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The spatial non-stationary effect 
of urban landscape pattern on 
urban waterlogging: a case study of 
Shenzhen City
Jiansheng Wu1,2 ✉, Wei Sha1,2, Puhua Zhang1 & Zhenyu Wang1

The problem of urban waterlogging has consistently affected areas of southern China, and has 
generated widespread concerns among the public and professionals. The geographically weighted 
regression model (GWR) is widely used to reflect the spatial non-stationarity of parameters in 
different locations, with the relationship between variables able to change with spatial position. In 
this research, Shenzhen City, which has a serious waterlogging problem, was used as a case study. 
Several key results were obtained. (1) The spatial autocorrelation of flood spot density in Shenzhen 
was significant at the 5% level, but because the Z value was not large it was not very obvious. (2) The 
degree of impact on flood disasters from large to small was: Built up_ DIVISION > SHDI > Built up_ 
COHESION > CONTAG > Built up_ LPI. (3) The degree of waterlogging disasters in higher altitude 
regions was less affected by the landscape pattern. The results of this study highlight the important role 
of the landscape pattern on waterlogging disasters and also indicate the different impacts of different 
regional landscape patterns on waterlogging disasters, which provides useful information for planning 
the landscape pattern and controlling waterlogging.

In recent years, due to the rapid urbanization experienced in China, the nature of the underlying surface of 
urban areas throughout the country has undergone significant and dramatic changes, resulting in frequent urban 
disasters and huge losses of life and property1, with further changes to the hydrological characteristics of urban 
rainwater systems2. Some studies have established multivariate regression models based on a geographic infor-
mation system (GIS) to determine the factors influencing urban waterlogging3. Other studies have investigated 
the characteristics of urban road traffic congestion under the influence of heavy rain4. Chinese researchers eval-
uated the risk of urban storm and flood disasters in the context of land use changes in the Maozhou River Basin, 
Shenzhen5,6 analyzed the spatiotemporal pattern of thyroid cancer (TC) and considered the relevant environmen-
tal risk factors in Hangzhou (HZ). Chen, et al.7 studied the impact of land use and population density on seasonal 
surface water quality using a modified geographically weighted regression (GWR) model8,9. Studies of the water 
transport capacity and rainwater utilization in urban drainage systems outside of China are relatively mature10,11. 
Many researchers have used the ArcGIS software, remote sensing (RS), and the global positioning system (GPS) 
at micro12 and macro13 scales to study the problems of water accumulation and flood control in cities. These 
studies have mainly focused on traditional water conservancy and drainage pipe networks, and other artificial 
engineering facilities. The natural and artificial landscapes have different ecological patterns, such as the urban 
environment, non-point source pollution, and the imbalance of aquatic ecosystems14–16. In recent years, many 
researchers have studied the causes of urban waterlogging and the relationship between urban sprawl17–19, land 
use20–23 and human activity24–28 from the perspective of ecology. In addition, there have been some studies that 
have investigated sponge-like urban reconstruction and the urban-inundation simulation method29–31.

Due to its rapid development, in recent years RS technology has become an important tool in landscape ecol-
ogy research. Using RS images, various landscape pattern indexes can be calculated to quantitatively describe the 
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size, density, edge, shape, and spatial distribution of landscape patches. This enables the characteristics and laws 
of landscape pattern evolution to be analyzed at different scales32–37.

Compared with the OLS model, the GWR model has the following advantages. First, when processing spatial 
data, the parameter estimation and statistical testing of the model are more significant than in the OLS model, 
and have smaller residuals. Second, the spatial unit of each sample in the GWR model corresponds to a coefficient 
value, and therefore the model results can reflect the local situation more accurately than in the OLS model. The 
GWR model can restore the specific characteristics of the relationship between variables ignored by the OLS 
model. Finally, the parameter estimation of the model can be spatially expressed through ArcGIS, which is con-
venient for further constructing the geographic model and exploring spatial variability and spatial law38.

