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Highly Sensitive Blocker Displacement

Amplification and Droplet Digital PCR Reveal
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Detection of low-level somatic mosaicism [alternate allele fraction (AAF) � 10%] in parents of affected
individuals with the apparent de novo pathogenic variants enables more accurate estimate of recurrence
risk. To date, only a few systematic analyses of low-level parental somatic mosaicism have been performed.
Herein, highly sensitive blocker displacement amplification, droplet digital PCR, quantitative PCR, long-
range PCR, and array comparative genomic hybridization were applied in families with alveolar capillary
dysplasia with misalignment of pulmonary veins. We screened 18 unrelated families with the FOXF1 variant
previously determined to be apparent de novo (nZ 14), of unknown parental origin (nZ 1), or inherited
from a parent suspected to be somatic and/or germline mosaic (nZ 3). We identified four (22%) families
with FOXF1 parental somatic mosaic single-nucleotide variants (nZ 3) and copy number variant deletion
(nZ 1) detected in parental blood samples and an AAF ranging between 0.03% and 19%. In one family,
mosaic allele ratio in tissues originating from three germ layers ranged between <0.03% and 0.65%.
Because the ratio of parental somatic mosaicism have significant implications for the recurrence risk, this
study further implies the importance of a systematic screening of parental samples for low-level and very-
lowelevel (AAF � 1%) somatic mosaicism using methods that are more sensitive than those routinely
applied in diagnostics. (J Mol Diagn 2020, 22: 447e456; https://doi.org/10.1016/j.jmoldx.2019.12.007)
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During the past decade, growing evidence on the importance
of somatic mosaicism in etiology of several human genetic
conditions, including cancers and neurodevelopmental dis-
eases, has been reported.1e11 However, somatic mosaic
variants have been also detected in clinically unremarkable or
mildly affected individuals, including parents of subjects
with genetic conditions.12,13 The incidence and ratio of
parental somatic mosaicism have important implications for
the recurrence risk,14,15 because both affected and unaffected
carriers of the pathogenic mosaic variant can transmit it to
their children if it is also present in germline cells.4,10,11

However, mainly because of technical limitations, only a
few systematic studies on the real incidence of somatic
mosaicism in parents of affected individuals with apparent de
novo events have been performed.5,12,13

Herein, highly sensitive blocker displacement amplifica-
tion (BDA), droplet digital PCR (ddPCR), quantitative PCR
(qPCR), long-range PCR, and customized array compara-
tive genomic hybridization were applied in families with
alveolar capillary dysplasia with misalignment of pulmo-
nary veins (ACDMPV; Mendelian Inheritance in Man
number 265380). ACDMPV is a rare neonatal lethal lung
developmental disorder, characterized by unique histopath-
ologic features.16e20 To date, >70 distinct pathogenic or
likely pathogenic single-nucleotide variants (SNVs) and 60
copy number variant (CNV) deletions, involving FOXF1
(forkhead box F1; Mendelian Inheritance in Man number
601089) or its lung-specific enhancer on 16q24.1, have been
reported in 80% to 90% of ACDMPV families.20e30 The
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Figure 1 Alveolar capillary dysplasia with misalignment of pulmonary veins
determine the frequency of variant allele in parental DNA, 18 families with FOXF1
inherited were tested using blocker displacement amplification (BDA), droplet
comparative genomic hybridization (array CGH). Flowchart was generated using
variants); n Z 1 (variant of unknown parental origin); n Z 3 (inherited variant
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vast majority of ACDMPV cases are sporadic, with de novo
FOXF1 variants being detected.20,31 Only a few ACDMPV
families with a pathogenic FOXF1 variant transmitted from
a somatic mosaic or apparent heterozygous healthy parent
have been reported.20,22,31e34

To examine the efficacy of the applied techniques as well
as the scale and ratio of parental somatic mosaicism in
families with ACDMPV, 18 families with a known FOXF1
variant were studied retrospectively.

