Skip to main content
. 2020 Apr 30;10:7320. doi: 10.1038/s41598-020-64107-z

Table 1.

Aluminum tolerance QTLs detected in an F2:3 population derived from 203B-14 x SCH3 based on multiple interval mapping.

QTL Bina Markerb Positionc LODd Typee Effectf R2 (%)g
cM Mb
qALT1.09 1.09 PZA00356_8 219.7 263.6 3.91 A 3.79 5.5
1.72 D −3.43 2.7
qALT5.03 5.03 PZA001870_20 55.8 59.3 3.49 A 3.71 5.4
0.61 D 2.15 1.2
qALT8.05 8.05 PHM10525_9 84.8 124.7 0.09 A −0.64 0.5
2.63 D −4.07 4.0
qALT9.01 9.01 PHM229_15 27.0 30.0 2.35 A −3.28 5.5
0.96 D −3.25 2.2
qALT10.02 10.02 PZB01301_5 3.3 9.7 2.76 A 2.85 4.8
0.34 D 1.46 0.3
Interactions
qALT8.05 × qALT1.09 2.82 DD 8.77 4.8
qALT8.05 × qALT9.01 2.68 DD 7.54 3.6
qALT10.02 × qALT1.09 2.18 DA −5.45 3.3
qALT1.09 × qALT9.01 1.47 DA 7.53 7.0
Total R2 (%) 50.94

aBin: segments of genetic maize map designated by the chromosome number followed by a two-digit decimal.

bThe closest marker upstream to the QTL peak.

cMarker position based on the genetic map in centiMorgans (cM) and the B73 genome sequence version 4.0 in mega base pairs (Mb).

dLogarithm of odds score for the QTL effects. QTLs were significant based on the Bayesian Information Criterion.

eA: additive or D: dominance effects.

fPositive additive effect implies that the QTL allele derived from 203B-14 increases Al tolerance, whereas the negative sign indicates that SCH3 donates the QTL allele increasing Al tolerance. Positive dominance effect indicates that heterozygous progeny are more tolerant than the homozygous progeny and the negative dominance effect indicates that heterozygous progeny are less tolerant than the homozygous progeny.

gR2 is the proportion of phenotypic variance explained by each QTL, and total R2 is the phenotypic variance explained the full QTL model.