Many researchers have used the GWR model rather than the OLS model to analyze the spatial relationship of 
different factors. Zhou, et al.39 used the GWR model to analyze the cause of haze pollution in China and found 
that its estimates were better than those of the OLS estimate, with an improvement in the R2 value from 0.20 to 
0.75. Song, et al.40 created a land use regression model for NO2 and NO and then use OLS and GWR model to 
estimate the effects of urban land-use configuration on NO2 and NO concentrations and found that the GWR 
model was more accurate than OLS model, with increases of 29.3% and 6.9%, respectively. Using the GWR model, 
Frutos, et al.41 found that low atmospheric pressure may increase depression and suicide by inducing hypoxia, 
while previous studies had not evaluated the geographic variation of this relationship across the United States. 
The present study used the GWR model to study the spatial non-stationarity between variables and reached var-
ious conclusions. Fotheringham, et al.42 proposed a model based on GWR, which is a modeling technique that 
effectively deals with spatial non-stationary phenomena through regression analysis. By introducing the spatial 
position of the data into the regression coefficients, the non-parametric estimation method can be used to provide 
a local estimator of the function in each geographic location. The regression relationship is mainly explored and 
analyzed according to the variation of the regression coefficient at each geographical location, with the change 
of space. Many researchers have used the GWR model to analyze the relationships among factors with spatially 
distinct characteristics6,43–46. With regard to studies of spatial non-stationarity, most scholars have used the GWR 
model in the socio-economic field47–51.

The aim of this paper is to explore the spatial non-stationary nature of the GWR model and study the rela-
tionship between urban landscape pattern and urban waterlogging in densely populated areas and urban built-up 
areas. Besides, Shenzhen is the city with the fastest urbanization in China, with a small area and a large popula-
tion, and the highest population density and construction density per unit area, which is a typical case to realize 
the aim of the study. Compared with the previous paper, this paper not only discusses the relationship between 
urban landscape pattern and waterlogging degree, but also studies the spatial non-stationarity of GWR Model, 
which reaches the goal of killing two birds with one stone.

Results
Benchmark regression analysis.  In order to make the experimental results more credible, before using the 
GWR regression analysis, a global OLS test is performed first.

Tables 1 and 2 show that basic OLS regression. In order to solve the multicollinearity problem of data, accord-
ing to the VIF of variables, the collinearity factors are removed by using the backward stepwise method. lnPrec-
ipitation is removed in columns (1) and (2) step by step.

Additionally, most of the variables have a positive impact on Density of waterlogged sites; only DIVISION and 
SHDI are negative. We also find the following. (1) The larger the area of construction land is, the more likely the 
urban waterlogging will occur. (2) The denser the urban landscape, the more prone to waterlogging. (3) The more 
complex the landscape of building land is, the less likely it is to be flooded. (4) The coefficient of precipitation is 

Variables

(1) (2) (3) (4) (5)

lnDWS lnDWS lnDWS lnDWS lnDWS

lnLPI
0.1285 0.14723 0.0917* 0.1126 0.1322

(0.1467) (0.2456) (0.0645) (0.3125) (0.2472)

lnCOHESION
0.0475 0.0342* 0.0418 0.0385 0.0521*

(0.1376) (0.0203) (0.0531) (0.1312) (0.0312)

lnDIVISION
−2.0186 −3.0331 −3.0274

(0.0254) (0.0421) (0.0384)

lnCONTAG
0.1632 0.1462

(0.2315) (0.1971)

lnSHDI
−1.2156

(0.2486)

lnPrecipitation
2.5317* 1.9874** 2.8716* 3.1762***

(1.8434) (0.8434) (2.1273) (0.1972)

Constant
15.7541* 11.0589* 10.2675* 18.3247 13.1526**

(12.3816) (9.1847) (8.6541) (20.3987) (6.8712)

Radj2 0.058 0.134 0.157 0.166 0.175

Table 1.  OLS test results (4 land use classes). Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. 
Density of waterlogged sites = DWS.
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large, which has a significant impact on urban waterlogging. (5) Considering the overall indicators, there was no 
significant difference in all regression factors of the all variables in 4 land use classes and 16 land use classes, and 
the adjusted R2 are approximately 0.15 in 4 land use classes and 0.20 in 16 land use classes, and the fitting degree 
is not high.

Since rainfall has a great influence on the model, this factor is eliminated in the GWR Model.

Autocorrelation analysis of urban waterlogging in Shenzhen City.  Based on the global Moran’s I 
theory, 56 small watersheds in Shenzhen where waterlogging occurred were used as spatial units, and the average 
density of waterlogged sites in each small watershed was used as the observation value. Using Geoda software, a 
distance weighting matrix (DWM) was selected to analyze the spatial autocorrelation of waterlogged sites. It can 
be seen from Fig. 1 that the global Moran’s I index was 0.236. After the significance test, the normalized Z value 
was 2.913335 (>1.96), indicating that the spatial autocorrelation of waterlogged site density in Shenzhen was 
significant at the 5% significance level. However, because the Z value was not large, the spatial autocorrelation 
was not very obvious.