Materials and Methods

Subjects

The DNA samples studied were from parents of 18 unre-
lated index ACDMPV patients with a known pathogenic
FOXF1 SNV (n Z 12), insertion/deletion (n Z 5), or CNV
deletion (n Z 1), detected during the standard diagnostic
procedure. On the basis of PCR and Sanger sequencing,
these variants were originally determined to be apparent de
novo (alternate allele was not detected in the parents;
n Z 14), of unknown parental origin (parents were not
tested; n Z 1), or inherited from a parent suspected to be
somatic and/or germline mosaic (alternate allele was present
in the parent, but the precise allelic ratio was not determined
and/or alternate allele was not detected in the parents, but
the family pedigree suggested the presence of germline
mosaicism; n Z 3) (Figure 1).20,21,31 Only the families in
whom both parental and proband DNA samples were
PV families
XF1 variant

s
nt inherited
ted parent

1 Infant
with likely maternal inheritance
(maternal germline mosaicism)

1 Infant
with unknown parental origin of

FOXF1 variant

-range PCR, or array CGH

(ACDMPV) families with FOXF1 variants included in this study. To precisely
variants previously indicated to be de novo, of unknown parental origin, or
digital PCR (ddPCR), quantitative PCR (qPCR), long-range PCR, and array
https://www.draw.io (last accessed December 16, 2019). n Z 14 (de novo
s).
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Low-Level Parental Somatic Mosaicism
available, and for whom it was possible to design the BDA,
ddPCR, or qPCR assays, were included in this study after
obtaining informed consent. The study protocol was
approved by the Institutional Review Board for Human
Subject Research at Baylor College of Medicine (Houston,
TX; H-8712 and H-28088).
DNA Extraction

Genomic DNA was previously extracted from peripheral
blood, saliva, and frozen or formalin-fixed, paraffin-
embedded lung tissue using Gentra Purgene Blood Kit
(Qiagen, Germantown, MD), prepIT�L2P/PT-L2P kit
(DNA GenoTek, Ottawa, ON, Canada), and DNeasy Blood
and Tissue Kit (Qiagen), respectively, as described.20,31

DNA from urine, buccal cells, and hair follicles (family
176) was isolated with Gentra Purgene Blood Kit (Qiagen),
prepIT�L2P/PT-L2P kit (DNA GenoTek), and QIAamp
Table 1 The List of Studied Families with Distribution and Parental O

Family
ID DNA variant Protein variant

Parental orig

Sanger
sequencing
(original
detection
method)

B
q

2 c.225C>A p.Tyr75* De novo D
46 c.1031_1032del p.Phe344Cysfs*66 De novo D
48 c.1138T>C p.*380Argext*73 De novo D
55 c.145C>T p.Pro49Ser De novo D
56 c.89C>A p.Ser30* De novo D
61 c.872_879del p.Ser291* De novo D
66 c.899_903dup p.Gly302Cysfs*79 De novo D
67 c.191C>A p.Ser64* De novo D
69 c.691_698del p.Ala231Argfs*61 De novo D
76 c.1139G>C p.*380Serext*73 De novo D
83 c.221T>A p.Ile74Asn De novo D
85 c.539C>A p.Ser180* De novo M
91 c.294C>A p.His98Gln Maternal M
101 c.862C>T p.Gln288* De novo D
105 c.316T>C p.Phe106Leu Unknown P

123 c.849_850del p.Ile285Glnfs*9 Probably
maternal

N

176 7-kb CNV deletion involving
FOXF1 chr16:86,
542,131-86,549,266(hg19)

Maternal M

182 c.145C>G p.Pro49Ala De novo D

Families with parental somatic mosaicism determined by BDA, ddPCR, or qPCR ar
in the dbVar database (https://www.ncbi.nlm.nih.gov/dbvar, accession number ns
(https://www.ncbi.nlm.nih.gov/clinvar, submission ID SUB6388016, accessions nu
BDA, blocker displacement amplification; chr, chromosome; ddPCR, droplet dig

PCR.
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DNA Investigator Kit (Qiagen), respectively, according to
the manufacturer’s instructions.

CNV Deletion Analysis

To study CNV deletion in family 176, array comparative
genomic hybridization analysis was performed using
customized 16q24.1-specific (1 Mb region flanking FOXF1)
high-resolution 180K microarray (Agilent Technologies,
Santa Clara, CA), as described.20,23 Deletion junction
fragment was amplified by long-range PCR with LA Taq
DNA polymerase (TaKaRa Bio, Madison, WI), followed by
Sanger sequencing.

