlorobutyronitrile Valeronitrile 4-Cyanopyridine Benzonitrile | 26 ± 1.1 U/mg 941 ± 35 U/mg 775 ± 32 U/mg 553 ± 24 U/mg 535 ± 23 U/mg 37 ± 1.6 U/mg 22 ± 1.0 U/mg | Pei et al., 2014 |
| Rhodococcus ruber TH3 | Rhodococcus ruber TH3 (pNV18.1) | Co-expression with groEL-ES | acrylonitrile | 4342 U/mL | Tian et al., 2016 |
| Rhodococcus rhodochrous J1 | E. ColiBL21(DE3) (pET-24a) | Codon optimization/RBS engineering/Strep tag | 3-cyanopyridine | 400 U/mg (L-NHase) 234 U/mg (H-NHase) | Lan et al., 2017 |
| Rhodococcus rhodochrous PA-34 mutant 4D | Pichia pastoris KM-71 (pHIL-D2) | Not available | 3-cyanopyridine | 5.5 U/mg DCW | Pratush et al., 2017 |
| Pseudoxanthomonassp. AAP-7 | E. ColiBL21(DE3) (pET-29a (+)/pET-21a (+)/pGEX-4t-1) | Co-expression with groEL-ES/C-terminal 6 × His tag | 3-cyanopyridine | 33.7 ± 2.6 U/mg | Zhang et al., 2017 |
| Bacillus sp. APB-6 | Bacillus sp. APB-6 | Not available | acrylonitrile | 100% bioconversion | Singh et al., 2018 |
| Rhodococcus ruberTH | E. ColiBL21(DE3) (pET-28a) | Co-expression with novel chaperone groEL2 | acrylonitrile | 202.8 U/mL | Chen et al., 2018 |
| Aurantimonas manganoxydansATCC BAA-1229 | Corynebacterium glutamicum (pXMJ19/pEKEX2/pEC-XK99E) | promoter engineering/codon optimization/RBS engineering/Construction of mmp-based expression system | 3-cyanopyridine | 14.97 U/mg DCW | Yang et al., 2019a |