Variables

(1) (2) (3) (4) (5)

lnDWS lnDWS lnDWS lnDWS lnDWS

lnLPI
0.0973 0.1137* 0.0816 0.1573 0.1727

(0.1318) (0.0774) (0.1345) (0.2517) (0.2119)

lnCOHESION
0.0714 0.0578 0.0813 0.0687 0.0952

(0.1784) (0.0715) (0.0934) (0.0881) (0.1748)

lnDIVISION
−3.0186 −2.0331* −1.0274*

(6.7154) (1.8921) (0.8356)

lnCONTAG
0.1128 0.1276*

(0.2315) (0.0817)

lnSHDI
−2.2156

(0.2486)

lnPrecipitation
4.1324** 1.7623** 1.7687* 4.8786**

(1.8434) (0.9817) (2.8136) (2.3365)

Constant
20.3184* 18.7565* 16.8673* 15.1341 17.8616***

(14.9176) (14.3845) (12.6732) (17.5361) (3.2984)

Radj2 0.138 0.204 0.213 0.224 0.231

Table 2.  OLS test results (16 land use classes). Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. 
Density of waterlogged sites = DWS.

Figure 1.  The scatter plot of Moran’s I values for waterlogged site density in Shenzhen City.
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It can be seen from the LISA cluster map (Fig. 2) that there was a wide range in the spatial distribution of 
the density of waterlogged sites in Shenzhen. Nanshan District, Baoan District, and Guangming New District 
in the west were low-low accumulation areas, indicating that the resistance to waterlogging disasters in this and 
surrounding areas was strong. A small part of Longhua District and Dapeng New District were high-high accu-
mulation areas, indicating that these and surrounding areas were prone to waterlogging disasters. Small parts 
of Dapeng New Area were low-high accumulation areas, indicating that these areas with a low waterlogged site 
density were surrounded by waterlogging-prone areas, which represented a low to high transitional area of water-
logging. Overall, there was a weak spatial agglomeration of the density of waterlogged sites in Shenzhen. The only 
variations occurred in local areas, reflecting the non-stationary characteristics of the spatial distribution of the 
degree of waterlogging disasters.

GWR model establishment and test results.  Due to the differences in the distribution of urban land-
scape patterns, the spatial distribution of waterlogged sites in the urban area was characterized by non-stationary 
features. Therefore, the land use types in Shenzhen were divided into four and 16 categories to calculate the 
landscape pattern index. The two groups were established and a total of 10 landscape pattern indexes in each 
group were obtained and used as independent variables. At the same time, due to the influence of daily rainfall 
and topography, the GWR4.0 software was used to construct the GWR model with the average slope and average 
rainfall as independent variables.

It can be seen from Table 3 that when the land use was divided into four types, the Built up _DIVISION 
had the greatest influence on the density of waterlogged sites, with a negative correlation, i.e., the more broken 
the patches of built-up land, the more serious the potential waterlogging disaster. The SHDI also had a signifi-
cant negative correlation with the density of waterlogged sites, which means that the more complex the patch 
of built-up land, the more serious the potential waterlogging disaster. Of the three landscape pattern indexes 
that had a positive correlation with the degree of waterlogging disaster, the most influential was the Built up 
_COHESION, i.e., the greater the potential for the built-up land to experience a waterlogging disaster.

When the land use was divided into 16 types, the Built up_ DIVISION and SHDI had a significant negative 
correlation with the density of waterlogged sites. The greater the value of Built up_ LPI, CONTAG, and Built up_ 
COHESION, the greater the potential for a waterlogging disaster.

Regardless of whether the land use type was divided into four or 16 categories, the impact on waterlogging 
disasters followed the order of Built up_ DIVISION > SHDI > Built up_ COHESION > CONTAG > Built up_ 
LPI. This was mainly because the values of Built up_ DIVISION and SHDI were smaller than those of the other 
indexes, and therefore the regression coefficient values were large. In addition, it can be seen from Table 4 that the 
regression coefficient of each landscape pattern index had an obvious non-stationarity in Shenzhen. The ability to 
determine this is the largest advantage of using the GWR model in spatial data analysis.

Non-stationarity verification of the GWR model.  As shown in Fig. 3, when the land use types were 
divided into four categories, the regression coefficient of the landscape pattern indexes and the density of 
waterlogged sites showed an obvious spatial non-stationarity. For Built up_ LPI, Built up_ COHESION, and 
CONTAG, low regression coefficient values were mainly distributed in Baoan District, Guangming New District, 
and Longhua District in the northwest of Shenzhen, followed by Nanshan District and Futian District in the 
southwest and Pingshan District in the central and eastern regions. These areas are the main population centers 
in Shenzhen, and the land use types are mainly large areas of built-up land and fragmented green spaces, and 
therefore the Built up_ LPI, Built up_ COHESION, and CONTAG values were high, leading to small regression 
coefficients. In Longgang District, Yantian District, and Dapeng New District in the northeast, south central, and 
southeast of Shenzhen, due to the complex land use type, the Built up_ LPI, Built up_ COHESION, and CONTAG 
values were low, resulting in a large regression coefficient.