BDA and qPCR Experiments

To determine the alternate allele fraction (AAF) in parental
samples, 17 families (Table 1) were tested using BDA or
rigin of FOXF1 Pathogenic Variants

in of FOXF1 pathogenic variants

DA or
PCR

% Of variant allele
detected in parent
(type of tissue) ddPCR

% Of variant allele
detected in parent
(type of tissue)

e novo 0.0 N/A N/A
e novo 0.0 N/A N/A
e novo 0.0 N/A N/A
e novo 0.0 N/A N/A
e novo 0.0 N/A N/A
e novo 0.0 N/A N/A
e novo 0.0 N/A N/A
e novo 0.0 N/A N/A
e novo 0.0 N/A N/A
e novo 0.0 N/A N/A
e novo 0.0 N/A N/A
aternal 1.5 (Blood) Maternal 1.0 (Blood)
aternal 19.0 (Blood) N/A N/A
e novo 0.0 N/A N/A
aternal 0.03 (Blood) Mosaicism not

confirmed
N/A

/A N/A Probably maternal
germline
mosaicism

0.0 (Blood)

aternal 0.2 (Saliva)
0.14 (Redrawn
saliva)

0.04 (Blood)
<0.03 (Urine)
0.65 (Buccal)

N/A N/A

e novo 0.0 N/A N/A

e in bold. The array comparative genomic hybridization data were deposited
td178). The sequence variant data were submitted to the ClinVar database
mbers SCV001055831 to SCV001055847).
ital PCR; ID, identifier; N/A, not available (not tested); qPCR, quantitative
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Table 2 BDA and qPCR Oligonucleotide Sequences

