Skip to main content
. 2020 Apr 24;11:400. doi: 10.3389/fgene.2020.00400

Table 1.

Categories of solutions that use different inter-relations between GO terms.

Solutions Inter-relations Basic techniques
Predicting missing annotations ProWL (Yu et al., 2012b) Flat Weak label learning
ProDM (Yu et al., 2013a) Flat Weak label learning
ProHG (Liu et al., 2016) Flat Random walks
ITSS (Tao et al., 2007) Hierarchical Semantic similarity
NtN (Done et al., 2010) Hierarchical Singular value decomposition
dRW (Yu et al., 2015d) Hierarchical Random walks
PILL (Yu et al., 2015b) Hierarchical Random walks
DeepGO (Kulmanov et al., 2017) Hierarchical Deep learning
NewGOA (Yu et al., 2018a) Hierarchical Bi-random walks
AsyRW (Zhao et al., 2019b) Hierarchical Bi-random walks
Identifying noisy annotations NoisyGOA (Lu et al., 2016) Hierarchical Semantic-based kNN
NoGOA (Yu et al., 2017c) Hierarchical Sparse representation
NFA (Lu et al., 2018) Hierarchical Sparse representation
Selecting negative annotations ALBias (Youngs et al., 2013) Flat Bayesian model
ProPN (Fu et al., 2016b) Flat Random walks
SNOB (Youngs et al., 2014) Hierarchical Bayesian model
NETL (Youngs et al., 2014) Hierarchical Topic model
IFDR (Yu et al., 2017b) Hierarchical Semi-supervised linear regression
NegGOA (Fu et al., 2016a) Hierarchical Random walks