Figure 2.  An aggregated local indicators of spatial association (LISA) map of waterlogged site density in 
Shenzhen City.
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For Built up_ DIVISION and SHDI, low regression coefficients were mainly distributed in Futian District, 
Luohu District, and Yantian District in the south-central part of Shenzhen, followed by part of the Dapeng New 
District in the southeast and part of Longgang District in the northeast. These areas are located in the old commu-
nities of Shenzhen, where urban planning in the early years of the city’s development was inadequate. The land use 
type is mainly fragmented built-up land and small patches of green land, and therefore the Built up_ DIVISION 
index and SHDI index values were high, resulting in small regression coefficients. Baoan District, Guangming 
New District, and Longhua District, located in the western part of Shenzhen City, had a relatively large regression 
coefficient due to the relatively simple land use type and large patches of built-up land, resulting in low Built up_ 
DIVISION index and SHDI index values.

Overall, under the rough classification accuracy of land use, the regression coefficients of Built up_ LPI, Built 
up_ COHESION, and CONTAG had a spatial distribution pattern of west low-east high. In contrast, the regres-
sion coefficients of Built up_ DIVISION and SHDI had a spatial distribution pattern of west high-east low.

When the land use type was divided into 16 categories, the regression coefficients of the landscape pattern 
index values and the density of waterlogged sites also displayed an obvious spatial non-stationarity. For the Built 
up_ LPI, Built up_ COHESION, and CONTAG indexes, the spatial distribution of the regression coefficients was 
similar to that when the land use types were classified into four categories, with a spatial distribution pattern of 
west low-east high. Additionally, the regression coefficient for CONTAG had significant layering characteristics. 
For the Built up_ DIVISION and the Built up_ SHDI the spatial distribution of the regression coefficients was 
similar to that when the land use type was divided into four categories, with a spatial distribution pattern of west 
high-east low. Additionally, the regression coefficient for Built up_ DIVISION displayed clear layering character-
istics, as shown in Fig. 4.

Comparing the landscape pattern indexes calculated by the GWR model established by dividing the land 
use type into four or 16 categories, it was found that under the rough classification, the regression coefficient 
of CONTAG changed slightly but the regression coefficient for Built up_ DIVISION changed substantially. The 
regression coefficients corresponding to the various landscape pattern indexes under the fine classification dis-
played greater spatial fluctuations than under the rough classification. The reason for this may be that after the 
land use types were subdivided, the differences in the various landscape pattern indexes were more obvious, as a 
result, the variation in the range of regression coefficients increased accordingly.

Because the regression coefficient distribution map displayed by Arc-GIS could not show the degree of each 
area affected by altitude, a spatial three-dimensional (3-D) scatter plot was produced using the Origin 9.0 software 
to represent the relationship between the landscape pattern indexes and the impact of waterlogging disasters at 
different latitudes, longitudes, and altitudes. Because the regression coefficients of the Built up _ DIVISION and 
SHDI were both negative, for the convenience of display in the 3-D scatter plot, the absolute values of the two 
indexes were selected.

Variable Average Minimum
Lower 
quartile Median

Upper 
quartile Maximum AIC R2 Radj

2 F SD t

4
class

Built up_LPI 3.625 3.317 3.507 3.646 3.881 4.085 658.56 0.443 0.346 2.712 0.818 4.208

Built up_COHESION 93.705 42.330 58.724 101.123 133.691 150.749 658.88 0.482 0.352 2.570 18.60 3.758

Built up_DIVISION −356.89 −390.695 −378.674 −363.753 −348.88 −323.99 657.34 0.455 0.361 2.525 75.99 −4.51

CONTAG 5.835 5.533 5.870 5.975 6.056 6.157 657.24 0.446 0.360 1.978 1.159 4.903

SHDI −270.72 −288.880 −282.301 −275.992 −270.99 −253.64 663.72 0.385 0.283 2.182 67.37 −3.79

16
class

Built up_LPI 5.726 1.138 3.599 5.724 8.468 9.743 657.27 0.521 0.371 3.290 1.526 2.607

Built up_COHESION 36.313 25.345 32.589 37.927 41.976 45.374 650.27 0.558 0.443 2.258 6.818 5.195

Built up_DIVISION −889.47 −1929.27 −1435.97 −809.773 −432.21 −148.97 663.90 0.460 0.291 3.031 261.8 −1.44

CONTAG 7.855 4.748 6.451 7.888 9.742 11.308 671.28 0.336 0.186 2.217 3.274 1.903

SHDI −197.51 −266.164 −242.705 −201.611 −169.15 −123.84 669.85 0.354 0.207 2.311 73.66 −2.13

Table 3.  Regression coefficients for the relationships between the density of waterlogged sites and landscape 
pattern indexes from the geographically weighted regression (GWR) model.