Family ID Name Nucleotide sequence

2 Forward primer 50-GCCTGACGCTGAGCGAGATCTA-30

Reverse primer 50-AAGGCCCTTGGGTAGCTTGATG-30

Blocker 50-AGCGAGATCTACCAGTTCCTGCAGAGCCaaaa-30

46 Forward primer 50-CCCAGCATGTGTGACCGAAA-30

Reverse primer 50-GCAGCCTCACATCACGCAA-30

Blocker 50-TGACCGAAAGGAGTTTGTCTTCTCTTTCAACaaat-30

48 Forward primer 50-TCACCTACCAAGACATCAAGCC-30

Reverse primer 50-CGACGGTTATACCTCGAGAAGAAAG-30

Blocker 50-ATCAAGCCTTGCGTGATGTGAGGCaaaa-30

55 Forward primer 50-CCGGCGCCCGGAGAA-30

Reverse primer 50-GGTAGGAGCCCCGGAAGAAG-30

Blocker 50-CGGAGAAGCCGCCCTATTCCTACAaaaa-30

56 Forward primer 50-CGGCCATGGACCCCGC-30

Reverse primer 50-GCGCTTGGTGGGTGAACTCT-30

Blocker 50-CCCGCGTCGTCCGGCCCGaaat-30

61 Forward primer 50-GGCGCCTCTTATATCAAGCAGCA-30

Reverse primer 50-GGCGTTGTGGCTGTTCTGGT-30

Blocker 50-AAGCAGCAGCCCCTGTCCCCCTaatt-30

66 Forward primer 50-CCTGTAACCCCGCGGCCA-30

Reverse primer 50-CGGCCTCCCCACTCACCTT-30

Blocker 50-CGGCCAACCCCCTGTCCGGCAaaaa-30

67 Forward primer 50-CGCGCTCATCGTCATGGC-30

Reverse primer 50-GGTAGGAGCCCCGGAAGAA-30

Blocker 50-GTCATGGCCATCCAGAGTTCACCCACatta-30

69 Forward primer 50-ACATGGGCGGCTGCGG-30

Reverse primer 50-CGCCGAGCCCGAGTAGAC-30

Blocker 50-CTGCGGCGGCGCGGCGaaaa-30

76 Forward primer 50-GTCACCTACCAAGACATCAAGCCT-30

Reverse primer 50-GACGGTTATACCTCGAGAAGAAAGCA-30

Blocker 50-ATCAAGCCTTGCGTGATGTGAGGCTGaaaa-30

83 Forward primer 50-ACCCACCAAGCGCCTGAC-30

Reverse primer 50-AAGGCCCTTGGGTAGCTTGATG-30

Blocker 50-GCCTGACGCTGAGCGAGATCTACCAaaaa-30

85 Forward primer 50-GGGCTCGGCCGGCG-30

Reverse primer 50-CGTTGGAAGGCAGGTGGGG-30

Blocker 50-CGGCGGCCTCTCGTGCCCGaaat-30

91 Forward primer 50-AGGGCTGGAAGAACTCCGT-30

Reverse primer 50-CTCCTCGAACATGAACTCGCT-30

Blocker 50-AACTCCGTGCGCCACAACCTCTaaaa-30

101 Forward primer 50-CAACAGCGGCGCCTCTTATATCA
Reverse primer 50-GGCGTTGTGGCTGTTCTGGT-30

Blocker 50-GCCTCTTATATCAAGCAGCAGCCCCTGTaaaa-30

105 Forward primer 50-CCTCTCGCTCAACGAGTGC-30

Reverse primer 50-TGGCATTTCCTTCGGAAGCC-30

Blocker 50-CGAGTGCTTCATCAAGCTACCCAAGGaaaa-30

176 Forward primer 50-GCCTCTCGCCCCAGCTC-30

Reverse primer 50-CGCAGTTGGGTTTCTCCTAATCA-30

Blocker None
182 Forward primer 50-CCGGCGCCCGGAGAAG-30

Reverse primer 50-CTGGTAGGAGCCCCGGAAGAA-30

Blocker 50-CGGAGAAGCCGCCCTATTCCTACATCGaaaa-30

Primers and blockers are standard desalted DNA oligonucleotides with no chemical modification. Four lowercase bases at the -30 of the blocker do not match
the template, thus preventing the blocker oligonucleotide from being extended by the polymerase.
BDA, blocker displacement amplification; ID, identifier; qPCR, quantitative PCR.
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Low-Level Parental Somatic Mosaicism
qPCR using the probands’ DNA samples as positive con-
trols. BDA principles were described in detail by Wu et al35

(2017). The workflow of BDA data analysis is shown in
Supplemental Figure S1.

Primer and blocker sequences (Table 2) were designed
according to the previously developed protocol.35 To pre-
vent unspecific binding of primers to FOXF2, a highly
similar genomic sequence to FOXF1, primers used in BDA
experiments were not fully complementary to the FOXF2
and thus have much weaker binding energy to FOXF2.
Moreover, the short extension time (30 seconds) prevented
amplification of longer, potentially nonspecific amplicons
(Supplemental Figure S2). Sanger sequencing of the
amplified products further confirmed the specificity of all
primers.
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Figure 2 Four families with detected FOXF1 somatic mosaicism. A and B: Ped
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The patient, mother, and father genomic DNA samples
were tested with blocker (ie, standard BDA) and without
blocker (ie, forward and reverse primers only). The qPCR
assays were performed using PowerUp SYBR Green Master
Mix (Thermo Fisher Scientific, Waltham, MA) with 400
nmol/L of each primer, 4 mmol/L of blocker, and 10 ng of
DNA per well. For GC-rich amplicons, betaine was added to
a final concentration of 1 mol/L (Sigma Aldrich, St. Louis,
MO) to reduce template secondary structures (Supplemental
Table S1). Reactions were performed in the final volume of
10 mL using CFX96 Touch Real-Time PCR Detection
System (Bio-Rad, Hercules, CA) with incubation at 95�C
for 180 seconds, followed by 60 cycles of 95�C for 10
seconds and 60�C for 30 seconds. Each qPCR was repeated
at least twice.
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Change in quantification cycle (DCq) values were
calculated for each sample using Cq values obtained in both
experiments (with and without blocker). First, the DCqsamp
was calculated for each sample: DCqsamp Z (median with
blocker Cq) � (median no-blocker Cq).

All calculated Cq and DCqsamp values are shown in
Supplemental Table S2. A smaller DCqsamp indicates a
higher likeliness of the sample containing a mutation.

Next, PCR products from two replicated qPCR experi-
ments for the parental sample with smaller DCqsamp were
purified and Sanger sequenced. Because it is extremely
unlikely that both parents carry the same pathogenic variant,
the PCR product from the other parent was not sequenced.
To avoid false positives caused by Taq polymerase errors, a
sample was called as positive when the variant appeared in
both of the duplicate Sanger results. If the presence of
alternate allele was confirmed by Sanger sequencing
(Figure 2), the qPCR Cq values were used to calculate the
AAF. AAF was calculated as follows:

AAFZ
50%

2DCqsamp;parent�DCqsamp;patient
ð1Þ

where DCqsamp,parent is the DCqsamp of the parent sample
with a positive result, and DCqsamp,patient is the DCqsamp of
the corresponding patient sample.

Sanger chromatopherograms of negative (no mosaicism
detected) parental samples are shown in Supplemental
Figure S3.

