Skip to main content
. Author manuscript; available in PMC: 2020 May 1.
Published in final edited form as: Proc IEEE Int Conf Big Data. 2020 Feb 24;2019:74–83. doi: 10.1109/BigData47090.2019.9006512

Algorithm 2.

Generalized Rayleigh

Input: Low column rank data ARm×k
Output: Rayleigh projection vectors Ξ ∈ Rk×r
1: Compute ΣC and either of ΣA, ΣB
2: [E, ΛC, ET] = svdC, k)
3: AWRm×n = AE(ΛC1/2) ▹ Whiten data
4: ΣWRk×k = Cov(AW)
5: [Ur,Λr,UrT]=svd(ΣW,r)
6: Ξ^k×r=E*ΣC1/2*Ur, ▹ Forward vectors
7: Ξ˜Rk×r = EΛC1/2Ur ▹ Inverse vectors
8: A˜ = AΞ^Ξ˜T ▹ Approximated Data