Data type Properties Source

Waterlogging point data of Shenzhen 
during on rainstorm period on May 
11, 2014

A total of 278 
points

Shenzhen Flood Control and Drought 
Prevention and Wind Control 
Headquarters

Land Use Data 2013 of Shenzhen 30 × 30(m) Shenzhen Government

DEM Data of Shenzhen 30 × 30(m) Geospatial Data Cloud

Daily Rainfall Data for Shenzhen, 
May 11, 2014

Statistical data, 
recorded by 50 
meteorological 
monitoring stations

Shenzhen Meteorological Bureau website

Table 4.  Overview of data used in this study.
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As shown in Fig. 5, in the GWR model constructed by dividing the land use type into four categories, there 
was little spatial difference in the regression coefficient values and the values for Built up_ LPI and Built up_ 
COHESION when the altitude exceeded 100 m were significantly less than the regression coefficient values below 
100 m. This indicates that the degree of damage from waterlogging disasters at high altitudes was less affected by 
the landscape pattern than at low altitudes. The regression coefficient of the other three landscape pattern indexes 
did not change significantly on the vertical scale.

As shown in Fig. 6, in the GWR model constructed by dividing the land use type into 16 categories, the 
regression coefficients were significantly different in space. For Built up_ LPI, Built up_ COHESION, and Built 
up_ CONTAG the regression coefficients below 100 m were significantly smaller than the regression coefficients 
when the altitude was above 100 m. This indicates that the degree of damage from waterlogging disasters at high 
altitudes was less affected by the landscape pattern than at low altitudes. For the regression coefficients of the 
other two landscape pattern indexes, there was no significant change in the vertical scale.

Figure 3.  Distribution of regression coefficients for the relationships between the density of waterlogged sites 
and landscape pattern indexes (4 land use classes) in Shenzhen.

https://doi.org/10.1038/s41598-020-64113-1
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Discussion
Most previous studies focused on the impact of landscape pattern on watershed hydrological processes and urban 
waterlogging disasters52. The present study used the Shenzhen “5.11 rainstorm” in 2014 as a case study. Based on 
the actual distribution of all recorded waterlogged sites, a spatial autocorrelation analysis, GWR model, and other 
statistical methods were used to determine the urban landscape pattern (including type and landscape level), 
which had a spatial non-stationary impact on urban waterlogging disasters.

The results showed that human factors, such as land use type and landscape pattern, had a significant influ-
ence on urban waterlogging problems, with significant impacts in various urban areas. The results can be used 
to guide urban landscape pattern planning and optimization, and the construction of ‘sponge cities’. This further 
indicated that the spatial distribution of waterlogging disasters was related to the spatial heterogeneity of the land-
scape pattern, which provided reliable theoretical support for the subsequent establishment of the GWR model 
between the waterlogged site density and the landscape pattern index. There were several key implications for city 
managers. (1) Minimize the endless connection of large-scale built-up land, reduce the degree of accumulation 
of built-up land by means of green spaces or water bodies, and make their spatial distribution more discreet. (2) 
Waterlogging disasters in eastern Shenzhen were intensified by the landscape pattern. This area of the city is the 
location of many new districts, and therefore the government should consider the rationality of spatial pattern 
when planning. (3) The existing urban green space should be protected and integratedwhile maximizing the 

Figure 4.  Distribution of regression coefficients for the relationships between the density of waterlogged sites 
and landscape pattern indexes (16 land use classes) in Shenzhen.
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urban green area. Different green land sub-categories, such as forest and grassland can be treated differently, with 
an emphasis on increasing the spatial concentration of forests and gardens. (4) The terrain will have some impact 
on the degree of waterlogging disasters, with high-lying areas being less affected by the landscape pattern, so the 
low-lying area of the city needs reasonable planning to avoid waterlogging to the maximum extent.

There are also some limitations need to be addressed in future studies. Firstly, due to data availabilty, this 
study mainly focused on densely populated and urban built-up areas, but paid liitle attention to natural areas. 
Also, this study considered only Shenzhen, with no data from other cities, for which the results may therefore be 
very specific to the case study area. In addition, the spatial distribution of waterlogged sites was not very even, 

Figure 5.  Three-dimensional 3-D scatter plot of regression coefficients for the relationships between the density 
of waterlogged sites and landscape pattern indexes (four land use classes) in Shenzhen.

https://doi.org/10.1038/s41598-020-64113-1
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which may impact the results. GWR model is a linear regression model, but it only involves linear interpolation 
and has some limitations. Therefore, further model improvement and optimization should be explored in future 
research53. Landscape pattern index can only represent some characteristics of landscape, which also leads to the 
same landscape pattern index for two different urban landscapes.