In family 91, calibration experiments were performed
with the use of series of dilutions (1%, 0.3%, 0.1%, and
0.03%) of wild-type human genomic DNA (NA18537;
Coriell Institute for Medical Research, Camden, NJ) and
synthetic double-stranded DNA (gBlocks Gene Fragment;
Integrated DNA Technologies, Coralville, IA) bearing the
c.294C > A variant. To avoid DNA loss during dilution, the
1� Tris-EDTA buffer with 10 ng/mL carrier RNA and 0.2%
Tween 20 was used for dilution of samples. BDA calibra-
tion was performed using the 30 ng of each sample. All
experiments were performed in triplicate (or six replicate for
0.03% AAF). A mastermix bulk reaction mixture was made
and then split into replicates to decrease the variability due
to pipetting error. The assay sensitivity of BDA method was
determined as 0.03% (Supplemental Figure S4).

DNA samples from family 176were analyzed using standard
qPCRwithout the blocker using the same parameters as those in
the BDA experiments. The forward and reverse primers were
designed upstream and downstream to the approximately 7-kb
deletion, respectively. The amplicon length of the variant
template was 167 bp, and the amplicon length on the wild-type
template was 7303 bp. qPCR was performed using nonelong-
range Taq polymerase with short (30 seconds) extension time.
Thus, amplicons>1000 bp cannot be amplified (Supplemental
Figure S3), and only variant template was detected. Duplicated
Sanger sequencing was performed to confirm the correct (167-
bp) length of the obtained amplicon. For positive samples, AAF
was estimated as follows:
452
AAFZ
50%

2Cqmedian;parent�Cqmedian;patient
ð2Þ

where Cqmedian,parent is the median Cq of the parent sample
with a positive result, and Cqmedian,patient is the median Cq of
the corresponding patient sample. Herein, the AAF in a
patient is assumed to be 50% and the PCR amplification
efficiency for the mutant to be two per cycle in the presence
of the blocker, so that the Cq difference between parent and
patient can be used to infer AAF in the parent. The
assumption about PCR amplification efficiency is consistent
with the DCqsamp in most patient samples (Supplemental
Table S2), although some patient samples showed a high
DCqsamp value, indicating the PCR yield for some mutations
was lower than two with the blocker. However, even in the
case of the largest DCqsamp, the amplification efficiency per
cycle was approximately 1.75, so the above equation for
AAF estimation can still be used. To further improve AAF
quantitation, the PCR amplification efficiency for each
different mutation can be calculated on the basis of
DCqsamp values.
ddPCR Assays

To further assess the AAF in parental samples, three
families were tested using the probe-based ddPCR
(Table 1). The FOXF1 primers and probes specific to
alternate or wild-type allele were designed using droplet
digital PCR assays tool (Bio-Rad). To ensure the highest
specificity between the mutant and wild-type clusters, the
ddPCR assays for each variant were validated and opti-
mized with the use of a temperature gradient and the
probands’ and wild-type DNA samples (positive and
negative controls, respectively), as well as a nontemplate
control. The droplets were classified on the basis of the
fluorescence amplitude observed in the positive, negative,
and nontemplate controls. In the clean reaction, there
should be no mutant-positive droplets in both negative
and nontemplate control wells.
In family 105, additional calibration experiments were

performed with the use of a series of dilutions of proband’s
DNA in the control wild-type DNA (50%, 10%, 5%, 1%,
0.1%, and 0.03%). The cutoff sensitivity of this ddPCR
assay was determined as 0.1% (Supplemental Figure S5).
The ddPCR experiments were performed using QX200

AutoDG Droplet Digital PCR System (Bio-Rad). Each 20-
mL PCR contained 10 mL of 2� ddPCR Supermix for
probes (Bio-Rad), 1 mL of custom-designed TaqMan probes
and primers mix, and 50 to 100 ng of DNA. In addition, 1 U
of HindIII (family 123) or MseI (families 85, 105, and 138)
restriction enzyme (New England Biolabs, Ipswich, MA)
was added to each reaction to perform restriction digestion
of DNA samples directly in the ddPCR. After emulsification
with Automated Droplet Generator (Bio-Rad), a plate con-
taining ddPCR droplets was transferred to the thermocycler.
Samples were denatured at 95�C for 600 seconds, followed
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Low-Level Parental Somatic Mosaicism
by 40 cycles of 94�C for 30 seconds and 54�C (families 85,
123, and 138) or 56�C (family 105) for 60 seconds, and final
incubation at 98�C for 600 seconds. After thermal cycling,
droplets were read with the use of the QX200 Droplet
Reader, followed by data analysis with Quantasoft version
1.7 Studio (Bio-Rad). Only samples with total droplets
count �13,000 were included in calculations. Each parental
sample was run in at least eight repeats.