Because of the difficulty of data acquisition, only waterlogging events following the “5.11 rainstorm” in 2014 
were analyzed. If data for waterlogged sites corresponding to different storm events can be acquired in the future, 
the spatial non-stationary nature of the landscape pattern on waterlogging disasters under different storm inten-
sities could be determined. This data could then be compared with the results of the present study to determine 

Figure 6.  Three-dimensional 3-D scatter plot of regression coefficients for the relationships between the density 
of waterlogged sites and landscape pattern indexes (16 land use classes) in Shenzhen.
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their timeliness and credibility. As more attention is given to disasters caused by heavy rain, the city’s disaster 
prevention and mitigation measures will improve, and political factors, such as urban management, will gradually 
become an important factor affecting urban waterlogging disasters. The quantification of this process will also be 
a focus of future studies of urban flooding.

Conclusions
This study considered the spatial non-stationary nature of the GWR model by analyzing the relationship between 
landscape patterns and urban waterlogging disasters. First, it was found that the spatial autocorrelation of the 
density of flooded sites in Shenzhen was significant at the 5% significance level, but because the Z value was 
not large, spatial autocorrelation was not very obvious. Second, when the land use types were divided into 
four and 16 categories, the Built up_ DIVISION, SHDI, and density of waterlogged sites were negatively cor-
related, with the density of waterlogged sites, while the Built up_ LPI, CONTAG, and Built up_ COHESION 
were positively correlated with the density of waterlogged sites. Among the various landscape pattern indexes, 
the degree of influence on waterlogging disasters followed the order of: Built up_ DIVISION > SHDI > Built 
up_ COHESION > CONTAG > Built up_ LPI. Third, the regression coefficients of Built up_ LPI, Built up_ 
COHESION, and CONTAG had a spatial distribution pattern of west low-east high; while the regression coef-
ficients of Built up_ DIVISION and SHDI had a spatial distribution pattern of west high-east low. Finally, the 
regression coefficient of Built up_ LPI and Built up_ COHESION was significantly less than the regression coeffi-
cient below 100 m when the altitude was higher than 100 m, indicating that the severity of waterlogging disasters 
in the higher altitudes was less affected by the landscape pattern. However, built up_ DIVISION and SHDI did 
not change significantly with altitude.

The outcomes of this study provided valuable reference information for the effective and rational use of land 
in Shenzhen city to avoid the occurrence of urban waterlogging, especially for the low altitude and densely pop-
ulated areas. Because Shenzhen is a typical coastal developed area in China, which has many similarities with 
most coastal developed cities in China, the research results of this paper also have some reference value to other 
regions. The spatial nonstationarity of GWR Model is also proved in this study, and it can also have a good effect 
in the study of urban structure and urban waterlogging.

Materials and methods
Study area and data sources.  Study area.  Shenzhen City in Guangdong Province was used as a case 
study. Shenzhen is located in the southeast coastal area of China, in the south of Guangdong Province, on the east 
bank of the Pearl River Estuary. It is close to Hong Kong, and is one of the fastest growing and most developed 
regions in China. The city has nine administrative districts and one new district, with a total area of 2020 km2, and 
is located at 113°46′–114°37′E, 22°27′–22°52′N. Shenzhen is located in the subtropical maritime monsoon cli-
mate zone, and its climate is humid, rainy, warm, and frost- and ice-free throughout the year. It generally has long 
summers and short spring, autumn, and winter seasons. Due to the high average temperature and high humidity 
throughout the year, precipitation amounts are large, with an average annual precipitation of 1837 mm. However, 
due to the uneven terrain in Shenzhen and the presence of mountains in the city, the spatial and temporal distri-
bution of precipitation is uneven. Precipitation is mainly concentrated in the April to September period of each 
year, which accounts for about 85% of annual precipitation. On a spatial scale, precipitation is concentrated in the 
southeastern part of the city, while in the northwest there is less rainfall. From east to west, there is a clear down-
ward trend in rainfall. The spatial and temporal differences in the precipitation distribution have resulted in very 
serious urban waterlogging problems in Shenzhen and there is a need for better management and planning by 
the relevant departments. On May 11, 2014, Shenzhen suffered heavy precipitation, which led directly to serious 
levels of water accumulation in 150 roads across the city. More than 5,000 buses were forced to stop operating, 
more than 20 communities were affected, and more than 2,000 vehicles were flooded, resulting in huge economic 
losses and seriously affecting the movement and daily lives of urban residents. The official statistics provided by 
the Shenzhen Flood Control and Drought Prevention and Wind Control Headquarters showed that during the 
rainstorm, there were 278 locations where waterlogging occurred within the city (Fig. 7). Due to the wide extent 
and severe impact of the torrential rainstorm, this study investigated the spatial non-stationarity of Shenzhen’s 
waterlogging problem through a case study of landscape patterns at different classification levels.