Results

Mosaic FOXF1 variants in reportedly unaffected parents
were identified in 4 of 18 families studied. Two of these
variants were initially detected in the maternal samples
(families 91 and 176) using routine molecular testing with
Sanger sequencing and CNV deletion-specific PCR, as
previously described.20,31 The AAF of studied variants,
determined in parental blood samples using BDA, ddPCR,
or qPCR, ranged between 0.03% and 19% (Table 1,
Figure 2, Figure 3, and Supplemental Tables S2 and S3).

A heterozygous approximately 7-kb CNV deletion
involving FOXF1 was found in the patient from family 176.
The same-sized junction fragment of weaker intensity was
identified in the apparently healthy mother. The intertissue
AAFs ranged from <0.03% to 0.65%; they were determined
at 0.2% in saliva, 0.14% in redrawn saliva, 0.04% in blood,
<0.03% in urine, and 0.65% in buccal cells using BDA. In
the hair follicles, the deletion could not be detected; ddPCR
was not performed (Figure 2D, Table 1, and Supplemental
Tables S2 and S3).

In the maternal sample of family 91, somatic mosaicism
for SNV c.294C>A (p.His98Gln) was initially detected by
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Sanger sequencing.31 BDA enabled precise measurement of
the variant AAF at 19%; ddPCR was not performed
(Figure 2C, Table 1, and Supplemental Table S2).

The level of maternal somatic mosaicism of SNV
c.539C>A (p.Ser180*) in family 85 was estimated by BDA
and ddPCR at 1.5% and 1.0%, respectively (Figure 2A,
Table 1, and Supplemental Table S2).

In family 105, SNV c.316T>C (p.Phe106Leu) was found
in the paternal DNA sample. The variant allele was detected
using BDA method, and its ratio was estimated at 0.03%
(Figure 2B, Table 1, and Supplemental Table S2). This
variant was undetectable by ddPCR method.

No evidence of parental mosaicism was found in the
remaining 14 ACDMPV families, including family 123 with
two children manifesting ACDMPV with the FOXF1
insertion/deletion c.849_850del (p.Ile285Glnfs*9)20

(Table 1, Figure 3, and Supplemental Table S2).

Discussion

The incidence of somatic mosaicism varies between
different diseases, genes, and type of variants. Studies in
several human genetic conditions have shown that the rate
of parental somatic mosaicism, explaining a familial recur-
rence of apparently de novo mutations, is higher than pre-
viously thought. Low-level (AAF � 10%) and very-
lowelevel (AAF � 1%) parental somatic mosaicism for
CNV deletions and SNVs associated with genetic disorders
have been detected in 4% and 8% of families, respectively,
with AAFs ranging between <9% for CNVs and 0.22% to
6.15% for SNVs.12,36 Rahbari et al37 (2016) reported 3.8%
of mutations in mosaic state in at least 1% of parental blood
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cells. Mosaic mutations linked to SCN1A-related epilepsy
have been identified in 5% of parents, whereas 2% to 3% of
patients with vascular Ehlers-Danlos syndrome and pre-
sumed de novo variants in COL3A1 could have a parent
with low-grade mosaicism.8,9

Among ACDMPV families supported by the Alveolar
Capillary Dysplasia Association (https://acdassociation.
org), a nonprofit organization dedicated to increasing
ACDMPV awareness, there are a few families with two
or more affected siblings and no previous family history,
suggesting the possibility of parental mosaicism.
However, thus far, only five ACDMPV families with
mosaic FOXF1 variants in parents have been
reported.20,32,33 The real incidence of parental somatic or
germline mosaicism, including low-level or very-lowe
level mosaicism, in ACDMPV families remains unknown
because methods applied for standard molecular di-
agnostics, including Sanger sequencing, are not sensitive
enough to detect low percentages of a variant allele and
often fail to precisely determine the allelic ratio.38 More-
over, mutational screening is usually limited to one type of
tissue (ie, blood or saliva). To overcome the technical
diagnostic challenges, new methods are now being
implemented for more efficient detection of somatic
mosaicism, including BDA.

BDA is a relatively new PCR-based allele enrichment
technology that preferably amplifies single-base variants,
small insertions, and CNV deletions 1000-fold over
wild-type allele, allowing for rare allele quantitation with
precision similar to ddPCR, which is considered as a gold
standard in rare event detection.35 BDA does not require any
chemically modified oligonucleotides or specialized in-
struments (only standard qPCR or PCR thermocyclers);
thus, it is fast and economical for rare allele detection. It is
also compatible with downstream sequence analysis
methods (Sanger sequencing or next-generation sequencing)
to verify the amplicon sequences. BDA’s performance is
consistent within an 8�C temperature window of the
annealing/extension PCR step; therefore, the optimization of
temperature is not required.

Herein, 18 ACDMPV families were retrospectively
analyzed, with the previously identified pathogenic or likely
pathogenic variants determined by conventional molecular
techniques to be apparent de novo (n Z 14), of unknown
parental origin (n Z 1), or inherited from a parent suspected
to be somatic and/or germline mosaic (n Z 3). The use of
BDA, ddPCR, and qPCR methods with higher sensitivity
allowed us to characterize parental somatic mosaicism of
FOXF1 variants detected in 4 (22%) of 18 tested ACDMPV
families.

Among four families with parental mosaicism, two were
tested in parallel with the use of two different high-sensitive
techniques. In family 85, the mosaic ratios of FOXF1 variant
measured by BDA and ddPCR were comparable (1.5% and
1%, respectively), indicating that bothmethods can be used to
accurately quantitate low-level mosaicism. However, in
454
family 105, BDA turned out to be more efficient for detection
of very-lowelevel mosaicism than ddPCR. Using BDA, the
level of parental FOXF1 mosaicism was determined at
0.03%, whereas it remained undetectable by ddPCR. On the
basis of calibration experiments performed for c.316T>C
variant in FOXF1, the sensitivity cutoff for this particular
ddPCR assaywas determined as 0.1%. Because the amount of
DNA available is the limiting factor for sensitivity of rare
allele detection using ddPCR, the possibility that use of more
DNA in calibration (proband’s DNA) and actual (maternal
DNA) experiment could increase the limit of detection cannot
be ruled out. However, because of insufficient amount of both
proband’s and parental DNA samples, further experiments
could not be performed.
In family 176, the presence of somatic mosaicism in the

mother was detected by junction-specific long-range PCR
performed in DNA extracted from saliva and was further
confirmed and quantitated in saliva and other tissues by
qPCR.Although the level of somaticmosaicismwas very low
(<0.03% to 0.65%), the presence of CNV deletion in tissues
originating from all three germinal layers suggests that it still
might have occurred during early embryonic development.
The observed variation in very-lowelevel mosaic ratios
across tested cells could be a result of many different factors,
including tissue-specific selection effects.4,14

Family 123, in which two siblings had FOXF1 frameshift
variant and died of ACDMPV 6 years apart,20 originally
screened with the use of Sanger sequencing, was now tested
with ddPCR. Neither ddPCR nor Sanger screening of
FOXF1 has detected the corresponding pathogenic FOXF1
variant allele in the maternal blood sample, suggesting that
germline maternal mosaicism or extremely low-level
maternal somatic mosaicism is the most plausible cause of
the unusual recurrence of ACDMPV in this family.
Although the use of BDA and ddPCR allowed us to

detect parental mosaicism of FOXF1 variants in 22% fam-
ilies, the real frequency of mosaicism could be still under-
recognized because of technical limitations. For example,
high GC content of exon 1 of FOXF1 precluded testing
FOXF1 mutations in some ACDMPV families.
In conclusion, this research proposes that parents of

children with ACDMPV who are found negative for FOXF1
variants by the routine detection techniques (eg, Sanger
sequencing or array comparative genomic hybridization)
may benefit from reanalyses using more sensitive and
quantitative methods, including BDA or ddPCR. These
techniques are shown to be efficient tools for the detection
of low-level (ddPCR) or even very-lowelevel (BDA)
parental somatic mosaicism for both SNVs and CNVs.
However, given that in most cases only one type of parental
tissue was available for screening, the real frequency of
mosaic variants may be underestimated. Data from this
study further demonstrate the need for a systematic
screening of parental samples for somatic mosaicism,
particularly in families in whom more than one affected
carrier of the same variant was observed.12
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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