Urban waterlogging is a systemic problem. The water cycle process produces distinct geographical basins, 
within which the problem of destruction due to waterlogging cannot be analyzed only from a certain point, but 
rather needs to be studied from the basin perspective. Based on digital elevation model (DEM) data, this study 
extracted the hydrological elements using the “Eight-Vector Method” (D8) to obtain a watershed division map of 
Shenzhen (Fig. 1), with a small watershed as the research unit.

Data sources.  The torrential rain data used in this study were obtained from measurements made during the 
“5.11 rainstorm” in Shenzhen in 2014, with data extracted for 278 locations where waterlogging occurred during 
the rainstorm. Using ArcGIS10.1 (https://www.esri.com/zh-cn/arcgis/products) software to vectorize the data, a 
spatial dataset of the rainstorm was created. The dataset was superimposed with a watershed partitioning map, 
and 56 small watersheds containing waterlogged areas were extracted. The density of waterlogged points in each 
basin was calculated (waterlogging point density = number of waterlogging points in the basin/basin area, units: 
Per km2), and was used to characterize the extent of waterlogging in each small watershed. Previous studies have 
shown that urban waterlogging is mainly affected by natural factors such as meteorological conditions, topogra-
phy, and terrain, and human factors such as land use and drainage facilities54,55. This study first classified land use 
types, obtained related variables, and then calculated the values of landscape pattern indexes (including land use 
type and landscape level indexes) using Fragstats software. These values were then combined with other variables 
known to influence waterlogging, including daily rainfall. The GWR model was used to explore the impact of the 
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urban landscape pattern on the non-stationarity of urban waterlogging. All data used in the study are shown in 
Table 4.

Land use-land cover(LULC) data.  The original land use data was divided into 12 primary-classes and 
56 secondary-classes based on the land use classification standard (GB/T21010-2007). The data was reclassified 
according to the aims of the research, and finally a land use classification with rough and fine classification accu-
racy was obtained (Fig. 8). Then the landscape pattern indexes are calculated as independent variables in the 
model.

Landscape pattern index.  The landscape pattern index can concentrate the landscape pattern information, 
reflect the spatial composition and structural characteristics of the landscape, and is easy to calculate, and it is 
therefore widely used to measure the landscape pattern. The landscape pattern index was used to characterize 
the landscape pattern of the basin in this study. Taking the features of each landscape pattern index into account 
and based on the principle of statistical independence56,57, together with reference to existing research58, five 
indexes were selected, including three land use type indexes: largest patch index (LPI), patch cohesion index 
(COHESION), and landscape division index (DIVISION); and two landscape indexes: contagion (CONTAG) and 
Shannon’s diversity index (SHDI). A description of each index is shown in Table 5, and the calculation process 
was completed in Fragstats 4.2 software.

According to the existing research, in addition to the impact of land use and landscape pattern, urban water-
logging disasters are also affected by rainfall and topographical factors. Therefore, the variables of rainfall, alti-
tude, and land surface relief conditions were also considered.

Based on the daily rainfall data recorded at 50 meteorological stations, the daily rainfall distribution in the 
Shenzhen City area was obtained using the Ordinary Kriging (OK) method, and the average precipitation of each 
small watershed was extracted as research variables. Based on the original DEM data, the distribution of altitude 
and surface undulation in Shenzhen City were obtained, and the average value of each small watershed was then 
extracted as the research variable.

The above variables (Table 6) were acquired in ArcGIS 10.1 for further study.

Methods.  The dependent variable in the study was the waterlogging point density of each small watershed 
during the “5.11 rainstorm” in Shenzhen in 2014. The independent variables are shown in Table 3, which includes 
the landscape pattern index and other variables. A GWR was used to analyze the spatial non-stationarity of 
the influence of urban landscape pattern on urban waterlogging. The operation of this part was completed in 
GWR4.0.

GWR model.  The traditional linear regression model only estimates parameters in an “average” or “global” 
way. If the independent variables are spatial data and there is a spatial autocorrelation between the independent 
variables, the traditional assumption of independent residuals in the regression model (ordinary least squares 
(OLS) model) cannot be satisfied. Therefore, the OLS model could not be applied in this study. The GWR model 
produces estimates for different regions to reflect the spatial non-stationarity of parameters in different spaces, 
and therefore the relationship between variables can be changed with a change of spatial position. The results 
are therefore more in line with objective reality. A GWR analysis was used in this study to extend the traditional 
regression framework and perform local parameter estimations based on the global regression model. The model 
structure is as follows:

Figure 7.  Distribution of waterlogging points and the Shenzhen sub-watershed.
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where (ui, vi) is the geographic center coordinate of the i sample space unit, and βik(ui, vi) is the value of the 
continuous function βik(u, v) in the i sample space unit. If βik = β2k = … =βnk, then the GWR model becomes a 
general linear model. Therefore, the spatial non-stationary nature of the data is the theoretical premise of estab-
lishing a GWR model.

Bandwidth b is a non-negative attenuation parameter between distance and weight59. The larger the band-
width, the slower the weight changes with distance, and vice versa. When b is close to positive infinity, the weights 
of all observation points are close to 1, and the fitted value of the variable is close to the result of a general linear 
regression, making the model too smooth and causing excessive deviation. When the bandwidth tends to infin-
itesimal, the number of sample points participating in the regression calculation is too small, so that there is no 
influence between the parts, and the variance of the regression parameter estimation is too large, making the 
model too unsmooth. When b is constant, the weight of an observation infinitely far from the sample point i is 
close to zero. The determination of bandwidth is critical to the GWR model results, and therefore there are many 
ways to determine the optimal bandwidth60,61. This study uses the minimum Akaike information criterion (AIC) 
method62,63.

n n n n tr
n tr
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This equation is the maximum likelihood estimate of the random error variance, namely σ = RSS/n − tr(S), 
where tr(S) is the trace of the projection matrix S for the GWR model, which is related to b. For sample data, the 
minimum bandwidth for the AIC is the optimal bandwidth for the GWR model.

Autocorrelation analysis.  Before the GWR model was established, a spatial autocorrelation analysis was per-
formed on landscape features to verify whether they had spatial heterogeneity and spatial agglomeration char-
acteristics64. A global spatial autocorrelation emphasizes the spatial dependence or spatial heterogeneity of the 
elements in the overall range, which is expressed as Moran’s I index. This index can be understood as the corre-
lation coefficient between the factor observation and its spatial lag. The value of the index ranges from −1 to +1 
and is calculated as follows:

Figure 8.  The classification of land use.

Scale Index Unit Range Representational meaning

Type
level

(LPI) % 0 < LPI ≤ 100 Representing the dominance of landscape types.

(COHESION) None 0 < 
COHESION < 100

Reflecting the degree of patch accumulation in the same landscape 
type, the higher the value, the higher the patch cohesion.

(DIVISION) None 0 ≤ DIVISION < 1
Reflecting the degree of patch dispersion in the same landscape type. 
Value = 0, the landscape type is composed of a single patch; Value = 
1, the landscape type is composed of many small patches.

Landscape Level

(CONTAG) % 0<CONTAG ≤ 100 Describing the degree of agglomeration or extension of different 
landscape types.

(SHDI) None 0 ≤ SHDI
To characterize the complexity of the landscape as a whole, the 
greater its value, the higher the complexity of the landscape as a 
whole.

Table 5.  Overview of landscape indices used in this study. Note: The contents of the table are from the Fragstats 
4.2 user manual.
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where Xi and Xj are the values of element i and j, respectively; n is the number of elements; wij is the spatial weight 
between elements i and j, which is defined as the reciprocal of the distance between them (if features are spatially 
neighbored, the value is 1, otherwise the value is 0).

The Z test value of formula (4) is:

I I E I
V a r I

Z( ) ( )
( ) (4)

=
=

where E(I) is the mathematical expectation under the assumption that space does not agglomerate and Var(I) is 
the variance number. When the Z(I) value is positive and significant, it indicates that there is a positive spatial 
autocorrelation in the region, namely a high-high or low-low agglomeration. When the Z(I) value is negative and 
significant, there is a negative spatial autocorrelation in the region, namely a high-low or low-high agglomeration. 
When the Z(I) value is 0, the observation value is independently and randomly distributed. The local spatial auto-
correlation emphasizes the degree of significant correlation of features at the local scale, which refers to the degree 
of similarity between each unit of the local space and its neighborhood, reflecting the degree to which each local 
unit obeys the global general trend, and is represented by a local indicators of spatial association (LISA) map65.
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